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Abstract: In self-lubricating ceramic tools, adding CaF2 will significantly reduce the mechanical
properties of ceramic tools. Based on heterogeneous nucleation theory, we have recently prepared
aluminum hydroxide (Al(OH)3) coating on calcium fluoride (CaF2) through a liquid-phase
heterogeneous nucleation method. By adding CaF2@Al(OH)3 coated powder to replace CaF2 powder,
the self-lubricating ceramic tools maintain higher lubricity while also having better mechanical
properties. The coating process was further confirmed by using scanning electron microscopy
(SEM) and transmission electron microscopy (TEM). In addition, we used the molecular simulation
software to simulate the suspension system of CaF2, Al(NO3)3·9H2O, and Al(OH)3 to study the
process of Al(OH)3 coating on the surface of CaF2 particle to form CaF2@Al(OH)3 powders with
core-shell structure. Further, the formation and evolution of Al(OH)3 molecules on the surface of
CaF2 were analyzed.
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1. Introduction

Preparing self-lubricating ceramic tools by adding solid lubricant to a ceramic matrix is an effective
way to improve the performance of dry cutting tools [1,2]. As a high-temperature solid lubricant,
calcium fluoride (CaF2) is easy to combine with the substrate and the coating process is simple because it
does not react with the ceramic material matrix during the sintering process, and it has good lubrication
performance at high temperatures [3,4]. CaF2 is a common solid lubrication in self-lubricating ceramic
tools. However, due to the inherent characteristics of solid lubricants with weak mechanical properties,
the addition of solid lubricants definitely reduce the mechanical properties of the ceramic tool matrix.

Powder surface coating can significantly improve the properties of composite materials and
endow them with new functions through coating [5–11]. Through surface coating, the molecular scale
preparation between particles in different phases of the composite powder can be realized, and the
physical and chemical properties of the material are effectively improved [12–18]. At present, core-shell
composite powders prepared via the surface coating method has been widely used in the preparation
of ceramics and cemented carbide [19–22]. In recent years, some studies have introduced the surface
coating methods of self-lubricating materials, which improves the mechanical and lubricating properties
of the material, as well as opens up a new technical way for researching solid self-lubricating materials.
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Wu et al. [23] synthesized core-shell structured h-BN@Ni powders via the electroless plating
technique using hydrazine hydrate as a reducing agent. The addition of h-BN@Ni powders improved
the microstructure of the self-lubricating ceramic tool and greatly improved the mechanical properties
of the tool. Chen et al. [24] prepared core-shell structured (h-BN)/SiO2 composite powders to improve
the mechanical property of h-BN. Compared with the self-lubricating ceramic tool without (h-BN)/SiO2

composite powders, the mechanical properties of the self-lubricating ceramic tool with (h-BN)/SiO2

composite powders were greatly improved.
In the present study, Aluminum hydroxide coated calcium fluoride composite powders

(CaF2@Al(OH)3) were synthesized via the liquid-phase heterogeneous nucleation method. The
composite particles had a core-shell structure. Molecular simulation software was used to simulate
the suspension system of CaF2, Al(NO3)·9H2O, and aluminum hydroxide (Al(OH)3) to study the
process of Al(OH)3 coating on the surface of CaF2 particles to form CaF2@Al(OH)3 powders with
core-shell structure. The formation and evolution of Al(OH)3 molecules on the surface of CaF2 were
analyzed. The coating process was further confirmed by using scanning electron microscopy (SEM)
and transmission electron microscopy (TEM).

2. Experimental Procedure

2.1. Materials and Processing

The starting powders used to fabricate the CaF2@Al(OH)3 coated particles were commercially
available Al(NO3)3·9H2O (purity > 99.9%, Shanghai Fine Chemical Co., Ltd., Shanghai, China), sodium
acetate (analytically pure, Tianjin Chemical Reagent Factory, China), CaF2 (purity > 99.9%, Shanghai
Chaowei Nanomaterials Science and Technology Co., Ltd., China), aqueous ammonia, and absolute
ethanol were used as received without further purification.

2.2. Synthesis of CaF2@Al(OH)3 Powders

Firstly, CaF2 powder was pretreated via acid washing. Treated CaF2 was washed with distilled
water until the supernatant was weakly acidic. Then, distilled water was added to CaF2 powder to
prepare a dilute suspension with a concentration of 0.1 mol/L. Polyethylene glycol was used as a
dispersant and then polyethylene glycol was added to the prepared suspension to be fully stirred,
ultrasonically dispersed for 30 min.

Next, 0.1–0.2 mol/L Al(NO3)3·9H2O (analytical pure) solution was added to the fully stirred
suspension. Then, a buffer solution prepared via sodium acetate (analytically pure) was added and
used to carry out ultrasonic dispersion on the mixed suspension for 20 min.

The suspension was heated and rapidly stirred in DF-101S heat-collecting thermostatic heating
magnetic stirrer. After heating to 65–85 ◦C, aqueous ammonia was added dropwise at a speed of
1–6 mL/min to increase the pH value of the suspension. After the pH value reached 6.5–8.5, the
suspension was kept warm for 30 min to fully carry out the reaction. The obtained Al(OH)3 was
uniformly coated on the surface of CaF2 particles in the form of precipitates.

The suspension was placed for 2 h and centrifuged at 6000 r/min in a high-speed centrifuge.
Then, the suspension was repeatedly washed with absolute ethanol to prevent agglomeration of the
CaF2@Al(OH)3 composite powder. The washed composite powder was dried in a vacuum at 110 ◦C
for 24 h to obtain CaF2@Al(OH)3 core-shell coated composite powder.

2.3. Sample Characterization

The morphologies and microstructures were tested and analyzed using a field-emission scanning
electron microscope (SEM, SUPRATM 55, Carl Zeiss Group, Oberkochen, Germany) and a transmission
electron microscope (TEM, JEM-1400, JEOL, Tokyo, Japan).
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3. Results and Discussion

3.1. Simulation of Adsorption of Al(OH)3 Molecules on CaF2 Surface

According to the aforementioned precipitation conditions of Al(OH)3 crystals, Al(OH)3 molecules
are drawn using Material Studio software, in which the crystal cell model of CaF2 in the system was
established. The obtained crystal cell model of Al(OH)3 molecules and CaF2 is shown in Figure 1.
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Figure 1. Model: (a) aluminum hydroxide (Al(OH)3) molecular model; (b) calcium fluoride (CaF2)
unit cell model.

Molecular dynamics are used to simulate the adsorption of Al(OH)3 molecules without fixing the
atoms on the surface of CaF2. The pH value of the system is set to 7.5, the reaction temperature is 75 ◦C,
and the concentration of aluminum ions in the solution is 0.15 mol/mL. The simulation process and
results are as follows.

Select CaF2 protocell section (1 0 0) set the layer thickness to 2. A vacuum layer with a thickness
of 20 A is built and the whole above is used as an adsorption template, in which Al(OH)3 molecules
are used as adsorbents. In the initial state, the system model is shown in Figure 2a. The system of CaF2

in the cell is fixed. Al(OH)3 molecules are placed in any position in the vacuum layer and universal is
selected as the force field. The energy of surface atoms and molecules are calculated by the geometry
optimization function in the software Forcite module. At this time, Al(OH)3 molecules are adsorbed
spontaneously to the surface of CaF2 particles in order to reduce the energy of the system. However,
due to the CaF2 surface being fixed, Al(OH)3 molecules can only adsorb on the surface of CaF2. The
system simulation results are shown in Figure 2b.
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After the CaF2 cell is decoupled, the above operation is repeated and simulated. The simulation
results are shown in Figure 2c. It can be seen from the figure that CaF2 molecules interact with Al(OH)3

molecules and the aluminum oxide molecules have established a stable adsorption relationship with
CaF2 molecules.

The energy change of the above adsorption process system is shown in Figure 3. It can be
seen from Figure 3a that the entropy of the system is continuously reduced until the stabilization of
the Al(OH)3 molecule on the CaF2 surface is less than zero, from 29 kcal/mol stable in −5 kcal/mol,
indicating that the system gradually becomes an orderly state. The above calculation shows that the
reaction of the Al(OH)3 molecule to the CaF2 surface is a spontaneous reaction. It can be seen from
Figure 3b that the entropy of the system is from 650 kcal/mol at the beginning to −33.681704 kcal/mol
when the Al(OH)3 molecule interacts with the surface of the CaF2 cell after the CaF2 cell is removed.
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Figure 3. Change of entropy of adsorption process: (a) the change of the entropy value in the
fixed surface atomic operation; (b) the entropy change in the operation when the surface atoms are
not constrained.

Compared with the entropy change in the surface atomic operation of the fixed surface, the energy
conversion of the CaF2 cell is more intense and the reaction time is shorter, which indicates that the
reaction driving force of the CaF2 cell is more stable than that of Figure 3a,b. Thus, the interface after
adsorption will be more stable. Compared with the previous reaction, the entropy change of the system
is gradually reduced.

Using the energy unit in the Forcite module of the Materials Studio software, the total energy of
the adsorbed system is calculated. The formula is:

Eb = ET − (ES + EM) (1)

where Eb is the binding energy of the adsorption interface, ET is the total energy of the system, ES is
the total surface energy of the system, and EM is the total molecular energy of each molecule.

The corresponding values can be calculated ET = −4.754992 kcal/mol, ES = 0.000000 kcal/mol,
EM = 28.926712 kcal/mol, the above results are substituted into the formula (1) can be obtained:

Eb = −4.754992− 0.000000− 28.926712 = −33.681704 kcal/mol (2)

The coating process of Al(OH)3 on the CaF2 surface is a process in which Al(OH)3 molecules
gradually adsorb to CaF2 solid surface. If the Gibbs system is negative, indicating that the reaction is
exothermic, then the adsorption is stable and crystallization will occur spontaneously. If the adsorption
energy is positive, indicating that the adsorption process is endothermic, then the adsorption is unstable
and crystallization cannot occur spontaneously. In the above MS calculation of the CaF2-Al(OH)3

system, the adsorption energy is found to be negative, indicating that the system after adsorption
is thermodynamically stable, meaning the system can realize spontaneous and stable adsorption.
Therefore, Al(OH)3 can be stably adsorbed on the surface of CaF2. The test results show that the
simulation results are consistent with the test results.
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3.2. Simulation of Suspension Adsorption Interface

The molecular dynamics simulation is carried out using the Forcite module of Material Studio
software. Set the system pH value to 7.5, the reaction temperature is 75 ◦C, and the concentration of
Al(OH)3 in the solution is 0.15 mol/mL. The simulation process and the results were as follows.

First, a CaF2 crystal cell cross section was established in which the unit cell was connected with
the aqueous solution containing Al(OH)3 in a layered manner to simulate the adsorption of Al(OH)3 in
the solution. The force field is the compass and the molecular dynamics of Materials Studio software is
used to simulate the motion of Al(OH)3 and the combination of CaF2. The primary cell cross section (1
1 0) of CaF2 is selected and the thickness is set to 3 to establish the layer of CaF2, as shown in Figure 4a.
At the same time, a model of colloidal hydrate of 0.15 mol/mL Al(OH)3 is established in the system, as
shown in Figure 4b.
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Figure 4. Model: (a) the model of CaF2 surface; (b) the model of an aqueous solution containing
Al(OH)3 molecules.

In the operation process, the two models are linked and subjected to kinetic calculations. The
results of the adsorption of Al(OH)3 molecules into the CaF2 cells can be obtained as shown in
Figure 5a,b. A large number of Al(OH)3 molecules adsorbed on the surface of CaF2 and separated
from the H2O molecules lead to a solution layered and adsorbed with Al(OH)3 that forms a precipitate
with CaF2 and has a density field analysis of Al(OH)3-CaF2, with a suspension system created by the
density field module, shows that the density field of the suspension system is clearly separated due
to the formation of different substances in the system. The structure is that the top layer is the H2O
layer, the middle layer is the Al(OH)3 and CaF2 binder layer, and the bottom layer is the CaF2 layer, as
shown in Figure 5c.
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Figure 6 shows the change in the energy of the CaF2-Al(OH)3 suspension system during the
simulation. It can be seen from Figure 6 that until the end of the entire process, the potential energy
in the system, the interface separation energy, and the total energy are finally converged to their
respective stable and negative values. Further, the total kinetic energy in the system is stabilized, which
indicates that the Al(OH)3 molecule has been stopped after the reaction of the system, i.e., the system
has established a stable adsorption relationship. The above calculation further confirms that Al(OH)3

colloidal molecules can be stably coated on CaF2 surface under the experimental conditions setup in
this subject.
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composite powder.

It can be seen from Figure 7 that the morphology of CaF2 is very different from that of CaF2 before
coating. The surface of CaF2 in Figure 7a is obvious and its surface is not very flat. It is clear that
the coated CaF2 surface is coated with a layer of granular material Al(OH)3, forming a uniform and
dense coating.
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Figure 8 shows TEM photographs of the above coated microparticles. Figure 8a is a transmission
electron micrograph of uncoated CaF2; Figure 8b is a transmission electron micrograph of coated
CaF2@Al(OH)3 coated microparticles. As can be seen when comparing the two figures, after CaF2

was coated with Al(OH)3, its morphology changed greatly. Figure 8a shows that the uncoated CaF2 is
flake and it can be seen from Figure 8b that the surface of CaF2 is coated with an Al(OH)3 layer with a
thickness of about 50–200 nm. Al(OH)3 is evenly coated on the surface of calcium fluoride to form a
core-shell structure and the coating effect is good.Crystals 2019, 9, x FOR PEER REVIEW 7 of 9 
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composite powders.

Based on the above analysis, Al(OH)3 can be successfully coated on the surface of CaF2. Based
on the principle of nonuniform nucleation, Al(OH)3 forms a dense and uniform coating layer. The
cladding layer is deposited and connected with Al(OH)3 particles and the effect of the coating is better.

4. Conclusion

Through the above simulation, it is verified that aluminum hydroxide can be coated on the surface
of calcium fluoride, wherein the optimal coating process is determined. Experiments were carried out
according to the simulation process. The results show that Al(OH)3 can be stably adsorbed on the
surface of CaF2 under the experimental conditions. The stable adsorption interface can be formed by
the interaction of CaF2 and Al(OH)3. The well-behaved core-shell structure of CaF2@Al(OH)3 coated
particles was prepared. The following conclusions were obtained.

1. The formation process and energy change of CaF2@Al(OH)3 coated composite powder
were simulated using Material Studio. It was verified that under experimental conditions, Al(OH)3

colloidal molecules were stably adsorbed on the surface of CaF2 and a stable adsorption interface
was established through the formation of new chemical bonds. This formed a core-shell coated
CaF2@Al(OH)3 composite powder. The simulation results are in good agreement with the theoretical
calculation and experimental results.

2. The preparation process of CaF2@Al(OH)3 core-shell coated composite powder was designed.
The prepared CaF2@Al(OH)3 and CaF2@Al2O3 core-shell coated composite powders were characterized
and analyzed using SEM and TEM, which proved that the coated particles formed the core-shell
structure morphology.
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