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Abstract: The synthesis and X-ray crystal structure of the trinuclear
[Cu3(HL)(Cl)2(NO3)(H2O)5](NO3)2 complex of the s-triazine-based di-compartmental ligand,
2-methoxy-4,6-bis(2-(pyridin-2-ylmsethylene)hydrazinyl)-1,3,5-triazine (H2L), are presented. The Cu1
and Cu2 are penta-coordinated with CuN3ClO coordination environment, distorted square
pyramidal coordination geometry while Cu3 is hexa-coordinated with CuN2O4 coordination sphere,
and distorted octahedral geometry. The complex crystallized in the primitive P-1 triclinic crystal
system with two molecular units per unit cell. Its packing is dominated by the O–H (35.5%) and
Cl–H (8.8%) hydrogen bonding interactions as well as the π–π stacking (2.3%) and anion–π-stacking
interactions (3.7%). The different coordination interactions were analyzed using atoms in molecules
(AIM) theory, and the number of charge transferences from the ligand group to Cu(II) were
determined using natural bond orbital calculations. The effect of the free ligand and its Cu(II)
complex on the tested pathogenic microbes (Staphylococcus aureus, S. epidermidis, Enterococcus faecalis,
Escherichia coli, Salmonella typhi and Pseudomonas aeruginosa) and one fungal isolate (Candida albicans)
is presented. Both have wide spectrum antimicrobial activity against the selected microorganism. It is
observed that the free ligand at 180 µg/mL was more effective than its Cu(II) complex and showed
close results compared to the positive control gentamicin. At higher concentrations (1 mg/mL),
the Cu(II) complex was found to be more active against S. epidermidis, E. coli and C. albicans than
the lower concentration. The minimum inhibitory concentration (MIC) and minimum bactericidal
concentration (MBC) values are also lower for the Cu(II) complex than the free ligand.

Keywords: s-Triazine; trinuclear; Hirshfeld; antimicrobial; NBO

1. Introduction

s-Triazine-based ligands with two hydrazone arms (Figure 1) are versatile building blocks used
to construct interesting mononuclear, dinuclear and polynuclear metal complexes. In literature,
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these ligands have structure duality [1–15]. They can form mononuclear pincer complexes when the
two-ligand arms are located in the same direction (mode A). They can also act as di-compartmental
ligands if one of these arms is rotated along the N–N bond leading to dinuclear metal complexes (mode
B). In these cases, the interaction with the s-triazine ligand is called either pyridine or pyrimidine-like
coordination behavior, respectively [10]. Factors that control the ligand behavior are the nature of
ligating atoms, metal ion size and charge as well as the nature of solvent used [1–7]. The complexation
of Co(II), Hg(II) and Pb(II) [10–12] with bis-tridentate s-triazine chelates was investigated by Lehn and
co-workers. Recently, the Mn(II) and Cd(II) complexes of the H2L ligand (Figure 1) using self-assembly
was reported by our research group [13,14]. More recently and with the same synthetic strategy, we
also reported two di-compartmental metal(II) complexes with Co(II) and Ni(II) [15] where the metal
ion size was the critical factor that controlled the ligand behavior in these cases [13–15]. In view of
the interesting and versatile coordination behavior of this ligand, we present a new rare case of Cu(II)
complex with the same di-compartmental ligand. The structure of the new complex was identified
using single crystal X-ray diffraction, and the molecular packing interactions were discussed based
on Hirshfeld surface analysis. Its structure aspect was analyzed using Density functional theory
(DFT) calculations. Moreover, its antimicrobial activity was determined and compared with the free
ligand (H2L).
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Figure 1. The possible coordination behaviors of the ligand (H2L). 

2. Materials and Methods 

2.1. Materials and Physical Measurements 

Solvent and reagents were purchased from Sigma-Aldrich (Sigma-Aldrich Chemie GmbH, 
82024 Taufkirchen, Germany) and were used without further purification. The CHN analyses were 
determined using PerkinElmer 2400 elemental analyzer (PerkinElmer, Inc.940 Winter Street, 
Waltham, MA, USA). 

2.2. Synthesis of [Cu3(HL)(Cl)2(NO3)(H2O)5](NO3)2 (1) 

The ligand was prepared by following the method described by our research group [13,14]. A 
10 mL methanolic solution of H2L (0.349 g, 1 mmol) was mixed with an aqueous solution (5 mL) of 
copper(II) chloride (0.135 g, 1 mmol) followed by addition of 3 drops of diluted nitric acid HNO3 (1:1 
v/v). This mixture was left to slowly evaporate at room temperature; 
[Cu3(HL)(Cl)2(NO3)(H2O)5](NO3)2 (1) complex was obtained as blue crystals after three weeks. 

Yield; C16H24Cl2Cu3N12O15: 72%. Anal. Calc. (%): C, 21.69; H, 2.73; N, 18.97; Found: C, 21.77; H, 
2.80; N, 18.75. 

2.3. X-Ray Structure Determination 

The crystal of [Cu3(HL)(Cl)2(NO3)(H2O)5](NO3)2 (1) was measured using Rigaku Oxford 
Diffraction Supernova diffractometer using Mo Kα (λ = 0.71073 Å) radiation at 120 K. The 
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2. Materials and Methods

2.1. Materials and Physical Measurements

Solvent and reagents were purchased from Sigma-Aldrich (Sigma-Aldrich Chemie GmbH,
82024 Taufkirchen, Germany) and were used without further purification. The CHN analyses were
determined using PerkinElmer 2400 elemental analyzer (PerkinElmer, Inc.940 Winter Street, Waltham,
MA, USA).

2.2. Synthesis of [Cu3(HL)(Cl)2(NO3)(H2O)5](NO3)2 (1)

The ligand was prepared by following the method described by our research group [13,14].
A 10 mL methanolic solution of H2L (0.349 g, 1 mmol) was mixed with an aqueous solution (5 mL) of
copper(II) chloride (0.135 g, 1 mmol) followed by addition of 3 drops of diluted nitric acid HNO3 (1:1 v/v).
This mixture was left to slowly evaporate at room temperature; [Cu3(HL)(Cl)2(NO3)(H2O)5](NO3)2 (1)
complex was obtained as blue crystals after three weeks.

Yield; C16H24Cl2Cu3N12O15: 72%. Anal. Calc. (%): C, 21.69; H, 2.73; N, 18.97; Found: C, 21.77; H,
2.80; N, 18.75.
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2.3. X-ray Structure Determination

The crystal of [Cu3(HL)(Cl)2(NO3)(H2O)5](NO3)2 (1) was measured using Rigaku Oxford
Diffraction Supernova diffractometer using Mo Kα (λ = 0.71073 Å) radiation at 120 K.
The CrysAlisPro [16] program package and the SHELXT [17] software were used for solving and
refine the structure with the aid of Olex2 [18] graphical user interface (See Supplementary data).
The crystallographic details are summarized in Table 1.

Table 1. Crystal data of 1.

1

empirical formula C16H24Cl2Cu3N12O15
Fw 885.99

temp (K) 120(2) K
λ (Å) 0.71073

crystal system Triclinic
space group P-1

a (Å) 7.1252(3)
b (Å) 13.2067(5)
c (Å) 16.0792(7)

a (deg) 94.059(4)
β (deg) 101.947(4)
γ (deg) 92.712(3)
V (Å3) 1473.59(11)

Z 2
ρcalc (Mg/m3) 1.997

µ(Mo Kα) (mm−1) 2.418
number of reflections 14,147

unique reflections 7983
GOOF (F2) * 1.050

Rint 0.0267
R1 a (I ≥ 2σ) 0.0476

wR2 b (I ≥ 2σ) 0.1099
CCDC ** 1,965,390

a R1 = Σ||Fo| – |Fc||/Σ|Fo|. b wR2 = [Σ[w(Fo
2 – Fc

2)2]/ Σ[w(Fo
2)2]]1/2. * Goodness of fit; ** CCDC = Cambridge

Crystallographic Data Centre Number

2.4. Hirshfeld Surface Analysis

The topology analyses were performed using Crystal Explorer 17.5 program [19] in order to
determine the percentages of the different intermolecular interactions in the crystal structure of the
studied Cu(II) complex.

2.5. Computational Details

With the aid of Gaussian 09 program package [20,21], single point calculations employing the
MPW1PW91 [22] method combined with the TZVP basis sets for all atoms were performed. Natural
atomic charges were calculated using natural bond order (NBO) calculations with the aid of NBO
program [23], while Multiwfn [24] program was used to compute the atoms in molecules (AIM)
topological parameters.

2.6. Antimicrobial Experiments

2.6.1. Test Microorganism

The antibacterial activity of H2L and its Cu(II) complex was assessed against two bacteria groups:
Gram-positive bacteria namely; S. aureus ATCC 29213, S. epidermidis ATCC 12228 and E. faecalis
ATCC 29212 and Gram-negative bacteria, namely E. coli ATCC 25922, P. aeruginosa ATCC 27853 and
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S. typhimurium ATCC 14028, maintained in brain heart infusion (BHI) broth at 20 ◦C; 300 mL of each
stock culture was added to 3 mL of BHI broth. Overnight cultures were kept for 24 h at 37 ± 1 ◦C,
and the purity of cultures was checked after 24 h of incubation. The bacterial suspension (inoculum)
was diluted with sterile physiological solution to 108 CFU/mL (turbidity = McFarland barium sulfate
standard 0.5). In case of fungus C. albicans ATCC 60193, the used medium in antagonistic activity
against tested fungi was potato dextrose agar (PDA) [25].

2.6.2. Well Diffusion Method for Showing Antimicrobial Activity

Solutions of H2L and its Cu(II) complex (1) were prepared at a concentration of 3 mg/mL in DMSO
as stock solution. Sterilized Mueller–Hinton agar plates seeded with pathogenic bacteria were prepared
and 60 µL of stock solution was added in wells according to the well diffusion method [25]. The plates
were incubated at 37 ◦C for 24 h, and the antimicrobial activity was determined by measuring the
inhibition zones. Gentamicin was used as positive control in the all experiments.

2.6.3. Minimum Inhibitory Concentration (MIC) Determination

The antibacterial activity of H2L and its Cu(II) complex (1) was studied by employing micro-dilution
method using Mueller–Hinton broth [26]. Stock solutions (3 mg/ml) of H2L and 1 were prepared
in DMSO as solvent. Further 1:2 serial dilutions were performed by addition of culture broth to
reach concentrations ranging from 1.5 to 0.235 mg/mL. The 90 µL of medium was distributed in
96–well plates, as well as a sterility control and a growth control (containing culture broth plus DMSO,
without antimicrobial substance). Each test and growth control well was inoculated with 10 µl of the
bacterial suspension (108 CFU/mL) and then incubated at 37 ◦C for 24 h. The culture broth at each
dilution inoculated on nutrient agar was used to detect MIC and minimum bactericidal concentration
(MBC) [27–30].

3. Results and Discussion

3.1. X-ray Structure Description

The trinuclear [Cu3(HL)(Cl)2(NO3)(H2O)5](NO3)2 (1) complex crystallized in the triclinic primitive
P-1 space group with one asymmetric unit and two molecular formula units per unit cell. A list of
the bond distances and angles is summarized in Table 2 while the structure of the asymmetric unit is
shown in Figure 2. In the course of preparation, the hydrazone NH proton of one of the two ligand
arms was abstracted leading to the mononegative polydentate ligand (HL¯), which comprised nine
nitrogen atoms. Of these N-sites, there are eight nitrogen atoms coordinating to the three copper centers.
The Cu1 and Cu2 centers are penta-coordinated and with very similar coordination environment.
In both cases, the Cu(II) is coordinated with one water molecule, one chloride ion and the three
nitrogen atoms from the organic ligand: (i) the pyridyl, (ii) the hydrazone CH=N and (iii) one of
the s-triazine nitrogen atoms. The Cu1–N1, Cu1–N2 and Cu1–N6 distances are 2.041(3), 1.964(3)
and 2.062(3) Å, respectively, and the Cu2–N9, Cu2–N8 and Cu2–N4 distances are 2.006(3), 1.965(3)
and 2.027(3) Å, respectively. Generally, the strength of Cu–N interactions increased in the order of
Cu–Ntriazine < Cu–Npyridine < Cu–Nhydrazone. The Cu1–Cl1 (2.233(9) Å) and Cu2–Cl2 (2.216(10) Å) are
slightly different from each other. The Cu1–O1 (2.307(3) Å) and Cu2–O3 (2.391(3) Å) are not equivalent.
The coordination geometry around these Cu(II) centers could be described as distorted square pyramid
where the three nitrogen atoms and the coordinated chloride ion forming the base and the oxygen
of the coordinated water molecule are at the apex. On other hand, the Cu3 is hexa-coordinated with
CuN2O4 coordination environment. The organic ligand is coordinated to Cu3 via two nitrogen atoms;
one from the s-triazine ring with long Cu3–N5 distance of 2.730(3) Å and the other from the negatively
charged N-site from the de-protonated hydrazone NH group with Cu3–N7 distance of 2.002(3) Å.
In addition, the highly distorted octahedral configuration of Cu3 is completed by four oxygen atoms
from three water molecules and one nitrate ion as monodentate ligands. The base of the distorted
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octahedron comprised the two Cu–N interactions as well as the Cu3–O6 (1.967(3) Å) and Cu3–O7
(2.301(3) Å) bonds while the apical positions are occupied by two axial water molecules with almost
identical Cu3–O4 and Cu3–O5 distances of 1.950(3) and 1.946(3) Å, respectively.

Table 2. Selected bond lengths (Å) and angles (◦) for [Cu3(HL)(Cl)2(NO3)(H2O)5](NO3)2 (1) complex.

Bond Distances

Cu1–N2 1.964(3) Cu2–Cl2 2.216(10)
Cu1–N1 2.041(3) Cu2–O3 2.391(3)
Cu1–N6 2.062(3) Cu3–O5 1.946(3)
Cu1–Cl1 2.233(9) Cu3–O4 1.950(3)
Cu1–O1 2.307(3) Cu3–O6 1.967(3)
Cu2–N8 1.965(3) Cu3–N7 2.002(3)
Cu2–N9 2.006(3) Cu3–N5 2.730(3)
Cu2–N4 2.027(3) Cu3–O7 2.301(3)

Bond Angles

N2–Cu1–N1 79.11(12) N4-Cu2–Cl2 103.36(9)
N2–Cu1–N6 78.19(12) N8–Cu2–O3 86.79(11)
N1–Cu1–N6 157.28(12) N9–Cu2–O3 99.63(11)
N2–Cu1–Cl1 168.21(9) N4-Cu2–O3 87.40(11)
N1–Cu1–Cl1 96.97(9) Cl2-Cu2–O3 97.89(7)
N6-Cu1–Cl1 105.13(8) O5–Cu3–O4 174.67(13)
N2–Cu1–O1 86.64(11) O5–Cu3–O6 84.02(19)
N1–Cu1–O1 87.67(11) O4–Cu3–O6 90.67(19)
N6-Cu1–O1 91.86(11) O5–Cu3–N7 90.58(12)
Cl1-Cu1–O1 104.40(7) O4–Cu3–N7 94.18(12)
N8–Cu2–N9 80.46(12) O6-Cu3–N7 157.47(18)
N8–Cu2–N4 78.43(11) O5–Cu3–O7 90.82(13)
N9–Cu2–N4 157.32(12) O4–Cu3–O7 90.81(14)
N8–Cu2–Cl2 175.03(9) O6-Cu3–O7 103.30(17)
N9–Cu2–Cl2 97.04(9) N7-Cu3–O7 98.62(11)
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The complex molecules are packed in the three dimensional structure via a complicated set of
intermolecular O–H hydrogen bonding interactions (Figure 3). In addition to the two weak non-classical
C4–H4–O9 (3.192(5) Å) and C6–H6–O3 (3.199(4) Å) hydrogen bonding interactions, the complex units
are packed by many strong O–H–O hydrogen bonding interactions between the coordinated water
molecule as hydrogen bond donor and nitrate anions as hydrogen bond acceptor with donor-acceptor
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distances ranging from 2.641(4) to 3.184(4) Å for the O5–H5A–O10 and O1–H1B–O15 hydrogen bonds,
respectively. A view of molecular packing is presented in Figure 4, and the details of the hydrogen
bond parameter are summarized in Table 3.
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Table 3. Hydrogen bonds for [Cu3(HL)(Cl)2(NO3)(H2O)5](NO3)2 (1) complex (Å and ◦).

D–H–A d(D–H) d(H–A) d(D–A) <(DHA)

O1–H1B–O14#1 0.84 2.15 2.929(4) 153.1
O1–H1B–O15#1 0.84 2.43 3.184(4) 149.1
O3–H3A–O8#2 0.87 2.06 2.910(4) 165.2
O3–H3B–O15#1 0.93 2.05 2.895(5) 150.0
O4–H4A–O8#2 0.86 1.91 2.728(4) 159.9
O4–H4B–O10#1 0.89 1.92 2.766(4) 157.2
O5–H5A–O10 0.83 1.82 2.641(4) 172.0
O5–H5B–O14 0.87 1.85 2.715(5) 174.2

O6-H6B–O11#1 0.89 1.87 2.698(6) 153.4
C4–H4–O9#3 0.95 2.3 3.192(5) 156.6
C6–H6–O3#4 0.95 2.26 3.199(4) 168.1

#1 x + 1, y, z; #2 –x + 3, −y + 1, −z; #3 x + 1, y, z + 1; #4 –x + 4, −y + 1, −z + 1.

3.2. Hirshfeld Analysis

The intermolecular interactions in the crystal structure of the trinuclear complex unit
[Cu3(HL)(Cl)2(NO3)(H2O)5]2+ were analyzed using Hirshfeld topology analysis. All intermolecular
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contacts and their percentages are presented graphically in Figure 5. In addition to the H–H contacts
(23.4%), the polar O–H (35.5%) and Cl–H (8.8%) hydrogen bonds are considered not only the strongest
contacts but also the most important in the molecular packing of the complex units (Figure 6). The O–H
and Cl–H fingerprint plots showed sharp spikes with many red spots of different intensities in the
dnorm map indicating that these interactions are strong and short compared with the van der Waals
radii sum of the two elements. Presentation of these interactions for the [Cu3(HL)(Cl)2(NO3)(H2O)5]2+

complex ion with the neighboring units are mapped based on dnorm Hirshfeld surface and shown in
Figure 7. There are some interactions between the coordinated chloride anion and the nitrate counter
anion with the organic ligand C and N-atoms. The Cl1–N2 interaction distance is 3.293 Å, which
contributed by 1.9% from the whole fingerprint area while the nitrate counter anion to the organic
ligand intermolecular distances are the shortest for C8–O14 (3.160 Å), C11–O13 (2.998 Å) and N8–N12
(3.031 Å) with one nitrate anion while C7–O15 (3.145 Å), C8–O13 (3.171 Å) and C9–O14 (3.183 Å) with
the other nitrate counter anion. The net amount of these anion–π-stacking interactions is 3.7% from the
whole fingerprint area. The shortest C–C contact (2.3%) occurred between two pyridine moieties from
two complex units with interaction distance of 3.333 Å for the C5–C16 contact indicating some weak
π–π stacking interactions with characteristics blue/red triangle in the shape index map (Figure 8).
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3.3. DFT Studies

3.3.1. AIM Topology Analysis

The present section aims to shed light on the nature and strength of the Cu–N, Cu–Cl and Cu–O
interactions in the studied complex [31–39]. A list of the calculated topological parameters is given
in Table S1. The electron density (ρ(r)) values of the Cu–N, Cu–Cl and Cu–O interactions are in the
range of 0.0739–0.0954, 0.0773–0.0774 and 0.0317–0.0858 a.u., respectively. The ρ(r) values for the Cu–N
coordinate bonds with the hydrazone N-atom are the highest for Cu1 and Cu2 atoms. The values are
very close to 0.1 a.u. indicating more covalent characters and stronger bonds for these interactions
compared to the Cu–N(pyridine) and Cu–N(triazine). The Cu–N(triazine) bonds seems to be the
weakest and have the least covalent character. It is clear from Figure 9 that the Cu–O and Cu–N
interaction distances correlated very well with ρ(r) and the calculated interactions energies (Eint.) [39].
The Cu1–O1 and Cu2–O3 interactions with the axial water molecules as well as the Cu3–O7 interaction
with the nitrate ion have the lowest ρ(r) values and are the weakest Cu–O interactions. The weak
Cu1–O1 and Cu2–O3 interactions could be explained on the basis of the strong interactions between
the Cu(II) center with the organic ligand as NNN-chelate and with the chloride anion in the equatorial



Crystals 2019, 9, 661 9 of 13

plane. This significantly weakens its interaction with the axial water molecule as a result of the strong
charge compensation at the metal ion site. Another conclusion could be deduced from these results;
the majority of the Cu–X (X = Cl, O or N) interactions have negative total energy density (H(r)) and
potential to kinetic energy density (V(r)/G(r)) ratios more than 1 indicating the significant covalent
characteristics of these interactions.
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3.3.2. Natural Population Analysis

The natural charge populations at the different copper centers and also at the different ligand groups
are collected in Table 4. In this trinuclear Cu(II) complex, the three copper centers have two different
coordination environments. While Cu1 and Cu2 have almost square pyramidal coordination (CuN3ClO)
geometry with five coordinating sites, the Cu3 is hexa-coordinated with CuN2O4 coordination
environment. From this point of view, the Cu1 and Cu2 have almost similar natural charges. The Cu1
and Cu2 natural charges are 0.830 and 0.838 e, respectively, while the corresponding value for Cu3
is 1.014 e, as its positive charge is less compensated by the electron density transferred from the
coordinated ligand groups. The significant charge compensations that occurred at the Cu1 and Cu2
centers are mainly attributed to the coordinated chloride anion. The amount of electron density
transferred from this coordinated anion to the Cu1 and Cu2 ions are 0.481 and 0.410 e, respectively.
On the other hand, the coordinated water molecules transferred only 0.080 and 0.068 e to these copper
centers, respectively. For Cu3, the nitrate anion, which is considered as a weaker electron donor
compared to the chloride anion, transferred only 0.145 e while the three water molecules transferred a
net of 0.521 e to this copper center. Interestingly, the coordinated mono-negative organic ligand (HL¯)
has a net charge of 0.486 e indicating a significant number of electrons (1.486 e) transferred from the
organic ligand to the three copper centers.
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Table 4. The natural charges at the Cu sites and ligand groups.

Atom or Ligand Group Charge

Cu1 0.8297
H2O(1) 0.0805

Cl1 −0.5191
Cu2 0.8378

H2O(3) 0.0682
Cl2 −0.5905
Cu3 1.0141

H2O(4) 0.1602
H2O(5) 0.1892
H2O(6) 0.1717

N(10)O3
−

−0.8550
N(11)O3

−
−0.9484

N(12)O3
−

−0.9243
HL− 0.4860

3.4. Antimicrobial Activity of H2L and its Cu(II) Complex

The effect of the free ligand H2L and its Cu(II) complex on the tested pathogenic microbes is
shown in Figure S1. Both showed wide spectrum antimicrobial activity against Gram-positive and
Gram-negative bacteria as well as the fungus C. albicans (Table 5). It is observed that H2L at 180 µg/mL
was more effective than its Cu(II) complex and showed close results compared to the positive control
gentamicin. At higher concentrations (1 mg/mL), the Cu(II) complex was found to be more active
against Streptococcus epidermidis, E. coli and C. albicans than the lower concentration as shown form the
results obtained in Table 6.

Table 5. The inhibition zone diameter (mm) for H2L and its Cu(II) complex against target pathogenic
microbes at 180 µg/mL per well.

Target microbes Cu(II) Complex H2L Gentamicin a

S. aureus 16 34 34
Streptococcus epidermidis 16 22 32

Enterococcus faecalis 9 13 21
E. coli 10 14 21

S. typhi 12 11 22
Pseudomonas aeruginosa 17 17 19

C. albicans 7 7 -
a 30 µg per disc.

Table 6. Minimum inhibitory (MIC) and minimum bactericidal concentration (MBC) in mg/mL for the
Cu(II) complex and H2L free ligand against S. epidermidis, E. coli and C. albicans growth.

Microbes Complex 1 a H2L a

E. coli 0.375(0.563) 0.750 (1.125)

S. epidermidis 0.188 (0.282) 0.375 (0.563)

C. albicans 0.188 (0.282) 0.750 (1.125)
a MIC(MBC).

MICs and MBCs were determined for H2L and its Cu(II) complex against E. coli, S. epidermidis
and C. albicans (Table 6 and Figure S2). The Cu(II) complex showed strong bioactivity against the
tested pathogenic microbes, more than the free ligand (H2L). The effect of the Cu(II) complex against
S. epidermidis as Gram-positive bacteria and the fungus C. albicans was found to be higher compared to
the Gram-negative bacteria (E. coil). The free H2L ligand activity was the highest against S. epidermidis
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as Gram-positive bacteria compared to E. coli and C. albicans. Generally, the bioactivity of the Cu(II)
complex against target microbes was found to be considerably more effective than the H2L ligand as
indicated by the low MIC and MBC values of the complex 1 compared to the free ligand (Table 6)

4. Conclusions

A novel coordination behavior of the di-compartmental ligand (H2L) was observed with Cu(II) ion.
The [Cu3(HL)(Cl)2(NO3)(H2O)5](NO3)2 (1) complex is trinuclear with three Cu(II) centers coordinating
the ligand in its anionic form (HL¯). The CuN3ClO coordination environment of Cu1 and Cu2 has
square pyramidal coordination configuration while the CuN2O4 coordination sphere of Cu3 has a
distorted octahedral geometry. Hirshfeld analysis was used to quantitatively analyze the intermolecular
interactions in the molecular packing of the Cu(II) complex. AIM calculations were also presented to
shed light on the strength and nature of the Cu–Cl, Cu–O and Cu–N interactions while NBO method
was used to predict the charge transferences from the ligand groups to Cu(II). The bioactivity of the
free ligand (H2L) and its Cu(II) complex (1) as antimicrobial agents was investigated. Both showed
high antimicrobial activities against the selected microorganism. The results indicated that the Cu(II)
complex has lower MIC and MBC values compared to the free ligand, indicating the higher potency of
the Cu(II) complex as a antimicrobial agent compared to the free ligand.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4352/9/12/661/s1,
Figure S1: Growth inhibition images of target pathogenic microbes with the Cu(II) complex (1) and H2L, negative
control DMSO alone (C), positive control, gentamicin, Figure S2: Photography images of inhibition of pathogenic
microbe’s growth at different concentrations of synthetic compounds to determine their MIC and MBC; the Cu(II)
complex (1) and H2L, Table S1: Atoms in molecules (AIM) topological parameters (a.u.) of the Cu–N, Cu–Cl and
Cu–O interactions.
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