Supplementary Materials: Tetrahydrofuran (THF)-Mediated Structure of THF·(H₂O)_{n=1-10}: A Computational Study on the Formation of the THF Hydrate

Jinxiang Liu 1,2,*, Yujie Yan 3, Youguo Yan 4, Jun Zhang 4,*

- ¹ School of Physics and Technology, University of Jinan, Jinan 250022, China
- ² School of Petroleum Engineering, China University of Petroleum, Qingdao, Shandong 266580, China
- ³ Shandong Academy of Environmental Science, Jinan 250013, China
- ⁴ School of Materials Science and Engineering, China University of Petroleum, Qingdao 266580, China
- * Correspondence: sps_liujx@ujn.edu.cn (J.L.), sps_zhang@hotmail.com (J.Z.)

Supplementary Materials:

- 1. Initial Configurations of Five Uncorrelated THF $(H_2O)_{n=1-10}$ Clusters
- 퍨 ¢ Optimized Configurations of Five Uncorrelated THF ·(H₂O)_{n=1-10} Clusters
- 3. The Distance Between Hydrogen Atoms of THF and the Nearest Water Oxygen Atoms for the Lowest-Energy

THF \cdot (H₂O)_{n=1-10} Clusters

- 4. Initial and Optimized Configurations of Five Uncorrelated CH₄·(H₂O)₁₀ Clusters
- 5. Initial and Optimized Configurations of Five Uncorrelated CO2 ·(H2O)10 Clusters
- 6. Initial and Optimized Configurations of Five Uncorrelated H2·(H2O)10 Clusters
- 7. The Stabilization Energies of Clusters Calculated Using Different Functionals and Basis Sets

1. Initial Configurations of Five Uncorrelated THF \cdot (H₂O)_{n = 1-10} Clusters

Figure S1. Initial configurations of five uncorrelated THF \cdot (H₂O)_{*n*=1-10} clusters extracted from the ab initio molecular dynamics simulation trajectory.

2. Optimized Configurations of Five Uncorrelated THF \cdot (H₂O)_{n = 1-10} Clusters

Figure S2. Optimized configurations of five uncorrelated THF \cdot (H₂O)_{*n*=1-10} clusters.

3. The Distance Between Hydrogen Atoms of THF and the Nearest Water Oxygen Atoms for the Lowest-Energy THF·(H₂O)_{n=1-10} Clusters

Figure S3. Labels of H atoms of the THF molecule.

Table S1. The distance between H atoms of the THF molecule and their nearest O atoms of water molecules.

Clusters	Distance (Å)								
Clusters	H6	H7	H8	Н9	H10	H11	H12	H13	
$THF \cdot (H_2O)_1$	3.162	4.033	5.356	5.531	4.356	5.563	3.392	4.504	
THF•(H ₂ O) ₂	3.065	2.912	4.839	3.398	4.122	4.896	2.979	3.195	
THF•(H ₂ O) ₃	2.890	2.963	4.789	3.312	2.675	4.140	2.653	2.885	
THF•(H ₂ O) ₄	3.049	3.010	4.512	2.757	3.622	4.118	2.976	2.674	
THF•(H ₂ O)5	2.808	3.408	3.952	5.193	2.945	3.185	3.253	3.850	
THF•(H ₂ O) ₆	2.987	3.992	4.064	5.077	2.544	4.316	2.795	2.631	
THF•(H ₂ O) ₇	2.619	2.956	3.096	2.555	2.684	3.497	2.876	2.742	
THF·(H ₂ O) ₈	2.572	2.748	3.012	3.511	2.623	4.317	3.012	2.361	
THF•(H ₂ O)9	2.593	2.783	3.085	3.166	2.736	2.870	2.747	2.469	
THF·(H ₂ O) ₁₀	2.489	2.683	2.408	2.463	2.659	3.418	3.719	3.041	

4. Initial and Optimized Configurations of Five Uncorrelated CH₄·(H₂O)₁₀ Clusters

Figure S4. Initial configurations of five uncorrelated CH₄·(H₂O)₁₀ clusters, which were obtained by the same procedure as the THF·(H₂O)_{n=1-10} clusters.

stabilization energies, optimized at the PBE-D/TNP level.

5. Initial and Optimized Configurations of Five Uncorrelated CO₂·(H₂O)₁₀ Clusters

Figure S6. Initial configurations of five uncorrelated $CO_2 \cdot (H_2O)_{10}$ clusters, which were obtained by the same procedure as the THF $\cdot (H_2O)_{n=1-10}$ clusters.

Figure S7. Optimized configurations of five uncorrelated CO₂·(H₂O)₁₀ clusters and their

stabilization energies, optimized at the PBE-D/TNP level.

6. Initial and Optimized Configurations of Five Uncorrelated H₂·(H₂O)₁₀ Clusters

Figure S8. Initial configurations of five uncorrelated H₂·(H₂O)₁₀ clusters, which were obtained by the same procedure as the THF·(H₂O)_{n = 1-10} clusters.

energies, optimized at the PBE-D/TNP level.

7. The Stabilization Energies of Clusters Calculated Using Different Functionals and Basis Sets

Figure S10. The stabilization energies of the THF·(H₂O)_{n=1-10} clusters shown in Figure 2, calculated at the different levels.

	PBE/TNP		PBE/DNP+		PBE/NCP		B3LYP/TNP		BLYP/TNP	
Guest	without THF	with THF	without THF	with THF						
CH ₄	0.325	0.346	0.319	0.340	8.329	8.350	0.253	0.273	0.364	0.387
$\rm CO_2$	0.326	0.365	0.320	0.360	8.331	8.371	0.255	0.294	0.365	0.403
H_{2}	0.279	0.340	0.274	0.335	8.281	8.343	0.205	0.267	0.314	0.379
THF	0.382	0.399	0.376	0.393	8.387	8.404	0.309	0.327	0.420	0.438

Table S2. The stabilization energy (E_{sta}) of the pentagonal water ring plus a guest (CH₄, CO₂, H₂, and THF), calculated at the different functionals and basis sets.

Table S3. The stabilization energy (E_{sta}) of the hexagonal water ring plus a guest (CH₄, CO₂, H₂, and THF), calculated at the different functionals and basis sets.

	PBE/TNP		PBE/DNP+		PBE/NCP		B3LYP/TNP		BLYP/TNP	
Guest	without THF	with THF	without THF	with THF						
CH_4	0.340	0.364	0.336	0.361	9.187	9.212	0.260	0.288	0.375	0.400
$\rm CO_2$	0.352	0.371	0.350	0.368	9.200	9.228	0.269	0.304	0.390	0.419
H_2	0.294	0.355	0.291	0.352	9.139	9.197	0.227	0.277	0.326	0.388
THF	0.394	0.411	0.390	0.407	9.243	9.259	0.329	0.338	0.433	0.449