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Abstract: The Li+- and K+-complexes of new discotic mesogens, where two n-alkoxy-substituted
triphenylene cores are connected by a central crown ether (12-crown-4 and 18-crown-6), provide
interesting structural and electronic properties. The inter- and intra-columnar structure was
investigated by small and wide angle X-ray scattering. The electronic and ionic transports were studied
by temperature dependent photoconductivity and impedance spectroscopy, respectively. Besides a
strong increase of the stability and the width of the columnar phases the presence of soft anions (iodide,
thiocyanate, tetrafluoroborate) leads to an improved intra-columnar order. The hereby shortened
stacking-distance of the triphenylene cores leads to a significant increase of the photoconductivity in
the columnar mesophase. Furthermore, the ionic conductivity of the new materials was investigated
on macroscopically aligned thin films. The existence of channels for fast cation transport formed
by the stacked crown ether moieties in the centre of each column can be excluded. The cations are
coordinated strongly and therefore contributing only little to the conductivity. The ionic conductivity
is dominated by the anisotropic migration of the non-coordinated anions through the liquid, like side
chains favouring the propagation parallel to the columns. Iodide migrates about 20 times faster than
thiocyanate and 100 times faster than tetrafluoroborate.

Keywords: liquid crystals; columnar; discotic; crown ether; electron transport; ion transport;
ion channels; impedance spectroscopy; photoconductivity; X-ray diffraction; salt effect

1. Introduction

Columnar phases of discotic liquid crystals display one-dimensional (1D) photoconductivity
according to a seminal discovery by Haarer et al. in 1993 [1], turning the investigation of the electronic
charge transport in columnar liquid crystals into a very active field of research [2,3]. Columnar materials
can be used as semiconductors in applications, like organic field effect transistors (OFET) [4,5], organic
light emitting diodes (OLED) [6], or organic photovoltaic cells (OPV) [7]. The main advantage of using
organic materials with liquid crystalline phases is the easy alignment, which facilitates the processing of
the organic semiconductor significantly [5]. Currently, the design of discotic mesogens providing good
charge transport properties in a suitable temperature range is of major interest [8–10]. Among these
materials liquid crystalline crown ethers are particularly promising providing a unique entry into
supramolecular chemistry due to their known propensity for selective metal salt complexation [11–13].
Previously, we reported about bi-centred liquid crystalline crown ethers and the impact of the molecular
flexibility and geometry on structure and electronic charge transport properties in their columnar
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phases [14]. The mesogens consisted of a central crown ether that connects two n-alkoxy substituted
triphenylene cores [15,16]. We demonstrated that the structure and the electronic transport along the
stacked triphenylenes are strongly affected by the above-mentioned molecular parameters. The mesogen
carrying a small rigid 12-crown-4 connecting the two triphenylenes as symmetric as possible led to the
formation of a broad mesophase with high intra-columnar order, which provided the highest hole
mobility among the investigated compounds [14]. Furthermore, complexation of 12-crown-4 and
18-crown-6 with Li+ and K+ salts, respectively, carrying soft anions rather than hard halides resulted in
significant broadening or even the induction of columnar mesophases [17]. Complementary 1H and
13C NMR experiments in solution [17,18] revealed that the use of soft polarizable anions, like iodide
and thiocyanate, led to the formation of tight ion pairs in the case of the KI- and KSCN-complex of
the 18-crown-6 derivative. These results suggested that Coulomb interactions between the mesogens
should improve the columnar order.

Previously reported small angle X-ray diffraction data revealed that the broad columnar hexagonal
phase (p6mm) of the neat 12-crown-4 derivatives became even wider after complexation with LiI and
the lattice constant a increased [15]. On the other hand, the neat 18-crown-6 derivatives possessed a
narrow columnar rectangular mesophase (c2mm) [18]. Due to the coordination of K+ ions accompanied
by soft anions the phase type changed. The KI and KBF4 complexes displayed a highly ordered
Colr phase with p2mg symmetry, while the KSCN complex showed a highly ordered Colr phase with
p2gg symmetry.

Since the observed salt-induced changes in the phase behaviour must be related to the molecular
arrangement of the columns, the stacking of the triphenylenes within the column should be affected as
well. Thus, we surmised that ion uptake should not only change the structure, but also the electronic
transport. This concept of combining aromatic groups for the electronic transport along the stacks with
a crown ether that is able to coordinate specific types of cations leads to several possible features of
the columnar phase. The coordination of ion pairs provides the unique opportunity to change the
intra-columnar packing of the mesogens without varying any of the important remaining material
parameters, like the aromatic cores or the lateral side chains (Figure 1).

Crystals 2019, 0, x FOR PEER REVIEW 2 of 19 

 

electronic charge transport properties in their columnar phases [14]. The mesogens consisted of a 45 
central crown ether that connects two n-alkoxy substituted triphenylene cores [15,16]. We 46 
demonstrated that the structure and the electronic transport along the stacked triphenylenes are 47 
strongly affected by the above-mentioned molecular parameters. The mesogen carrying a small rigid 48 
12-crown-4 connecting the two triphenylenes as symmetric as possible led to the formation of a broad 49 
mesophase with high intra-columnar order, which provided the highest hole mobility among the 50 
investigated compounds [14]. Furthermore, complexation of 12-crown-4 and 18-crown-6 with Li+ and 51 
K+ salts, respectively, carrying soft anions rather than hard halides resulted in significant broadening 52 
or even the induction of columnar mesophases [17]. Complementary 1H and 13C NMR experiments 53 
in solution [17,18] revealed that the use of soft polarizable anions, like iodide and thiocyanate, led to 54 
the formation of tight ion pairs in the case of the KI- and KSCN-complex of the 18-crown-6 derivative. 55 
These results suggested that Coulomb interactions between the mesogens should improve the 56 
columnar order. 57 

Previously reported small angle X-ray diffraction data revealed that the broad columnar 58 
hexagonal phase (p6mm) of the neat 12-crown-4 derivatives became even wider after complexation 59 
with LiI and the lattice constant a increased [15]. On the other hand, the neat 18-crown-6 derivatives 60 
possessed a narrow columnar rectangular mesophase (c2mm) [18]. Due to the coordination of K+ ions 61 
accompanied by soft anions the phase type changed. The KI and KBF4 complexes displayed a highly 62 
ordered Colr phase with p2mg symmetry, while the KSCN complex showed a highly ordered Colr 63 
phase with p2gg symmetry. 64 

Since the observed salt-induced changes in the phase behaviour must be related to the molecular 65 
arrangement of the columns, the stacking of the triphenylenes within the column should be affected 66 
as well. Thus, we surmised that ion uptake should not only change the structure, but also the 67 
electronic transport. This concept of combining aromatic groups for the electronic transport along the 68 
stacks with a crown ether that is able to coordinate specific types of cations leads to several possible 69 
features of the columnar phase. The coordination of ion pairs provides the unique opportunity to 70 
change the intra-columnar packing of the mesogens without varying any of the important remaining 71 
material parameters, like the aromatic cores or the lateral side chains (Figure 1). 72 

 73 

Figure 1. Structures of the bi-centred crown ether based discotic mesogens in this study and the 74 
expected impact of salt complexation. The coordinated ions are expected to improve the order and 75 
thus the hole transport via the stacked triphenylenes. Furthermore, the mesophase should provide 76 
channels for fast cation transport along the columns due to the stacked crown ether moieties. 77 

Figure 1. Structures of the bi-centred crown ether based discotic mesogens in this study and the
expected impact of salt complexation. The coordinated ions are expected to improve the order and
thus the hole transport via the stacked triphenylenes. Furthermore, the mesophase should provide
channels for fast cation transport along the columns due to the stacked crown ether moieties.



Crystals 2019, 9, 74 3 of 19

Furthermore, we anticipated that, most likely, anisotropic ionic conductivity might be induced in
the columnar phase. Since the crown ether moieties are stacked on top of each other in the centre of the
columns channels for fast cation transport might be generated in the mesophase [19]. For smectic liquid
crystal phases, strongly anisotropic two-dimensional (2D) ionic conductivity was demonstrated [20].
The transport of Li+ in smectic phases of PEO-based (poly(ethylene)oxide) mesogens [21,22] is up to
100 times faster parallel to the smectic layers than perpendicular to them. Similar behavior was found
for H+ in smectic phases of mesogens with terminal diol-moieties [23]. Additionally, in columnar
phases, strongly anisotropic 1D ion transport through the column centre was already observed by
Yoshio et al.in columnar phases of an imidazolium-based ionic liquid crystal [24]. Beginn et al. could
show that the membranes of polymerized columnar phases of liquid crystalline crown ethers where
4–5 molecules form supramolecular discs are at least permeable for several ions [25,26].

In the current study, the validity of the concept outlined in Figure 1 was probed by investigation
of the electronic and ionic transport in the mesophase of the Li+-complex of 12-crown-4 and the
K+-complex of 18-crown-6 based discotic mesogens. The transport properties were studied by
photoconductivity (electronic transport) and impedance spectroscopy (ionic transport), respectively,
and they were correlated to structural observations from X-ray experiments. As described below,
our results reveal that the enhanced intra-columnar order in the KSCN and KI complexes of the
18-crown-6 derivative leads to improved photoconductivity, which is mainly due to anion mobility
rather than cation transport.

2. Materials and Methods

2.1. Synthesis of the Crown Ether Salt Complexes

LiI complexes of 12-crown-4 LiI-1a (R = C9H19) and LiI-1b (R = C12H25) were prepared according
to our previously published procedure [15]. KX complexes of 18-crown-6 KI-2a (R = C9H19) and KI-2b,
KSCN-2b (R = C11H23), and KI-2c, KSCN-2c, and KBF4-2c (R = C12H25) were prepared according to
our previously reported method [18]. The complexation of the known crown ethers 1a,b and 2a–c
was performed by adding a solution of the crown ether in CH2Cl2 to a solution of 1.5 equiv. of the
respective LiI or KX salt in MeOH, stirring for 18 h at room temperature, followed by filtration, and
then evaporation of the solvent. As described in refs. [16–18], the formation of (1:1) complexes was
monitored by the characteristic 1H and 13C NMR chemical shifts and MALDI-TOF MS spectra.

2.2. X-Ray Diffraction

Small angle X-ray scattering experiments were performed on a SAXSess system (Anton Paar, Graz,
Austria), equipped with an advanced collimation block providing a very narrow line shaped X-ray
beam. The X-ray source is a Cu-Kα X-ray tube providing a monochromatic wavelength of 0.1542 nm.
The detector is either a CCD camera with a pixel size of 24 × 24 µm2 or a 5 × 20 cm imaging plate
read out in a imaging plate reader (Perkin Elmer Cyclone plus, Waltham, MA, USA). The sample is
contained in quartz capillaries, with a diameter of 0.7 mm being placed in a temperature controlled
sample holder (25–300 ◦C). The accessible q-range is 0.04–27 nm−1.

The wide angle X-ray scattering experiments have been performed on a home-made imaging plate
camera with a sample to imaging plate distance of 10 cm. The source is a Cu-Kα X-ray tube (Siemens
Kristalloflex X-ray generator, Erlangen, Germany), providing a monochromatic wavelength of 0.1542 nm.
The sample is placed in a small hole (about 2 mm in diameter) in a brass block as thin film and was
kept between two permanent magnets providing a magnetic field of about 2 Tesla. The imaging plate
is developed in an imaging plate reader (Fujifilm BAS SR, Tokyo, Japan). A Lakeshore 331 controller
varies temperature.

To avoid the precipitations of the salt the compounds were filled into the capillary or the hole as a
powder. During the X-ray experiments, the samples were never heated above their clearing point.
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2.3. Photoconductivity

The sample was contained in typical liquid crystal glass cells (0.8 and 1.3 µm gap) equipped with
ITO (Indium Tin Oxide) electrodes and rubbed polyimide alignment layers on both sides. Cells were
filled with the isotropic melt of the compounds by capillary action. The temperature of the sample
was controlled by a hot stage (Mettler Toledo FP-5, Columbus, OH, USA). A dc electric field of
0.25–1 V µm−1 is applied by a power supply. The sample was illuminated by a Xe-lamp (Perkin Elmer
150 W, Waltham, MA, USA) at a certain wavelength that was adjusted by an optical filter at (366 ± 5)
nm or a monochromator (Horiba Spex 1681B, Kyoto, Japan). The light was chopped at the frequency of
6 Hz by a mechanical chopper, while a lock-in amplifier detected the photocurrent (Stanford Research
Systems SR830 DSP, Sunnyvale, CA, USA). Data acquisition was done by a computer equipped
with LabView.

2.4. UV/Vis Spectroscopy

Spectra were taken using a UV-Vis Spectrometer (Perkin Elmer Lambda 2, Waltham, MA, USA)
with a wavelength range of 190–1100 nm. The samples are contained in 0.8 µm polyimide coated liquid
crystal cells that were placed in a homemade temperature controlled sample holder.

2.5. Alignment and Polarizing Microscopy

The alignment of the sample and the changes in texture at the phase transitions have been tracked
by a polarizing microscope (Olympus BH-2, Tokyo, Japan) equipped with a hot stage (Instec Mk2,
Boulder, CO, USA). Large homeotropic aligned domains could be grown in parallel rubbed polyimide
coated cells after careful thermal cycling close to the clearing point. All of the compounds showed a
certain degree of macroscopic segregation between complex and neat compound after heating to the
isotropic melt.

2.6. Impedance Spectroscopy

An impedance analyser (Hewlett Packard 4192 A, 5 Hz–13 MHz, Palo Alto, CA, USA), equipped
with a homemade temperature controller was used. The amplitude of the ac-voltage was set to 0.2 V.
The sample was measured using interdigitating platinum electrodes (d = 225 nm) on glass substrates
(Schott AF45, Jena, Germany). The electrode structure provided a channel length of 5 µm and a total
width of 115 cm. The ac-response of a liquid crystalline sample on interdigitating electrodes can be
modelled by a simple RQ-equivalent circuit (Figure 2). Q is a constant phase element accounting for
the slightly depressed semicircles in the Nyquist diagram.
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Figure 2. Equivalent circuit for the modeling of the impedance measurements. R0 is the resistance of
the wires and the electrodes themselves. Rs is the bulk dc-resistance of the sample and Q is the constant
phase element (CPE).

The bulk resistance Rs was deduced from the diameter of the semicircle in the Nyquist diagram.
The cell constant A in cm−1 was determined by calibrating the setup with 1 mM KCl-solution of known
conductivity. The ionic dc-conductivity σion was determined according to:
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σion =
A
Rs

(1)

The liquid crystal was put on the surface covered by a thin glass slide and then heated to the
columnar phase to equilibrate. The specific alignment of the columns was achieved by shearing
the material in the liquid crystal phase either parallel or perpendicular to the electric field of the
interdigitating electrodes. Data analysis was done using ZView (Scribner Associates Inc., Southern
Pines, NC, USA).

3. Results and Discussion

3.1. Mesophase Structure of the Complexes

Figure 3 shows the investigated liquid crystalline crown ethers. The well-defined cavity size of
the crown is responsible for the coordination of specific types of cations, which leads to the formation
of (1:1) complexes with several ion pairs in solution.
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Figure 3. Investigated LiI-complexes of the 12-crown-4 and KX-complexes (X = I, SCN, BF4) of the
18-crown-6 derivative bearing lateral side chains of OC9H19, OC11H23, and OC12H25.

For the detailed determination of the mesophase structure and the analysis of the electronic and
ionic transport properties the alignment of the materials is of crucial importance. After filling the
isotropic melt of the complexes into polyimide coated liquid crystal cells, it turned out that a significant
part of the coordinated salt was macroscopically precipitated. The conglomerate was visible in the
light microscope. This led to a phase separation of the free crown ether and the complex. Figure 4
shows the polarizing micrographs of the columnar phase of KSCN-2b in a liquid crystal cell after
cooling down from the isotropic melt. Above 132 ◦C, dark parts are visible that are due to isotropic
neat crown ether 2b (Figure 4a). Upon further cooling (top to bottom) the isotropic-to-columnar phase
transition of neat 2b at 132 ◦C was clearly visible (Figure 4b).
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Figure 4. KSCN-2b sample in a polyimide coated cell after cooling down from the isotropic melt.
Above 132 ◦C (a) the macroscopic segregation of the complex (texture) and isotropic free crown 2b
(dark parts) can be seen clearly. By cooling down (top to bottom) the isotropic-columnar phase transition
(b) of 2b at 132 ◦C can be observed. In (c), the columnar phase of KSCN-2b and neat 2b coexist.

Approximately half of the crown ether complexes in the sample kept their ion pairs and they were
able to self-assemble into the columnar mesophase even after repetitive heating/cooling cycles. For the
18-crown-6 derived K+ complexes the tendency towards thermal decomplexation was dependent
on the counterions. Complexes with SCN− were more stable than those with I−, BF4

−, Br−, and Cl−

counterions. In case of Cl− or Br−, the respective salt KCl or KBr precipitated already partially in the
columnar phase and completely after heating to the isotropic phase. Due to the problems that are
caused by the thermal decomplexation, we focused on the 18-crown-6 complexes KI-2b and KSCN-2b
and the corresponding 12-crown-4 complex LiI-1b and re-examined them by SAXS (small-angle
X-ray scattering).

The known diffraction patterns for KI-2b (Colr, p2mg), LiI-1b (Colh, p6mm), and KSCN-2b (Colr,
p2gg) [15–18] could be confirmed. However, for KSCN-2b, we discovered an additional 46 K wide
high temperature phase with p2mg symmetry between 190 ◦C and the clearing point at 236 ◦C
(Figure 5, Table S1). The lattice constants of the low temperature phase (p2gg) a = 53.1 Å and b = 47.4 Å
(at 180 ◦C) are very similar to those found previously [15–18]. The lattice parameters of the new high
temperature phase (p2mg) a = 64.1 Å and b = 38.2 Å (at 220 ◦C) are significantly different. Figure 5
shows the small angle diffraction patterns of both columnar phases and the solid state of a polydomain
sample of KSCN-2b. The X-ray data with the respective Miller indices are summarized in Table S1.
In both columnar phases, numerous sharp reflexes can be observed, indicating a high degree of
inter-columnar order.

In the solid state of KSCN-2b, instead the diffraction pattern changed to diffuse scattering, where
only one single broad peak plus a small shoulder could be clearly identified. At higher angles, several
broad peaks were detected, indicating that the well-defined crystal structure of neat 2b (see [14]) is
turned into a glassy state g by the coordination of KSCN. The SAXS pattern in Figure 5 however
indicates, that the inter-columnar order of the p2gg phase is not fully preserved in the glassy state, which
might originate from conformational changes of the mesogens below the glass transition. The new
phase sequence of KSCN-2b is shown in Figure 6. Since the Colr-Colr phase transition could neither
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be seen via POM (polarizing optical microscopy) or DSC (differential scanning calorimetry) on cooling,
the value is shown in parentheses.

Even though we do not have the full XRD data set for complex KSCN-2c due to lack of material,
we assume that the phase behaviour is rather similar to KSCN-2b, since both of the complexes showed
very similar behaviour in the DSC (Figure S2 in the Supplementary Materials) as well as in the POM.
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After having clarified the mesophase geometries, we wondered how the coordination of ions
might affect the intra-columnar order and thus the electronic properties of the material. Therefore,
we performed detailed wide angle X-ray diffraction experiments. Figure 7 exemplarily shows the
comparison of the wide angle diffraction patterns of neat crown ethers 1b, 2c, and their respective LiI-
and KSCN-complexes.
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The XRD patterns of the 12-crown-4 derivatives 1b and LiI-1b were very similar. In each case,
three peaks could be observed. The broad halo at lowest angle is attributed to the liquid, like alkyl
chains with a mean distance of about 4.7 Å. The peak at highest angle belongs to the stacking of
the triphenylene cores with a mean distance of 3.7 Å. The peak in the middle is probably due to the
periodic arrangement of the small rigid crown ethers. The distance between the crown ether units is
about 4.1–4.2 Å. The scattering of the triphenylenes indicated a slightly increased correlation length
(lower peak width) in the case of LiI-1b as compared to 1b.

The XRD patterns of the 18-crown-6 derivatives showed clear differences. While the scattering of
the crown ether units cannot be observed in neat 2c the peak was visible in the complex KSCN-2c.
Furthermore, the stacking period of the triphenylenes decreased from 3.9 to 3.8 Å. Presumably, due to
the coordination of K+, the flexibility of the crown ether is restricted by the coordinative bonds of the
oxygen atoms to the central cation.

This model is in good agreement with previous studies on crystal structures of salt complexes of
aryl-substituted crown ethers, which revealed that oxygen atoms are arranged in a plane surrounding
the cation and the aromatic residues are oriented out of this plane, leading to a bowl-shaped
arrangement [27–30]. Such planar arrangement should result in decreased intracolumnar distances
between neighboring mesogens. The increased order of the oxygen atoms leads to the additional
diffraction peak at 4.2 Å, which was observed only for the small rigid 12-crown-4 derivatives 1.

These results show that the coordination of ions promotes a higher intra-columnar order. The strong
broadening of the columnar phases can be explained by these findings. The increased order and
the decreased stacking distance of the triphenylenes should improve the electronic transport along
the stacks.

In the solid state the complexes LiI-1b and KSCN-2c showed the expected broad diffraction
patterns bearing only diffuse peaks (Figure S4), which are typical for a glassy state. Since the
intra-columnar order is very low, the electronic charge transport should be disfavoured in the solid
states of the complexes.

3.2. Electronic Transport

The combination of photoconductivity measurements and impedance spectroscopy allows for
the complementary detection of either the electronic or the ionic transport in the columnar material.
The use of these two different methods provides insight into the electronic properties of mixed
conductors. We chose the lock-in technique to measure the photoconductivity, because it is a useful
tool to separate the electronic from the ionic transport. For a good charge transport along the stacked
triphenylene columns, homeotropic alignment in the liquid crystal cell is required. The alignment was
achieved by surface interaction of the mesogens at the isotropic-to-columnar phase transition. For the
subsequent experiments, KSCN-2c was used, because it showed sufficient stability during repetitive
heating/cooling cycles and the growth of large homeotropically aligned domains of the complex on
the electrode area. According to our previous results, neither the crown ether size nor the length of
the side chains influences the absorbance spectra of the compounds [14]. In current experiments, we
observed that the presence of coordinated salts in the crown does not change the shape and position of
the absorption bands as exemplified for 2b and KSCN-2b (Figure S2). Since the liquid crystal cells are
fabricated from glass blocking wavelengths shorter than 310 nm, the only suitable optical transitions
are the absorption bands at 346 and 363 nm belonging to the vibration fine structure of the S0 → S1

transition of the triphenylene unit [31].
Figure 8 shows the typical temperature dependent photoconductivity profile of KSCN-2c

(red curve) without any contributions from the segregated 2c due to its edge-on (planar) alignment.
The measurement was obtained using a 3.5 µm polyimide coated cell that was illuminated at 370 nm
via monochromator. The applied electric field was held at 1 V µm−1. The second graph shows the
photoconductivity profile of neat 2c (black curve). The photoconductivity of KSCN-2c displayed
a strong dependence on the phase type and temperature. As expected, in the isotropic state, the
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photocurrent is very close to zero. Both Colr mesophases (p2mg and p2gg) instead provided significant
photoconductivity. The maximum response was detected at about 160 ◦C in the low temperature
mesophase with p2gg symmetry. The glassy solid state g appears to be completely insulating regarding
the electronic transport. All of the phase transitions were visible in the profile, but they are not as
distinct as in the corresponding photoconductivity profile of the neat crown ether 2c, making the
assignment of a sharp transition temperature difficult. The highest signal for the neat crown ether
2c was measured in the crystalline states Cr1, Cr2 at about 65 ◦C, while the rectangular columnar
phase (c2mm) between 123 and 133 ◦C showed considerably lower photoconductivity. All of the phase
transitions were very distinct in the profile of neat 2c. It is evident from Figure 9 that neat 18-crown-6
2c and the complex KSCN-2c display complementary behaviour. The electronic transport in the
crystalline solid state of 2c was totally suppressed by ion uptake. In contrast, in the columnar phase of
neat 18-crown-6 2c, no electronic transport was detected, whereas ion uptake, i.e., the formation of
the complex KSCN-2c resulted in a significant increase of the electronic transport as compared to the
glassy solid state.
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Figure 8. Typical normalized temperature dependent photoconductivity profile of KSCN-2c (red)
and neat 2c (black). The phase transitions are depicted by the color coded vertical dashed lines for
2c and KSCN-2c. Neat 2c shows low photocurrent in the columnar phase (c2mm) and a significantly
raised signal in both crystalline solid states Cr1 and Cr2. The complex instead shows an “inverted”
profile. The two columnar phases (p2gg and p2mg) provide significant photoconductivity while the
signal vanishes completely in the glassy solid g. In both cases, no current could be detected in the
isotropic melt.

To achieve optimum conditions for quantitative comparison of the photoconductivity in the
columnar phases of both compounds, neat 18-crown-6 2c and KSCN-2c were aligned in a 0.8 µm
polyimide-coated cell. The applied electric field was held at 0.25 V µm−1 and both light intensity and
wavelength were controlled by an optical filter at (366 ± 5) nm. The measurement was performed
between the clearing point of the respective compound and room temperature at a cooling rate of
2 K min−1. Figure 9a) shows the comparison of the measured photocurrent jphoto in the Colr phases
of neat 2c and KSCN-2c. The homeotropic alignment of neat 2c and KSCN-2c, respectively, on the
electrode area in the cell are shown in Figure 9b,c.
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Figure 9. Temperature dependent photoconductivity (a) of the columnar phase of neat 2c (�) and the
low temperature columnar phase of KSCN-2c (#) both contained in a 0.8 µm LC (liquid crystal) cell.
The polarizing micrographs show the nearly homeotropically aligned neat 2c (b) all over the electrode
area, in contrast to the phase separated KSCN-2c in the liquid crystal cell (c).

It should be emphasized that a quantification of the experimentally determined photocurrents
has to be considered with great care for several reasons. Only about 50% of the electrode area in
the KSCN-2c sample was covered with the homeotropically aligned mesophase of the complex,
while the remaining area was partly covered with free 18-crown-6 derivative 2c, which is isotropic at
temperatures exceeding 120 ◦C and thus does not contribute to the total photoconductivity. In the
sample of neat 2c, about 90% of the electrode area was covered (Figure 9). This means that the effective
intersection of the light beam with the photoactive parts of KSCN-2c is only about half as large as
it is in the sample of neat 2c. Additionally, a weakening of the internal dc-field in KSCN-2c due to
the formation of electrolytic double-layers at the electrode surface in the presence of ions should be
expected. This is not the case for neat 2c. Despite these limitations, the results in Figure 10 suggest that
the photoconductivity in the columnar phase of KSCN-2c is about three times higher as compared
to the neat 18-crown-6 2c, which is in agreement with the changes of the inter- and intracolumnar
structure, as determined by SAXS and WAXS (wide-angle X-ray scattering) experiments. Unfortunately,
the exact determination of the charge carrier mobility with the organic field effect transistor (OFET)
was not possible for the complexes. The desired field effect current was strongly superimposed by the
ionic current flow.
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Figure 10. Bright and dark state polarizing micrographs of KI-2c films on interdigitating electrodes
with columns aligned parallel to the electric field direction (a) and columns aligned perpendicular to
the electric field direction (b).

3.3. Ionic Transport

To investigate the ionic conductivity, we performed impedance spectroscopy, which is a powerful
tool to measure the bulk ionic dc-conductivity. Since the use of liquid crystal cells for these measurements
was impossible due to the precipitation of the coordinated salt we used interdigitating gold electrodes.
The liquid crystalline material was held at temperatures that were only slightly above the melting
point during sample preparation.

In order to clarify, whether coordinated cations in the centre of each mesogen could migrate
through the stacked crown ether moieties as 1D transport channels, experiments were carried out
on planar aligned films with columns either parallel or perpendicular to the electric field direction.
Figure 10 shows two aligned films of KI-2c in the liquid crystal phase at 140 ◦C in the bright and dark
state between crossed polarizers. Since the photographs have been taken in reflexion, the bright stripes
in the bright states are the platinum electrodes. In Figure 10a, the columns of the LC phase are aligned
parallel to the electric field, while in Figure 10b the columns are aligned perpendicular.

By comparing the interference colour of the films in linear polarized light with samples of known
thickness in liquid crystal cells, the thickness of the films could be estimated to be about 5 µm.
Van Gerwen et al. calculated the electric field distribution in the case of interdigitating electrodes [32].
Applying this method to our geometry, where the 230 nm high and 5 µm wide electrode digits are
separated by 5 µm, a minimum film thickness of 10 µm is required to cover 100% of the electric stray
field. On the other hand, a 5 µm thick film still covers about 80% and the thickness of both films is quite
similar (yellow/orange main colour). This means that the comparison of the measured dc-conductivity
values for the films should be reliable.

Figure 11 shows the results for KI-2c measured parallel to the columns at 150 ◦C in the LC-phase.
The frequency dependence of the total impedance |Z|(ω) and the phase angle φ(ω) are displayed in
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the Bode diagram. Furthermore, the Nyquist diagram −Z′′ (Z′) is shown where the imaginary part of
the impedance is plotted versus the real part, leading to a semicircle.

Crystals 2019, 0, x FOR PEER REVIEW 12 of 19 

 

Figure 11 shows the results for KI-2c measured parallel to the columns at 150 °C in the LC-phase. 365 
The frequency dependence of the total impedance |𝑍|(𝜔) and the phase angle 𝜙(𝜔) are displayed 366 
in the Bode diagram. Furthermore, the Nyquist diagram −𝑍′′(𝑍′) is shown where the imaginary part 367 
of the impedance is plotted versus the real part, leading to a semicircle. 368 

 369 

 370 

Figure 11. Bode plot showing the frequency dependence of the total impedance |𝑍|(𝜔) and the phase 371 
angle 𝜙(𝜔) (top) and the Nyquist plot −𝑍′′(𝑍′) (imaginary part vs. real part of the impedance) 372 
showing a slightly depressed semicircle that was fitted by the equivalent circuit shown in the inlet 373 
(bottom). 374 

The equivalent circuit we used for fitting the data is shown in the inlet. The pre-resistance of the 375 
wires and the platinum electrodes themselves is represented by R0. It is in series with the standard 376 
RQ-circuit that was used for the modelling of electrolytes on interdigitating electrode structures. The 377 
constant phase element Q accounts for the slightly depressed shape of the semicircle. The diameter 378 
of the semicircle is given by the bulk dc-resistance Rs of the film. With the specific cell constant A of 379 
0.0076 cm−1, the ionic dc-conductivity is determined from Equation (2) (see below). At low 380 
frequencies, the onset of a second semicircle could be observed in the Nyquist diagram. This 381 
phenomenon could be due to the formation of an ionic double layer at the electrode surface. Another 382 
possibility would be the contribution of a second transport process, for example, the migration 383 
through domain boundaries. In crystalline solids, the strong effect of grain boundaries on the charge 384 
transport is well known [33]. Since the low frequency arc did not affect the measurement results, its 385 
origin was not investigated further. Figure 12 shows the ionic conductivity parallel 𝜎∥  and 386 
perpendicular 𝜎⊥ to the columns determined from the measurements of the aligned films of KI-2c 387 

shown in Figure 10. Both of the films were measured between 120 and 155°C in the Colr phase (p2gg). 388 

Figure 11. Bode plot showing the frequency dependence of the total impedance |Z|(ω) and the phase
angle φ(ω) (top) and the Nyquist plot −Z′′ (Z′) (imaginary part vs. real part of the impedance) showing
a slightly depressed semicircle that was fitted by the equivalent circuit shown in the inlet (bottom).

The equivalent circuit we used for fitting the data is shown in the inlet. The pre-resistance of the
wires and the platinum electrodes themselves is represented by R0. It is in series with the standard
RQ-circuit that was used for the modelling of electrolytes on interdigitating electrode structures.
The constant phase element Q accounts for the slightly depressed shape of the semicircle. The diameter
of the semicircle is given by the bulk dc-resistance Rs of the film. With the specific cell constant A of
0.0076 cm−1, the ionic dc-conductivity is determined from Equation (2) (see below). At low frequencies,
the onset of a second semicircle could be observed in the Nyquist diagram. This phenomenon could be
due to the formation of an ionic double layer at the electrode surface. Another possibility would be the
contribution of a second transport process, for example, the migration through domain boundaries.
In crystalline solids, the strong effect of grain boundaries on the charge transport is well known [33].
Since the low frequency arc did not affect the measurement results, its origin was not investigated
further. Figure 12 shows the ionic conductivity parallel σ‖ and perpendicular σ⊥ to the columns
determined from the measurements of the aligned films of KI-2c shown in Figure 10. Both of the films
were measured between 120 and 155 ◦C in the Colr phase (p2gg).

It is clearly seen that σ‖ is slightly higher than σ⊥, but the maximum anisotropy at 155 ◦C (= 2.33 ×
10−3/K in Figure 12) is only σ‖/σ⊥ = 1.7. If channels for fast K+ transport exist in the columnar phase,
the value of σ‖ should be much higher than σ⊥. Parallel to the columns, the cations should migrate
through the stacked crown ethers but perpendicular to the columns the cations cannot contribute to the
conductivity, since they would have to leave their coordination site (compare the inset of Figure 10).
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In comparison to liquid crystalline materials providing channels for fast ion transport with anisotropy
values between 10 and 100 [21,23,24], the observed difference in conductivity is most probable not due
to the 1D transport of the coordinated K+ cations. Furthermore, the measured conductivity values
turned out to be rather low never exceeding 10−7 S cm−1, which is not typical for materials featuring
ion channels. The measured anisotropy was in the order of magnitude of a conventional nematic liquid
crystal where the anisotropy in ionic conductivity is just caused by the anisotropic structure of the
liquid crystal, as shown by Stegemeyer et al. [34]. Presumably, the K+ ions are strongly coordinated
and the ion migration should be dominated by the non-coordinated anions that migrate through the
side chains of the columnar system. Since the transport seems not to be dependent on the orientation of
the columns in the liquid crystal phase and other investigated compounds showed anisotropy values
≤1.7, the following measurements were carried out on randomly aligned thicker films (>10 µm).Crystals 2019, 0, x FOR PEER REVIEW 13 of 19 
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Since the anion seems to play the decisive role, we investigated the K+ complexes KX-2c with
different anions (X = I, SCN and BF4) (Figure 13). Upon using smaller counter ions, like Br− or Cl−,
the precipitation of the respective salt already took place at the solid-to-columnar phase transition,
making it impossible to get reproducible conductivity values.Crystals 2019, 0, x FOR PEER REVIEW 14 of 19 
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The conductivity for KI-2c (4 × 10−8 S cm−1 at 140 ◦C = 2.42 × 10−3/K in Figure 13) was 20 times
higher than for KSCN-2c and 100 times higher than for KBF4-2c. This result suggests that the anions
dominate the contribution to the ionic conductivity. This result might be rationalized by SCN− acting as
a bridging ligand. If the SCN− is coordinating two K+ complexes, then it would be firmly incorporated
in the columnar structure, which would be detrimental to its mobility in the electric field. On the
contrary, the less polarizable BF4

− might be less soluble in the liquid crystal and precipitation of KBF4

might cause a lower charge carrier concentration and thus lower conductivity.
Thus, different kinds of counter ions have a strong impact on the ionic conductivity of the columnar

phase. Since the melting points were in the same temperature range (125 ◦C for KI-2c, KBF4-2c and
110 ◦C for KSCN-2c) and all of the compounds form columnar rectangular mesophases, a similar
viscosity was proposed for these derivatives. Among the tested anions, I− is traveling much faster
than SCN− or BF4

−, resulting in more than one order of magnitude higher conductivity. These results
indicate comparatively strong bound cations in the centre of the crown ether moiety of each mesogen
plus mobile anions that are located mainly in the peripheral liquid, like side chains. The observed
anisotropy of σ‖/σ⊥ = 1.7 (at 155 ◦C) could be explained by considering the local viscosity anisotropy
of the side chains, since the viscosity scales with the order parameter of the alkyl chains. This might
indicate enhanced conductivity perpendicular to the columns, which was not observed. On the other
hand, ions migrating along the columns do not have to overcome the barriers of stacked crown ether
moieties. Thus, ion migration along the columns might be favorable for the anions.

Since the anions seem to be mobile parallel and perpendicular to the columns (Figure 12),
we assume that they are located mainly in the amorphous side chains of the columnar system.
The viscosity η of the solvent influences the ion mobility µion, according to the Stokes–Einstein equation:

µion =
ze

6πηrion
(2)

where z describes the charge number, e the elementary charge, and rion the radius of the solvated ion. By
the variation of the side chains it should be possible to change the environment of the anions specifically,
since the cations are located in the centre of the columns. By elongation of the side chains, the local
viscosity should be lowered, which would result in higher ion mobility according to Equation (2).
A similar effect is expected by enlarging the central crown ether moiety. Therefore, we compared thick
films (>10 µm) of the iodide-complexes with different chain lengths (-OC9H19 or -OC12H25), namely
LiI-1a,b and KI-2a,c (Figure 14).Crystals 2019, 0, x FOR PEER REVIEW 15 of 19 
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Upon comparison of the homologues with different side chain length, the derivatives with C12
chains (N and ∆) showed higher conductivity than those with C9 chains (� and �). When comparing
the K+ complexes of the 18-crown-6 derivatives with the Li+ complexes of the 12-crown-4 derivatives
with identical side chains (∆ vs. N and� vs. �) the higher conductivity was observed for the complexes
KI-2a,b. The ion mobility can be increased by elongated side chains. Since the side chains should not
affect the transport of the coordinated cations in the column centres, the results in Figure 14 suggest
that the anions dominate the conductivity of the columnar phase and that they are located mainly in
the amorphous side chains.

The observed anisotropy of σ‖/σ⊥ = 1.7 favors the migration of the anions parallel to the columns.
This might be rationalized by comparing these columnar systems with a nematic liquid crystal. In a
conventional nematic liquid crystal, the transport of ions is favored parallel to the director, i.e., parallel
to the long axis of the rod-like molecules. A value of the anisotropy σ‖/σ⊥ = 1.3 was published by
Stegemeyer et al. [34], which is somehow comparable to our case, if the columns of the columnar
phases of the crown ether complexes are considered as rods of an ordered nematic phase.

When considering that only the anion contributes to the charge transport and that every mesogen
incorporates one ion pair, it is also possible to derive mobility values for the different anions. The specific
conductivity of electrolytes σ is given by:

σ = Λmc, (3)

with Λm being the molar conductivity and c the concentration of charge carriers. Excluding the
migration of cations, the molar conductivity can be calculated as:

Λm = |z−|υ−Fµ−, (4)

where |z−|υ− is the electrovalence of the anions being 1 in our case, F is the Faraday-constant, and µ− is
the mobility of the anions. Since there is one anion per mesogen, the concentration can be estimated by
the density of mesogens per unit volume in the columnar phase. Finally, the mobility of the anions can
be derived from:

µ− =
σ
F

M
%

, (5)

with M as molar mass of the mesogen and % the density of the phase.
While the density could not be experimentally measured, the crystallographic density of the crown

ethers substituted with aromatic units was taken from the literature 1.3 g cm−3 [27–30]. The coordination
of ions increases the density, while the substitution with long alkyl tails in turn decreases it. Therefore,
the density of 1.3 g cm−3 should be appropriate. According to these estimations, the mobility of the
anions was determined at 140 ◦C for the different compounds and they are summarized in Table 1.
When comparing these values with the recently determined hole mobility of the Colr phase of the neat
2c [14], it can be seen that the hole transport in our materials is about four orders of magnitude faster
than the anion transport.

Table 1. Calculated anion mobility in the columnar rectangular mesophases of KI-2c, KSCN-2c, and
KBF4-2c at 140 ◦C for the estimated density of 1.3 g cm−3.

Structure of the Phase σ
[S cm−1]

M
[g mol−1]

µanion
[cm2 V−1 s−1]

KI-2c colr
(p2mg) 2.0 × 10−8 2301.3 3.6 × 10−10

KSCN-2c colr
(p2gg) 2.2 × 10−9 2232.5 4.0 × 10−11

KBF4-2c colr
(p2mg) 4.2 × 10−10 2261.2 7.5 × 10−12
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4. Conclusions

The ion complexes of different bi-centred liquid crystalline crown ethers that are based on
18-crown-6 and 12-crown-4 moieties were studied regarding a correlation between the structure of
the mesophases and their electronic and ionic transport properties. XRD experiments revealed that
the free 12-crown-4 1b and its complex LiI-1b both exhibit a broad columnar hexagonal mesophase.
No significant differences were found regarding the intra-columnar order. In contrast, the free
18-crown-6 2c exhibited a columnar rectangular mesophase (∆T = 13 K) with c2mm symmetry. Upon
coordination of K+ salts with soft anions, like I− or SCN−, the mesophase range was highly broadened
and the symmetry of the phases changed. KI-2c possessed a Colr phase (∆T = 80 K) with p2mg
symmetry. KSCN-2c displayed a high temperature Colr phase (∆T = 46 K) with p2mg symmetry and a
low temperature Colr phase (∆T = 85 K) with p2gg symmetry.

Furthermore, KSCN-2c showed an improved intra-columnar order, leading to a better packing
of the crown ether moieties plus a shortened stacking distance of the triphenylene cores of 3.8 Å in
contrast to 3.9 Å for the neat compound 2c.

The increased intra-columnar order had a pronounced impact on the photoconductivity where
the detected signal was about three times higher in the columnar phase of KSCN-2c than in neat 2c.

Investigation of the ion migration on macroscopically aligned thin films of KI-2c revealed that
the dc-conductivity parallel to the columns in the liquid crystal phase was only slightly higher than
perpendicular to them. The anisotropy was determined to be σ‖/σ⊥ = 1.7 for KI-2c at 155 ◦C. The type
of the anion (I−, SCN−, BF4

−) had a strong impact on the conductivity of the K+-complex of 2c. KI-2c
showed 20 times higher conductivity than KSCN-2b and conductivity that was 100 times higher
than KBF4-2c. From the dependence of the ionic conductivity on the size of the central crown and
the length of the lateral side chains in LiI-1a,b and KI-2a,b, we concluded that the ion migration is
dominated by the non-coordinated anions propagating through the anisotropic liquid, like side chains,
while the cations are strongly bound in the centre of the columns. Thus, the existence of channels
for fast cation transport could be excluded. It should be noted that Bardaj, Espinet, and coworkers
recently reported similar ionic conductivities for K+ complexes of diaza-18-crown-6 ethers carrying
six decyloxy-p-cyanobiphenyl chains and showing nematic mesophases [35]. The corresponding Li+

complexes showed 10 times higher conductivity, which was rationalized by cations that were jumping
from one crown to another close to it [35].

As showcased for 18-crown-6 2c and the corresponding complexes KX-2c with different anions, the
ion complexes form highly ordered columnar mesophases with improved stacking of the triphenylene
cores, leading to increased 1D photoconductivity (Figure 15). The coordinated cations are strongly
bound to the centre of the columns while the non-coordinated anions are mobile in the anisotropic
liquid like side chains. The calculated mobility for KX-2c with different anions was in the order of
10−12–10−10 cm2 V−1 s−1, which is four orders of magnitude lower than the hole mobility of the neat
18-crown-6 2c. This again correlates well with the results by Bardaj, Espinet, and coworkers, which
observed 20 times higher conductivity, when the crown ether metal complex was doped with the neat
“empty” crown [35].

In conclusion, the complexation of columnar liquid-crystalline crown ethers did not lead to fast ion
migration, as might be expected by the presence of crown ether channels. On the other hand, however,
the coordination of ions in the channels improved the intra-columnar packing of the crown ether rings
and thereby enhanced the electronic charge transport, namely the hole mobility. Even without fast ion
channels, the complexation of liquid-crystalline crown ethers turned out to be a promising tool for
tailoring the charge transport properties in this class of materials.
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