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Abstract: A series of viologens containing 4-n-alkylbenzenesulfonates were synthesized by the
metathesis reaction of 4-n-alkylbenzenesulfonic acids or sodium 4-n-alkylbezenesulfonates with the
respective viologen dibromide in alcohols. Their chemical structures were characterized by Fourier
Transform Infrared, 1H and 13C Nuclear Magnetic Resonance spectra and elemental analysis. Their
thermotropic liquid-crystalline (LC) properties were examined by differential scanning calorimetry
and polarizing optical microscopy. They formed LC phases above their melting transitions and
showed isotropic transitions. As expected, all the viologen salts had excellent stabilities in the
temperature range of 278–295 ◦C as determined by thermogravimetric analysis.

Keywords: viologens; 4-n-alkylbenzenesulfonic acids; metathesis reaction; ionic liquid crystals;
thermotropic; smectic phase A; differential scanning calorimetry; polarizing optical microscopy;
thermogravimetric analysis

1. Introduction

The 1,1′-dialkyl-4,4′-bipyridium salts are commonly known as viologens. They are an important
class of dicationic salts and appropriately called advanced functional materials. The versatility of their
applications arises from their redox properties, ionic conductivity, thermochromism, photochromism,
and electrochromism [1]. These applications, to name a few, include electrochromic devices,
molecular machines, organic batteries, and carbohydrate oxidation catalysts in alkaline fuel cells [2,3].
In addition, they were studied not only for the preparation of the ever-increasing class of ionic
liquids with proper chemical modifications of cations and anions [4–12], but also for the preparation
of ionic liquid crystals (ILCs) [7,13–24]. To mention several their chemical structures (I-VI) are
given in Figure 1 as representative examples. Their LC phases are found to be dependent on
both the chemical architecture of viologen moieties including dialkyl [13,17–19,23], asymmetric
dialkyl [7], di(oligooxyethylene) [14,15], di(3,4,5-tri-n-alkoxybenbenzyl) [22], diphenyl [16,24], and
4-n-alkoxyldiphenyl [24], and the chemical architecture of the anions are of varying sizes. The anions to
date include bromide, iodide [14,15], −BF4, −PF6 [22,24], −OTf, −SCN, −NTf2, 4-n-alkylsulfonates [24],
4-n-alkylbenzenesulfonates [16], and 3,4,5-tri-n-dodecyloxybenzenesulfonate [23]. Recently, their
use in energy-related systems stemming from the unique properties of redox properties as well as
LC properties of viologen moieties has given the boost for the exploration of this class of materials.
Undoubtedly, this field is an active area of research for a decade or so that is manifested in a number of
excellent reviews on this important topic [2,25–31].
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As a continuation of our research efforts in the ILCs, herein, we describe the synthesis of a series
of symmetric viologen compounds with 4-n-alkylbenzenesulfonates (n = 6, 7, 8, 9, 10, 12, 14, 16, 18);
wherein n denotes the carbon atoms in the alkyl chain), determine both their chemical structures by
1H and 13C NMR spectra—as well as elemental analysis—and the characterization of their thermotropic
LC properties by several experimental techniques, including differential scanning calorimetry (DSC)
and polarizing optical microscopy (POM). Their thermal stabilities by thermogravimetric analysis
(TGA) are also included. The general structures and designations for these synthesized viologen
salts, and their synthetic routes are shown in Scheme 1. The LC properties of this series of symmetric
viologen salts with these anions enable one to establish the structure-property relationship of this
important class of ILCs. Additionally, in contrast to other anions, reports of ILCs on these anions are
relatively less studied [16].Crystals 2018, 8, x FOR PEER REVIEW  2 of 14 
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Scheme 1. Synthetic routes for the preparation of symmetric viologen salts containing
4-n-alkylbenzenesulfonates (Vn).

2. Materials and Methods

2.1. Instrumentation

The Fourier transform infrared (FTIR) spectra of several viologen salts were recorded with a
Shimadzu IRPrestige FTIR analyser with their neat films on KBr pellets. The 1H and 13C nuclear
magnetic resonance (NMR) spectra of the symmetric viologen salts, whenever possible, in CD3OD
were recorded by using VNMR 400 spectrometer operating at 400 and 100 MHz at room temperature.
Elemental analysis was performed by Atlanta Microlab Inc., Norcross, GA. Differential scanning
calorimetry (DSC) measurements of these salts were conducted on TA module DSC Q200 series in
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nitrogen at heating and cooling rates of 10 ◦C/min. The temperature axis of the DSC thermograms was
calibrated before use with reference standards of high purity indium and tin. Their thermogravimetric
analyses (TGA) were performed using a TGA Q50 instrument at a heating rate of 10 ◦C/min in nitrogen.
Polarizing optical microscopy (POM) studies of these salts were performed by sandwiching each of
them between a standard microscope glass slide and coverslip. The salts were heated and cooled on a
Mettler hotstage (FP82HT) and (FP90) controller; and observations of the phases were made between
crossed polarizers of an Olympus BX51 microscope. In short, salts were heated above their clearing
transitions and cooled at 10 ◦C/min to room temperature, with brief pauses to collect images and
observe specific transitions.

2.2. General Procedure for the Synthesis of 4-n-alkylbenzenesulfonic Acids (n = 12, 14, 16, 18)

The synthesis of 4-n-alkylbenzenesulfonic acids was carried out in accordance with the literature
procedures [32,33]. The preparation of dodecylbenzenesulfonic acid from n-dodecylbenzene by using
chlorosulfonic acid in chloroform was described as a typical procedure [33].

Chloroform (20 mL) was added to n-dodecylbenzene (2.26 g, 9.17 mmol) to form a colorless
solution in a 50 mL flask that was placed in an ice bath. Cholorosulfonic acid (1.28 g, 11.0 mmol) was
added slowly to the reaction flask over 10 min, resulting in a yellow viscous solution. The reaction
mixture was stirred for 3 h inside an ice bath. At the end of the reaction, the reaction flask was
taken out of the ice bath to reach the ambient temperature. The organic solvent was removed using
a rotary evaporator. The product was dried overnight in vacuum to remove any residual solvent.
It was then purified by washing with the excess toluene and dried again in vacuum to yield the white
product (2.20 g, 73%). Similarly, 4-n-tetradecylbenzene- (2.96 g, 8.35 mmol), 4-n-hexadecylbenzene
(2.69 g, 7.04 mmol), and 4-n-octadecylbenzenesulfonic (2.79 g, 6.80 mmol) were prepared from the
corresponding n-alkylbenzenes with the yields of 74, 67, and 70%, respectively.

2.3. General Procedure for the Synthesis of Sodium 4-n-alkylbenzenesulfonates (n = 6, 7, 8, 9, 10, 12)

The modified literature procedure [34] was adopted for the synthesis of sodium
4-n-octylbenzenesulfonate, as an example, is as follows. Chloroform (20 mL) was added to
n-octylbenzene (2.60 g, 13.7 mmol) to form a colorless solution in an Erlenmeyer flask that was
set in an ice bath. Chlorosulfonic acid (1.90 g, 16.3 mmol) was added dropwise to the reaction flask,
forming a yellow solution. The reaction mixture was stirred for 3 h in an ice bath. At the end of the
reaction, the reaction flask was taken out of the ice bath to reach the ambient temperature. The organic
solvent from the reaction mixture was removed using a rotary evaporator to yield the yellow viscous
liquid. A saturated sodium chloride solution was carefully added to the viscous liquid on stirring to
form the white precipitate of the product. It was then filtered and washed with a minimum quantity of
water and excess toluene, respectively, to yield the white product (2.91 g, 9.95 mmol, 73%). Similarly,
sodium 4-n-hexylbenzenesulfonate (3.02 g, 11.4 mmol), sodium 4-n-heptylbenzenesulfonate (2.91 g,
10.5 mmol), sodium 4-n-nonylbenzenesulfonate (3.00 g, 9.79 mmol), sodium 4-n-decylbenzenesulfonate
(2.30 g, 7.18 mmol), and sodium 4-n-dodecylbenzenesulfonate (2.90 g, 8.85 mmol) were prepared from
the corresponding n-alkylbenzenes with the yields of 75, 73 74, 57, and 76%, respectively.

2.4. Synthesis of 1,1′-di-n-butyl-4,4′-bipridinium Dibromide

This salt was prepared according to the literature procedure [18].

2.5. General Procedure for the Synthesis1,1′-di-n-butyl-4,4′-bipyridinium di(4-n-alkylbenzenesulfonates) by
Metathesis Reaction (V12, V14, V16, V18) Using 4-n-alkylbenzenesulfonic Acid [35]

Ethanol (35 mL) was slowly added to 1,1′-di-n-butyl-4,4′-bipyridinium dibromide (0.93 g,
2.16 mmol) in a 100 mL round-bottomed flask and heated on stirring to form a clear solution. The
4-dodecylbenzenesulfonic acid (1.50 g, 4.60 mmol) was then slowly added to the hot solution, and the
reaction flask was heated to reflux for 48 h. The solvent was reduced using a rotary evaporator. Then
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cold water was added to dissolve the HBr acid produced in the metathesis reaction to yield the product
as white precipitate. It was collected by filtration and washed with excess water until the filtrate was
neutral to litmus paper to yield the white product. Finally, V12 was washed with ether and dried in
vacuum to yield (1.77 g, 1.88 mmol, 87%). IR (KBr) ν (cm−1): 3507, 3433, 3125, 3051, 2959, 2920, 2851,
1640, 1601, 1562, 1466, 1450, 1404, 1377, 1238, 1211, 1188, 1123, 1034, 1011, 953, 891, 841, 822, 779, 718,
694, 675, 610. 1H NMR (CD3OD, 400 MHz, ppm) δ 9.24 (d, J = 6.8 Hz, 4H), 8.66 (d, J = 6.8 Hz, 4H), 7.71
(d, J = 8.4 Hz, 4H), 7.23 (d, J = 8.4 Hz, 4H), 4.74 (t, J = 7.6 Hz, 4H), 2.63 (t, J= 7.6 Hz, 4H), 2.08–2.01 (m,
4H), 1.63–1.59 (m, 4H), 1.48–1.41 (m, 4H), 1.32–1.28 (m, 36H), 1.02 (t, J = 7.4 Hz, 6H), 0.89 (t, J = 7.4 Hz,
6H). 13C NMR (CD3OD, 100 MHz, ppm): δ 149.79, 145.62, 145.23, 142.42, 127.89, 126.85, 125.52, 61.61,
35.21, 33.00, 31.65, 31.14, 29.36, 29.33, 29.30, 29.16, 29.05, 28.87, 22.31, 19.03, 13.04, 12.34. Anal. Calcd.
for C54H84N2O6S2

.H2O (939.40): C 69.04, H 9.23, N 2.98, S 6.83; found: C 69.03, H 9.41, N 2.97, S 6.76.
Similarly, V14, V16, and V18 were prepared by using the corresponding 4-n-alkylbenzenesulfonic
acid with the yields of 93, 92, and 93%, respectively. Data for V14: 1H NMR (CD3OD, 400 MHz, ppm)
δ 9.24 (d, J = 6.8 Hz, 4H), 8.66 (d, J = 6.8 Hz, 4H), 7.71 (d, J = 8.4 Hz, 4H), 7.23 (d, J = 8.4 Hz, 4H),
4.74 (t, J = 7.6 Hz, 4H), 2.63 (t, J= 7.6 Hz, 4H), 2.07–2.02 (m, 4H), 1.63–1.59 (m, 4H), 1.49–1.43 (m, 4H),
1.32–1.28 (m, 44H), 1.02 (t, J = 7.4 Hz, 6H), 0.89 (t, J = 7.4 Hz, 6H). 13C NMR (CD3OD, 100 MHz, ppm):
δ 149.79, 145.63, 145.23, 142.42, 127.87, 126.85, 125.51, 61.63, 35.20, 33.00, 31.64, 31.13, 29.36, 29.33, 29.15,
29.04, 28.86, 22.30, 19.03, 13.02, 12.36 (Figure S7 in the Supplementary Materials). Anal. Calcd. for
C58H94N2O6S2

.H2O (995.51): C 69.98, H 9.52, N 2.81, S 6.44; found: C 70.35, H 9.58, N 2.83, S 6.39. Data
for V16: 1H NMR (CD3OD, 400 MHz, ppm) δ 9.24 (d, J = 6.8 Hz, 4H), 8.66 (d, J = 6.8 Hz, 4H), 7.71 (d,
J = 8.4 Hz, 4H), 7.23 (d, J = 8.4 Hz, 4H), 4.74 (t, J = 7.6 Hz, 4H), 2.63 (t, J = 7.6 Hz, 4H), 2.08–2.01 (m, 4H),
1.63–1.59 (m, 4H), 1.48–1.41 (m, 4H), 1.32–1.28 (m, 52H), 1.02 (t, J = 7.4 Hz, 6H), 0.89 (t, J = 7.4 Hz, 6H).
Because of limited solubility in CD3OD, its 13C NMR was not recorded (Figure S8). Anal. Calcd. for
C62H100N2O6S2

.H2O (1051.61): C 70.81, H 9.78, N 2.66, S 6.10; found: C 70.57, H 9.81, N 2.53, S 6.04.
Data for V18: 1H NMR (CD3OD, 400 MHz, ppm) δ 9.24 (d, J = 6.8 Hz, 4H), 8.66 (d, J = 6.8 Hz, 4H), 7.71
(d, J = 8.4 Hz, 4H), 7.23 (d, J = 8.4 Hz, 4H), 4.74 (t, J = 7.6 Hz, 4H), 2.64 (t, J = 7.6 Hz, 4H), 2.07–2.04 (m,
4H), 1.63–1.59 (m, 4H), 1.49–1.44 (m, 4H), 1.32–1.28 (m, 60H), 1.03 (t, J = 7.4 Hz, 6H), 0.89 (t, J = 7.4 Hz,
6H). Because of limited solubility in CD3OD, its 13C NMR was not recorded (Figure S9). Anal. Calcd.
for C66H110N2O6S2

.H2O (1107.72): C 71.56, H 10.01, N 2.53, S 5.79; found: C 71.35, H 10.14, N 2.51,
S 5.72.

2.6. General Procedure for the Synthesis 1,1′-di-n-butyl-4,4′-bipyridinium di(4-n-alkylbenzenesulfonates) by
Metathesis Reaction (V6, V7, V8, V9, V10, V12,) Using Sodium 4-n-alkylbenzenesulfonate

Ethanol (35 mL) was slowly added to 1,1′-di-n-butyl-4,4′-bipyridinium dibromide (0.47 g,
1.09 mmol) in a 100 mL round-bottomed flask and heated on stirring to form a clear solution. Sodium
4-n-dodecylbenzenesulfonate (0.83 g, 2.40 mmol) was then slowly added to the hot solution, and the
reaction flask was then heated to reflux for 48 h. The solvent was reduced using a rotary evaporator.
Then cold water was added to dissolve the NaBr produced in the metathesis reaction to yield the
product as a white precipitate. It was collected by filtration and washed with excess water until the
filtrate gave the negative test with aqueous AgNO3 solution to yield the white product. Finally, V12 was
washed with ether and dried in vacuum to yield (0.68 g, 0.74 mmol, 68%). Its spectral characteristics and
elemental analysis were identical to those of V12 prepared by using 4-n-dodecylbenzenesulfonic acid.

Similarly, in the cases of V6–V10, methanol (rather than ethanol) was used for this metathesis
reaction for better solubility, by using the corresponding sodium 4-n-alkylbenzenesulfonates. Their
yields were (1.77 g, 88%), (1.89 g, 93%), (1.25 g, 89%), (1.90 g, 96%), and (1.50 g, 75%), respectively. Data
for V6: 1H NMR (CD3OD, 400 MHz, ppm) δ 9.24 (d, J = 6.8 Hz, 4H), 8.66 (d, J = 6.8 Hz, 4H), 7.71 (d,
J = 8.4 Hz, 4H), 7.24 (d, J = 8.4 Hz, 4H), 4.74 (t, J = 7.6 Hz, 4H), 2.65 (t, J= 7.6 Hz, 4H), 2.09–2.01 (m,
4H), 1.63–1.57 (m, 4H), 1.50–1.41 (m, 4H), 1.36–1.30 (m, 12H), 1.04 (t, J = 7.4 Hz, 6H), 0.89 (t, J = 7.4 Hz,
6H). 13C NMR (CD3OD, 100 MHz, ppm): δ 149.79, 145.62, 145.23, 142.39, 127.88, 126.84, 125.49, 61.62,
35.19, 32.99, 31.38, 31.07, 28.50, 22.22, 19.02, 12.96, 12.37, 12.36. Anal. Calcd. for C42H60N2O6S2

.H2O
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(771.08): C 65.42, H 8.10, N 3.63, S 8.32; found: C 65.29, H 8.12, N 3.55, S 8.27. Data for V7: 1H NMR
(CD3OD, 400 MHz, ppm) δ 9.24 (d, J = 6.8 Hz, 4H), 8.66 (d, J = 6.8 Hz, 4H), 7.71 (d, J = 8.4 Hz, 4H),
7.24 (d, J = 8.4 Hz, 4H), 4.74 (t, J = 7.6 Hz, 4H), 2.65 (t, J= 7.6 Hz, 4H), 2.06–2.03 (m, 4H), 1.63–1.59 (m,
4H), 1.48–1.43 (m, 4H), 1.33–1.25 (m, 16H), 1.04 (t, J = 7.4 Hz, 6H), 0.89 (t, J = 7.4 Hz, 6H). 13C NMR
(CD3OD, 100 MHz, ppm): δ 149.79, 145.62, 145.23, 142.39, 127.88, 126.84, 125.49, 61.62, 35.18, 32.99,
31.53, 31.11, 28.81, 22.24, 19.02, 12.98, 12.36. Anal. Calcd. for C44H64N2O6S2

.H2O (799.13): C 66.13, H
8.32, N 3.51, S 8.02; found: C 66.20, H 8.20, N 3.52, S 7.93. Data for V8: IR (KBr) ν (cm−1): 3507, 3433,
3125, 3051, 2955, 2924, 2851, 1643, 1562, 1450, 1377, 1238, 1211, 1188, 1119, 1034, 1011, 845, 690, 606.
1H NMR (CD3OD, 400 MHz, ppm) δ 9.24 (d, J = 6.8 Hz, 4H), 8.66 (d, J = 6.8 Hz, 4H), 7.69 (d, J = 8.4 Hz,
4H), 7.22 (d, J = 8.4 Hz, 4H), 4.74 (t, J = 7.6 Hz, 4H), 2.65 (t, J= 7.6 Hz, 4H), 2.09-2.01 (m, 4H), 1.63–1.59
(m, 4H), 1.51–1.41 (m, 4H), 1.30–1.26 (m, 20H), 1.00 (t, J = 7.4 Hz, 6H), 0.87 (t, J = 7.4 Hz, 6H). 13C NMR
(CD3OD, 100 MHz, ppm): δ 149.79, 145.62, 145.24, 142.41, 127.89, 126.85, 125.51, 61.63, 35.20, 33.00,
31.58, 31.12, 29.11, 28.97, 28.85, 22.28, 19.04, 19.03, 13.01, 12.38. Anal. Calcd. for C46H68N2O6S2

.H2O
(827.19): C 66.79, H 8.53, N 3.39, S 7.75; found: C 66.56, H 8.73, N 3.39, S 7.76. Data for V9: 1H NMR
(CD3OD, 400 MHz, ppm) δ 9.24 (d, J = 6.8 Hz, 4H), 8.66 (d, J = 6.8 Hz, 4H), 7.71 (d, J = 8.4 Hz, 4H), 7.24
(d, J = 8.4 Hz, 4H), 4.74 (t, J = 7.6 Hz, 4H), 2.65 (t, J = 7.6 Hz, 4H), 2.09–2.01 (m, 4H), 1.63–1.59 (m, 4H),
1.49–1.43 (m, 4H), 1.32–1.28 (m, 24H), 1.03 (t, J = 7.4 Hz, 6H), 0.89 (t, J = 7.4 Hz, 6H). 13C NMR (CD3OD,
100 MHz, ppm): δ 149.81, 145.64, 145.23, 142.38, 127.88, 126.85, 125.51, 61.64, 35.20, 33.01, 31.61, 31.12,
29.25, 29.15, 28.99, 28.84, 22.29, 19.03, 13.00, 12.37. Anal. Calcd. for C48H72N2O6S2

.2H2O (873.26): C
66.02, H 8.77, N 3.21, S 7.34; found: C 66.19, H 8.62, N 2.90, S 7.94. Data for V10: IR (KBr) ν (cm−1):
3507, 3433, 3125, 3051, 2959, 2920, 2851, 1639, 1450, 1238, 1211, 1188, 1122, 1034, 1011, 845, 694, 610.
1H NMR (CD3OD, 400 MHz, ppm) δ 9.24 (d, J = 6.8 Hz, 4H), 8.65 (d, J = 6.8 Hz, 4H), 7.71 (d, J = 8.4 Hz,
4H), 7.23 (d, J = 8.4 Hz, 4H), 4.74 (t, J = 7.6 Hz, 4H), 2.63 (t, J= 7.6 Hz, 4H), 2.08–2.00 (m, 4H), 1.62–1.59
(m, 4H), 1.50–1.41 (m, 4H), 1.31–1.28 (m, 28H), 1.03 (t, J = 7.4 Hz, 6H), 0.89 (t, J = 7.4 Hz, 6H). 13C NMR
(CD3OD, 100 MHz, ppm): δ 149.84, 145.61, 145.23, 142.35, 127.86, 126.84, 125.49, 61.63, 35.18, 33.01,
31.61, 31.10, 29.27, 29.13, 29.00, 28.82, 22.28, 19.02, 12.99, 12.34. Anal. Calcd. for C50H76N2O6S2

.H2O
(883.29): C 67.99, H 8.90, N 3.17, S 7.26; found: C 67.73, H 8.90, N 3.17, S 7.26 (Figure S1–S6).

3. Results and Discussion

In this study, several viologen salts containing 4-n-alkylbenzenesulfonates (V6–V18) were
synthesized, characterized for their chemical structures by spectroscopic methods, and further
characterized for their thermotropic LC properties by DSC and POM studies. The thermal stabilities of
the viologen salts were also determined by TGA.

3.1. Synthesis of Viologen Salts (V6–V18)

The synthetic methods of 4-n-alkylbenzenesulfonic acids (n = 12, 14, 16, 18) and sodium
4-n-alkylbenzenesulfonates (n = 6, 7, 8, 9, 10, 12) are shown in Scheme 1, which also includes the
synthetic procedures of the viologen salts (V6–V18). We prepared the long alkyl chain sulfonic
acids as hydrates in respectable yields, in contrast, we also prepared the short alkyl chain sodium
4-n-alkylbenzenesulfonates as anhydrous forms in respectable yields. Both sulfonic acids and
sodium salts were successfully used in the metathesis reaction for the synthesis of V6–V18 salts
as monohydrates except V9, in this case, it was dihydrate from viologen dibromides. The yields of the
metathesis reaction were also respectable.

3.2. Thermotropic LC Properties of 4-n-alkylbenzenesulfonic Acids (n = 12, 14, 16, 18) by DSC and
POM [36–40]

Sodium 4-n-alkylbenzenesulfonates (n = 6, 7, 8, 9, 10) showed melting transitions, that is, solid to
isotropic transitions with high melting enthalpies at relatively high temperatures, as expected. Their
melting peaks were at 296, 285, 275, 263, and 261 ◦C, respectively, as determined by DSC at a heating
rate of 10 /min. Their thermal stability was in the range of 413–429 ◦C as determined by TGA at
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a heating rate of 10 ◦C/min in nitrogen. In contrast, 4-n-alkylbenzenesulfonic acids (n = 12, 14, 16,
18), as hydrates showed LC phases at relatively low melting temperatures and also showed isotropic
transitions at high temperatures. Their melting peaks were at 40, 47, 52, and 65 ◦C, respectively, as
determined by DSC at a heating rate of 10 ◦C/min, and isotropic peaks were at 134, 150, 144, and
141 ◦C, respectively. Figure 2 shows the LC phases of n = 12 and n = 18 sulfonic acids as examples.
Their thermal stability was relatively low: as expected, there was 15% of water at about 130 ◦C.
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Figure 2. POM textures of (A) 4-n-dodecylbenzenesulfonic acid at 100 ◦C and (B)
4-n-octadecylbenzenesulfonic acid at 110 ◦C displying oily streaks and bâtonnets textures of SmA
phases (magnification 400 ×).

3.3. Thermotropic LC Properties of (V6-V18) by DSC and POM [36–40]

Figure 3 displays the DSC thermograms of V6 in the heating and cooling cycles. The first heating
cycle clearly shows two endotherms. In conjunction with POM, the large endotherm corresponded to
crystal–LC transition, Tm, at 185 ◦C, and the small endotherm corresponded to LC–isotropic transition,
Ti, at 202 ◦C. In the first cooling cycle, it showed an exotherm that corresponded to the isotropic
transition to LC transition. The absence of LC-crystallization exotherm in the first cooling cycle
and the crystal-LC transition in the second heating cycle suggested it remained in the LC state and
subsequently went to isotropization at 213 ◦C. Thus, it was found that V6 showed the LC phase that
underwent isotropic transition at high temperature. The DSC thermograms of V7 were essentially
identical to those of V6 and hence the similar interpretations, suggesting that it also showed a Tm at
185 and a Ti at 199 ◦C. It went to isotropization at 214 ◦C in the second heating cycle. Like V6, V7
formed a LC phase and an isotropic phase (Figure S10).

Figure 4 shows the DSC thermograms of V8 in its heating and cooling cycles. In the first heating
cycle, it showed three endotherms that were related to the crystal–LC phase (Tm) at 181, LC–LC
transition at 199, and LC-isotropic transition at 238 ◦C. In the first cooling cycle, isotropic-SmA,
SmA-SmX, and Smx-crystalline transitions occurred at 227, 194, and 127 ◦C, respectively. Figure 5
shows the DSC thermograms V9 in its heating and cooling cycles. In the first heating cycle, it showed
the Tm at 178 and Ti at 268 ◦C. In between Tm and Ti there were two additional endotherms that were
presumably related LC–LC transitions. In the first cooling cycle, the isotropic–SmA, SmA–crystal
and crystal–crystal transition occurred at 250, 161, and 39 ◦C, respectively. The features for DSC
thermograms of V10–V18 in their heating and cooling cycles were essentially identical (Figure S11–S14).
For example, V10 showed Tm at 174 wherein it transformed into a LC phase and Ti at 202 ◦C as a
small endotherm in the first heating cycle. In the first cooling cycle, the isotropic–LC transition was
not detected in its DSC thermogram, but it was detected by POM studies. However, the LC–crystal
transition was detected in the first cooling cycle and verified with POM studies. It did not show the
crystal–crystal transition at low temperature, but V12–V18 did show addition endotherms as these
transitions at low temperatures. Figure 6 shows the DSC thermograms of V18 in its heating and cooling
cycles, which are the representative thermograms for V10–V16. Figure 7 shows the photomicrographs
of V8, V9, V10, and V12 taken at specified temperatures suggestive of their SmA phases (Figure S15).
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Figure 7. Typical textures observed by polarizing optical microscopy studies, revealing Schlieren or
focal conic textures of (A) V8 at 230 ◦C (B) V9 at 260 ◦C (C) V10 at 190 ◦C (D) V12 at 200 ◦C on heating
suggestive of their smectic A LC phases (magnification 400 ×).
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The thermodynamic properties of phase transition temperatures of V6–V18 determined from
DSC measurements and POM studies are compiled in Table 1.

Table 1. Thermodynamic properties of phase transition temperatures of V6–V18 obtained from DSC
measurements and POM textures. Phase transition temperatures (◦C) and their enthalpy changes (J/g)
were taken at a scanning rate of 10 ◦C/min from the first heating and cooling cycles.

Identification Phase Transition Temperature (Enthalpy Change) ◦C (J/g)

V6 Cr 185 (85.4) SmA 202 (14.3) I
I 199 (−26.9) SmA

V7 Cr 185 (84.0) SmA 199 (24.1) I
I 204 (−27.7) SmA

V8 Cr 181 (83.0) SmX 199 (12.7) SmA 238 (3.2) I
I 227 (−3.3) SmA 194 (−17.9) SmX 127 (−12.4) Cr

V9 Cr 178 (85.8) SmX 202 (1.2) SmX 245 (10.6) SmA268 (1.7) I
I 250 (−5.0) SmA 161 (−7.0) Cr 39 (−7.6) Cr

V10 Cr 174 (84.2) SmA 202 (1.2) I
I − SmA 148 (−71.8) Cr

V12 Cr 56 * Cr 169 (79.5) 206 (0.8) I
I − SmA 145 (−58.3) Cr 54 Cr

V14 Cr 68 * Cr 164 (81.5) SmA 195 (20.9) I
I – SmA 159 (−3.4) SmX 126 (−37.2) Cr 88 (−1.0) Cr 66 (−8.2) Cr

V16 Cr 75 * Cr 157 (81.3) SmA 205 (2.3) I
I – SmA 160 (− 4. 2) SmX 113 (−29.4) Cr 73 (−20.0) Cr

V18 Cr 80 * Cr 160 (82.9) SmA 206 (2.2) I
I – SmA 134 (−60.5) Cr 62 ( −20.2) Cr

Cr-Crystal, I-Isotropic, SmA-Smectic A, SmX-Unidentified smectic phase. * Too broad transition.

The thermotropic LC properties of this new series of viologen salts are remarkable in the sense
that they showed isotropic transitions below their decomposition temperatures. These results were
presumably related to the flexible n-butyl groups lined to the viologen moieties. Note here that
diphenylviologens containing the long alkylbenzene sulfonates (n = 10, 13 and 15) do form SmA
phases until their decomposition temperatures, that is, they do not show the isotropic transitions
because of the presence of the more rigid phenyl groups attached to the viologen moieties [16,35].
The short alkylbenzenesulfonates with n = 6 and 8 do not form LC phases [16,35]. In addition,
guanidinium alkylbezene sulfonates with even alkyl chain lengths n = 8 or higher do form smectic LC
phases [34]. This study along with other reports (vide supra) indicate that n-alkylbenzenesulfonates are
an interesting class of counterions that may be exploited for the synthesis of ILCs including viologens-
a versatile class of functional materials.

3.4. Thermal Stabilities of Viologen Salts (V6–V18)

The thermal stabilities of the viologen salts were studied by TGA and determined as the
temperature (◦C) at which a 5% weight loss for each of the salts occurred at a heating rate of 10 ◦C/min
in nitrogen. Despite the presence of flexible alkyl chains both in the viologen moieties and the
benzenesulfonate moieties, TGA thermograms of some of these salts (V10–V18), as shown in Figure 8,
show relatively high thermal stabilities that are in the temperature range of 285–292 ◦C. On the one
hand, these temperatures slightly increase at a gradual pace with the increase of carbon numbers in
the alkyl chain. On the other hand, these temperatures (278–282 ◦C) for V6–V8 gradually decrease
with the decrease in carbon numbers in the alkyl chain, except for V9 (295 ◦C) (Figure S16).
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4. Conclusions 

A new series of viologens with 4-n-alkylbenzenesulfonates were prepared by the metathesis 
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alkylbenzenesulfonates in alcohols. The chemical structures of these salts were established using 
spectroscopic techniques and elemental analysis. Their thermotropic LC properties as determined by 
DSC and POM suggested that they exhibited crystal–LC transitions and LC–isotropic transitions; and 
showed Schlieren or focal conic textures indicative of their SmA phases. They had good thermal 
stability. These results suggest that they belong to a class of ILCs that have practical implications. 
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