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Abstract: Piezoelectric ceramics is a functional material that can convert mechanical energy into
electrical energy and vice versa. It can find wide applications ranging from our daily life to high-end
techniques and dominates a billion-dollar market. For half a century, the working horse of the field has
been the polycrystalline PbZr1−xTixO3 (PZT), which is now globally resisted for containing the toxic
element lead. In 2009, our group discovered a non-Pb piezoelectric material, (BaCa)(ZrTi)O3 ceramics
(BZT-BCT), which exhibits an ultrahigh piezoelectric coefficient d33 of 560–620 pC/N. This result
brought extensive interest in the research field and important consequences for the piezoelectric
industry that has relied on PZT. In the present paper, we review the recent progress, both experimental
and theoretical, in the BZT-BCT ceramics.
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1. Introduction

Piezoelectricity refers to the phenomenon of interconversion between mechanical energy and
electrical energy, which yields a mechanical-stress-induced polarization or an electrical-field-induced
strain. Such ability of energy conversion enables piezoelectric materials to be widely used in devices
such as sensors, actuators, transducers, etc. [1,2]. For more than half a century, Pb-based piezoelectric
ceramics (e.g. PbZr1−xTixO3, PbMgxNb1−x-PbTiO3 and PbZnxNb1−x-PbTiO3) have dominated the
area of most applications. However, the use of Pb-based materials is restricted by increasingly tight
regulations due to its high toxicity [3,4]. This arouses extensive investigations on the mechanism of
high piezoelectricity in Pb-based materials and the exploration of Pb substitutes [5–8].

In 2009, a large piezoelectric performance with d33 of 620 pC/N was observed for
0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 composites (BZT-50BCT) [9]. Later, the modified BZT-BCT
composite ceramics showed a higher Tc ∼ 114 ◦C than BZT-0.53BCT [10]. By optimizing the poling
conditions, BZT-BCT ceramics combines a large piezoelectric performance with d33 of 630 pC/N and
the planar electromechanical factor of 56% [11]. Yang et al. prepared the lead-free BZT-BCT ceramics
by sol-gel technique [12], whose maximum permittivity was above 9000 with a maximum converse
piezoelectric coefficient (d33*) of 400 pm/V.

In this review, we summarize the recent progresses on BZT-BCT piezoelectric ceramics by
different doping mechanisms that may offer some thoughts on the future improvement of BZT-BCT
and even other piezoelectric ceramics. Further, the potential application of BZT-BCT ceramics are
presented, including electrocaloric effect, fluorescence and energy storage. Based on the current
achievements, we also propose some prospects, which may provide new directions on the development
of BZT-BCT ceramics.

Crystals 2019, 9, 179; doi:10.3390/cryst9030179 www.mdpi.com/journal/crystals

http://www.mdpi.com/journal/crystals
http://www.mdpi.com
http://www.mdpi.com/2073-4352/9/3/179?type=check_update&version=1
http://dx.doi.org/10.3390/cryst9030179
http://www.mdpi.com/journal/crystals


Crystals 2019, 9, 179 2 of 12

2. MPB Strategy

In both Pb-based and Pb-free piezoelectric systems, the common solution to promote piezoelectric
performance is to place materials at their phase transition boundaries, either a paraelectric to
ferroelectric phase boundary or multi ferroelectric phases coexisting boundary (including the most
famous morphotropic phase boundary, i.e. MPB), since the instability of the polarization at phase
boundaries allows a significant polarization variation under an external stress or electric field. Despite
the intense interests in the phase coexisting strategy, the key to understanding the consequent high
piezoelectricity in BZT-xBCT ceramics is still in dispute. For instance, we initially proposed the
coexistence of tetragonal (T) and rhombohedral (R) symmetry at MPB, evidenced by the synchrotron
X-ray diffraction (XRD) results from Ehmke [13] and transmission electron microscope (TEM) results
from Gao [14]; however, soon after, the discovery of an intermediate orthorhombic (O) phase was
found based on synchrotron XRD results from Keeble [15,16] and temperature spectrum of dielectric
permittivity from Damjanovic [17].

In addition, the phenomenological Landau–Devonshire model suggests that the reduction of
polarization anisotropy is responsible for enhanced piezoelectric response approaching to MPB [18,19].
Acosta calculated the anisotropy energy of a sixth-order Landau potential formulated for the BZT-xBCT
system and found that the anisotropy energy approaches zero near the O-R rather than the T-O phase
boundary. They thus attributed the best piezoelectric property found at the T-O phase boundary to
two other factors, i.e., higher degree of poling and increased elastic softening [20]. Ke used the energy
barrier along the minimum energy pathway on the free energy surface for direct domain switching
to quantitatively measure the degree of polarization anisotropy and suggested that the polarization
anisotropy at the T-O phase boundary was the smallest [21].

In most MPB systems (e.g., PMN-PT and PZN-PT), MPB is temperature dependent, similar to
the BZT-BCT system, but this does not render such systems useless. Many important applications of
this system have been found. The widely used solution to achieve temperature stability is to choose a
composition slightly away from the MPB, so that the properties are no longer sensitive over the ambient
temperature range. However, this is at the expenses of a slight reduction of piezoelectric properties.
It is the same situation in the BZT-BCT ceramics. As shown in Figure 1, by choosing BZT-45BCT, a
composition slightly off MPB composition (50BCT), d33 becomes almost temperature independent in
the room temperature range (20–40 ◦C). This temperature stability is achieved with some sacrifices of
d33, but the d33 (~360 pC/N) is still much higher than many other non-Pb piezoelectric materials.
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3. Approach to Tailor the Piezoelectric Performance of BZT-BCT

The chemical modification is the most efficient and widely accepted way to tailor the piezoelectric
performance of piezoceramics. Table 1 summarizes the most attractive achievements of both
pure BZT-BCT ceramic and doped ceramics. Based on the mechanism of chemical modification,
the composition optimization can be categorized into improving microstructure by sintering aids and
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substitution doping, and the most improved piezoelectric performances of each doping element can
be found in Figure 2.

Table 1. Piezoelectric performance of the BZT-BCT based ceramics.

Compositions d33 (pC/N) kp εr Tc (◦C) Reference

BZT-50BCT

650 53% 4500 85 [22]
630 56% 90 [11]
620 3060 93 [23]
572 57% 4821 94.8 [24]
546 65% 4050 [25]

464 2938 [26]

BZT-50BCT-0.08 wt% ZnO 603 [27]

BZT-50BCT-0.04 wt% CeO2 600 51% 4843 [28]
BZT-50BCT-0.1 wt% CeO2 565 52% 3860 [29]

BZT-50BCT-0.2 wt% Sr(Cu1/3Ta2/3)O3 577 ####### 97 [30]

99.2 mol% (BZT-50BCT)-0.8 mol% BiAlO3 568 54% 3375 72 [31]

BZT-50BCT-0.06 wt% Y2O3 560 53% 95 [32]

BZT-50BCT-0.1% Sb2O3 556 52% 3985 [33]

(Ba0.82Sr0.03Ca0.15)(Zr0.1Ti0.9)O3 534 ####### 84 [34]

BZT-50BCT-0.06 mol% ZnO 521 ####### [35]

BZT-50BCT-1 mol% Sn-1 mol% Sr 514 ####### [36]

BZT-50BCT-0.3 wt% Li2CO3 512 49% 4394 79.6 [37]

BZT-50BCT-0.04 wt% CuO 510 45% 3762 95 [38]

BZT-50BCT-0.5 mol% SiO2 500 [39]
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3.1. Substitution Doping

Ferroelectrics are rarely used in a chemically pure form and doping is always employed with
the goal of tailoring the properties for specific applications. Different doping usually brings about
different consequence, such as acceptor doping to obtain low dielectric losses and donor doping to
achieve high piezoelectric coefficients. For the equivalent doping, it is usually employed to modify
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the Curie temperature and introduce the compositional disorder, which may also greatly affect the
piezoelectric performance. As shown in Figure 2, the radius of Ba2+ and Ca2+ are 135 pm and 99 pm,
respectively, while Ti4+ and Zr4+ are 68 pm and 87 pm, respectively. Usually, large ions will occupy
the A-site, and small ions will occupy the B-site, and intermediate ions will occupy both sites with
different ratios of the perovskite structure.

3.1.1. Acceptor Doping

An acceptor dopant has a lower oxidation number than that of the host cation. This will create
oxygen vacancies owing to the charge compensation, and the oxygen vacancies can contribute to the
mass transport and improve the density during sintering process [27,35,40].

Zn2+ has a radius of 74 pm and prefers to replace smaller ions in B-site. JG Wu pointed out that
the Zn2+ substitution into the (Ti, Zr)4+ site results in both structure disorder and lattice distortion.
The presence of oxygen vacancies helps the mass transport during sintering, which is responsible
for the enhanced grain growth as the ZnO content increases. Besides, the tricritical point of these
ceramics was shifted to room temperature while the Curie temperature decreased simultaneously
by the introduction of ZnO. Macroscopically, the BZT-BCT ceramics have εr ∼ 4500 and tanδ < 1.5%.
BZT-BCT ceramic with 0.06 mol.% ZnO demonstrates an enhanced electrical behavior with d33 ∼ 521
pC/N, kp ∼ 47.8%, and 2Pr ∼ 19.37 µC/cm2, owing to the room-temperature tricritical point induced
by doping with ZnO [35]. Similar results were also reported by Zhao [27]. In Zhao’s work, the BZT-BCT
ceramics with 0.08 wt% ZnO show maximum remnant polarization and spontaneous polarization
(Pr = 10.14 µC/cm2, Ps = 19.68 µC/cm2). At the same time, the giant piezoelectric coefficient of d33

= 603 pC/N and high planar electromechanical coupling factor of kp = 0.56 were also obtained for
the samples. Besides, they revealed that further raising ZnO content would cause partial Zn2+ ions
occupying A-site, resulting in decrease in lattice parameters. Consequently, excessive Zn2+ are effective
in reducing the poling state and in depressing the domain switching of BCZT–xZn ceramics; thus,
they degrade the dielectric, ferroelectric and piezoelectric properties.

Mn as an interesting impurity exhibits multivalence states (Mn2+, Mn3+, and Mn4+), and has
been extensively used to substitute the A- and/or B-site ions of ferroelectrics for tailoring electrical
properties [41]. Typically, it manifests itself as Mn2+ when sintering at high temperature above 850 ◦C.
Meng et al. reported that the addition of 0.25 mol% MnO2 promotes grain growth, improves the
ferroelectricity of the ceramics and strengthens ferroelectric tetragonal–ferroelectric orthorhombic
phase transition near 40 ◦C [42]. Such ceramics exhibit the optimum piezoelectric properties
(d33 = 306 pC/N and kp = 42.2%, respectively). Excess MnO2 inhibits the grain growth and degrades
the ferroelectric and piezoelectric properties of the ceramics. Wu et al. reported similar results: the 0.15
wt% MnO doped BZT-BCT ceramics have optimum electrical properties: d33 = 382 pC/N, kp = 44.5%,
εr = 2611, and tanδ = 0.63%. Besides, they also observed the double hysteresis loop when MnO dopant
exceeds 0.3 wt%, which indicates the reversible domain switching dominating by the acceptor defect
dipoles [43].

3.1.2. Donor Doping

A donor dopant has a higher oxidation number than that of the host cation. This will create
cationic vacancies, either A-site or B-site vacancies in the perovskite structure. The donor dopant may
effectively reduce the Curie temperature and facilitate the domain switching behavior, characterized
as slim hysteresis loops with small coercive field and hysteresis loss.

Li et al. reported that, with the introduction of the donor Dy at A-site, the BZT-BCT ceramics
possessed improved temperature stability. Besides the high piezoelectric coefficient of d33 = 366 pC/N
and planar electromechanical coupling factor of kp = 43.0%, the Dy-doped BZT-BCT ceramics
exhibited stable electromechanical coupling coefficients over a common usage temperature range of
20–100 ◦C [44]. They also revealed similar results in Ho-doped BZT-BCT ceramics [45].
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As another common donor dopant to A-site, La3+ is often employed to enhance the electrical or
mechanical responds under small AC field while reducing the loss in ferroelectric ceramics. Sun et al.
reported that a small amount of La3+ (~0.15%) resulted in an increase of d33 at 50 ◦C due to the
coexistence of orthorhombic and tetragonal phases. Besides, the 0.15 mol% La doped BZT-BCT
ceramics turned to the semi-conductor and showed positive temperature coefficient (PTC) behavior [46].
Other donor dopants such as Cr3+ and Ga3+ also showed excellent improvements of d33[47,48].

Besides the mono-element doped ceramics, compound doped BZT-BCT are also investigated. Wu
et al. investigated the BiFeO3 doped BZT-BCT ceramics [49]. Here, Bi3+ acted as the donor dopant
at A-site while Fe3+ as the acceptor at B-site. By addition of BiFeO3, the grain size becomes smaller,
and these ceramics become denser. The 0.2 mol% BiFeO3 doped BZT-BCT ceramics demonstrated
an improved piezoelectric behavior (d33 ~ 405 pC/N and kp∼0.44). Tian et al. added Er3+ and La3+

into the BZT-BCT ceramics and found Er3+ first substituted A sites and then B sites in the matrix of
ABO3 structure. The elevated piezoelectric constant (d33 ~ 200 pC/N) and receded mechanical quality
factor (Qm ~ 70) at with 0.12% La3+ doping and 0.2% Er3+ doping showed “softening effect” by donor
doping [50].

Extensive studies with other donor dopants were also carried on the BZT-BCT ceramics [30,51–54],
as shown in Figure 2.

3.1.3. Equivalent Doping

Researchers have tried other doping with equivalent valence as the A-site or B-site to achieve
MPB in the BaTiO3 ceramics [55–60]. Zhou et al. designed a new Pb-free piezoelectric system
Ba(Hf0.2Ti0.8)O3-(Ba0.7Ca0.3)TiO3, which yields high piezoelectricity with d33 ~ 550 pC/N, comparable
to that of the best Pb-based material PZT-5H (d33 ~ 590 pC/N). Besides, their study suggests
the non-isotropicity of polarization at triple point by precise detection of transitional thermal
hysteresis. Previously, the isotropy at triple point was always taken as the basic assumption in related
modeling work and understanding [56]. Xue et al. designed a similar Pb-free pseudo-binary system,
Ba(Sn0.12Ti0.88)O3-x(Ba0.7Ca0.3)O3, characterized by a phase boundary starting from a critical triple
point of a paraelectric cubic phase, ferroelectric rhombohedral, and tetragonal phases [57]. The optimal
composition BTS-30BCT exhibits a high piezoelectric coefficient d33 = 530 pC/N at room temperature.

For the equivalent doping of A-site, one of the most typical substitution is Sr2+, which can
contribute to the microstructure by increasing grainsize and density, and at the same time decrease
Tc [34,36,58,59]. As a result of fine microstructure and lower Tc, excellent piezoelectric properties with
large d33 of 534 pC/N was exhibited in Bai and Li’s work when 0.03 mol Sr2+ was doped [34]. Sn4+ is
another commonly used element locating at B-site to enhance the piezoelectric properties of lead-free
piezoelectric ceramics, especially in BT based ceramics [57,60]. In Ding and Liu’s work, the co-doping
of Sn4+ and Sr2+ could lead to good piezoelectrical properties of d33 = 514 pC/N and kp = 52.62%,
although smaller grain size was obtained comparing with pure BZT-BCT ceramics, which is different
from many other dopants that usually enhance the grain growth with low content [36].

3.2. Grain Size Effect and Sintering Aids

It is well known that grain size can have a significant influence on the properties of ferroelectric
ceramics. For BZT-BCT based ceramics, the benefits to d33 from large grain size are extremely obvious,
as shown in Figure 2. Elements acting as sintering aids such as Ce, Cu, Si, Li, etc. present brilliant
performance. As the grain size decreased to the micron level, the permittivity at room temperature
increased. The increase in permittivity can be understood in terms of the twinning behavior of
polycrystals with decreasing grain size [61].

Hao et al. fabricated various BZT-50BCT ceramics with different grain size ranging from
0.4 to 32 µm. As grain size decreases, the diffuse phase transition behavior is enhanced. As the
grains grow up to more than 10 µm, samples exhibit good piezoelectric properties with kp > 0.48,
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kt > 0.46, d33 > 470 pC/N, and d33* > 950 pm/V. Besides, the increasing grain size effectively enhances
the resistance to thermal depolarization [62].

In application, sintering aids are usually employed to enlarge the grain size and modify
the microstructure to lower the sintering temperature and at the same time enhance the
performance [28,29,37,63,64]. SiO2, Li+, and CuO are widely used as the sintering aid of ceramics
and exhibited good contributions in BZT-BCT system. In Chen’s work, the dopant of Li+ reduced
the sintering temperature of BZT-50BCT from 1540◦C to 1400◦C and piezoelectric performance with
d33 = 512 pC/N and kp = 49% were obtained [37]. In the work of co-doping of CeO2 and Li2CO3,
adding of Li2CO3 could largely decrease the sintering temperature from 1450◦C to 1050◦C comparing
with the composition of CeO2 dopant only [29]. Liu systematically studied the effect of SiO2 dopant on
the dielectric, ferroelectric and piezoelectric properties of the BZT-50BCT ceramics sintered at different
temperatures and the results show that doping of SiO2 could enhance Pr and d33 while reducing Ec.
They obtained d33 of 500 pC/N [39,65]. CuO was also found to be effective on decreasing sintering
temperature and modifying the microstructure of BZT-BCT ceramics, thua enhanced piezoelectric
properties were achieved due to the large grain size cause by CuO [30,46,54]. The co-doping of CuO
and B2O3 can largely benefit the morphology and enhance the piezoelectric properties [66]. Besides,
some other substitution doping elements can also contribute to the sintering process at the same time
such as Zn and Mn. In Wu’s work, the grain size of ZnO doped BZT-BCT ceramic increased and surface
morphologies became denser with the help of ZnO [35]. Similarly, MnO could also help sintering
process greatly and benefit the piezoelectric performance [43,67].

4. For other Applications

It is well accepted that the easy polarization extension and rotation mechanism (low energy
barriers for polarization variation) are the two most important intrinsic factors contributing to the
enhanced physical properties [68,69]. Besides the good piezoelectric performance, BZT-BCT also
exhibits other good properties due to its easy polarization rotation and easy domain wall motion.

4.1. Electrocaloric Effect

Electrocaloric effect (ECE) is a phenomenon that the change in adiabatic temperature and/or
entropy of a dielectric material is induced by the application and removal of an electric field due to
the change in the dipolar state of the material. In general, the ECE is parameterized by the adiabatic
temperature change (∆T), and the electrocaloric efficiency (∆T/∆E). The main technical challenge in
lead-free ferroelectric bulk materials is to generate a giant electrocaloric temperature change ∆T under
a relatively low electric field [70].

BZT-BCT has attracted much attention due to its relatively low coercive field and large polarization.
Besides, the low Curie temperature also benefits the applications at room temperature. Sanlialp et al.
reported that 0.65BZT-0.35BCT ceramics exhibited a ∆T of 0.33 ◦C and ∆T/∆E of 0.165 K mm kV−1

at 65 ◦C under an electric field change ∆E = 20 kV/cm [71]. G. Singha et al. reported large ECE in
BZT-BCT ceramics [72]. They revealed that BZT-0.8BCT possessed an electro-caloric coefficient as
high as 0.253 K mm/kV near tetragonal-to-cubic phase transition. They ascribed the high ECE to the
higher polarization flexibility. Wang et al. performed direct measurements for BZT-BCT ceramics in
non-adiabatic and non-equilibrium conditions. They found that BZT-0.7BCT showed the maximal ECE
temperature change (∆TECE) of 0.55 K was recorded for an applied field of 40 kV/cm at T = 85 ◦C [73].
Besides the good performance, they also revealed a very large discrepancy between the indirectly
estimated and the directly measured ∆TECE. This was attributed to non-adiabatic conditions of the
experiment resulting in a heat exchange with the environment.

4.2. Fluorescence

In recent years, ferroelectrics doped with rare earth elements have attracted great attention owing
to their excellent multifunctional properties [74,75]. Multi-property coupling among the presence
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of an electric field, mechanical stress and photons can introduce many applications as piezoelectric
ceramics, mechano-luminescence and electro-luminescence materials. Peng Du et al. investigated the
fluorescence intensity ratio of green up conversion emissions at 525 and 550 nm in the temperature
range of 200–443 K for Er-doped BZT-BCT ceramics. The maximum sensing sensitivity and temperature
resolution were found to be 0.0044 K−1 and 0.4 K, respectively, suggesting that Er-doped 0.5BZT-0.5BCT
ferroelectric ceramic possesses potential application in optical temperature sensing [52,76].

Jiang Wu et al. reported that 0.5 mol% Er3+ BZT-BCT ceramics, synthesized via a sol-gel synthesis
route and a ceramic sintering process, possessed excellent photoluminescence performance, which is
sensitive to compositional changes [52]. The morphotropic phase boundary composition exhibited the
maximum photoluminescence peak intensity at 550 nm.

4.3. Energy Storage

In theory, the energy density J corresponds to relative permittivity and dielectric breakdown
strength (BDS) according to the definition J = 1/2ε0εrEmax

2. For high energy storage density,
ferroelectrics are expected to possess large saturated polarization, small remnant polarization and high
BDS. BZT-BCT ceramics have evoked much interest. For certain compositions, this system exhibits large
permittivity of 8400, triple that of pure BaTiO3 ceramics. For the Ba(Ti, Zr)O3-rich compositions, this
system gradually transforms to the relaxor ferroelectrics, which exhibit diffusion phase transition with
broadened permittivity peaks and slim ferroelectric hysteresis loops of large maximum polarization
and small remnant polarization. These characteristics may favor the high energy density applications.
Venkata et al. reported a significant increase in the permittivity with relatively low dielectric losses
in the Zr-rich BZT-BCT ceramics [77]. xBZT-BCT (x = 0.10, 0.15, 0.20) ceramics exhibited the electric
breakdown strength as 134–170 kV/cm and high permittivity of 5200–8400. The consequent energy
storage density can even reach 0.98 J/cm3. Besides the pure ceramics form, the addition of glass may
effectively enhance the BDS and consequently promote energy storage density [77]. Liu et al. employed
glass addition BaO-SrO-TiO2-Al2O3-SiO2-BaF2 into BZT-0.15BCT ceramics, which exhibited a large
permittivity of 3458 at 25 ◦C under 1 kHz, slim hysteresis loop with the maximum polarization of 12.53
µC/cm2 and a remnant polarization of 4.05 µC/cm2 [78]. Microstructural observation indicated that
the average grain size reduced significantly with increasing the glass concentration. Macroscopically,
the glass ceramics exhibited diffusion phase transition with reduced peak permittivity but broad peak
with relatively large permittivity of around 1000 within the room temperature region. Meanwhile
the electrical breakdown strength (BDS) of the glass modified ceramics was nearly quadruple to the
pure ceramics form. Energy storage performance of the glass modified ceramics, both 419.4 kJ/m3

calculated from the product of permittivity and square of BDS and 192.8 kJ/m3 from the integration
of the hysteresis loop under the electric field of 9.6 kV/mm, showed significant superiority to that of
the pure ceramic form [78]. Besides, they explored the mechanism for the enhanced energy storage
property by thermal stimulated current measurements, which may reveal both polarization and charge
transport process [79].

5. Future prospects

5.1. Soft or Hard Modifications on BZT-BCT Ceramics

Ferroelectrics are rarely used in a chemically pure form and doping is always employed with
the goal of tailoring the properties for specific applications. Most doping effects can be categorized
into “hard” and “soft” effect. “Hard” effects are obtained by acceptor doping. The defect dipoles
(acceptor-oxygen vacancy) can stabilize the domain structure (no matter the volume effect or the
pinning effect) [80]. As macroscopic consequences, high coercive field, low permittivity and low
dielectric losses are obtained. Donor dopants result in “soft” effect, i.e. high dielectric losses,
low conductivity, low coercive field and high piezoelectric coefficients [81].
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Further research should focus on revealing “soft” and “hard” effects within the MPB region of
the present BZT-BCT ceramics. Further, the properties of BZT-BCT ceramics can be tailored to satisfy
various applications and reveal the physics behind them.

5.2. BZT-BCT in other Forms—Single Crystal and Thin Film

It is common sense in the piezoelectric community that the single crystal always exhibits 3–4 times
higher piezoelectric effect than that of a ceramic. Besides the better properties, single crystals can also
be considered as standard materials to ascertain the structure properties. However, it is difficult to
grow large scale single crystals with the perovskite structures. Thus far, several methods have been
employed to generate good BZT-BCT single crystal samples and have not obtained satisfactory results
to date [82].

Although intensive research up to date has been inclined to bulk materials, it is certainly obvious
that the films will be the focus of the future industry. Since films exhibit small volume but large
geometrical flexibility, can are easy for on-chip integration, which is a prerequisite for incorporation
into microelectron devices. However, the development of films still lags behind bulk counterparts.
For BZT-BCT films, several techniques have been employed, such as PLD, sputtering and CSD.
Hereinto, the films fabricated via PLD method exhibited d33 of 60–140 pm/V depending on different
orations [83,84]. The study of BZT-BCT film is still deficient. Further property enhancement and
functionality enrichment are still the objectives to be pursued.
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