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Abstract: The decrease of the residual direct current (DC) voltage (Vrdc) of the anti-parallel liquid
crystal (LC) cell using silver (Ag)-doped Polyimide (Ag-d-PI) alignment layers is presented in this
manuscript. A series of Ag/PI composite thin layers are prepared by spurting or doping PI thin layers
with Ag nano-particles, and Ag/PI composite thin layers are highly transparent and resistive. LC are
homogeneously aligned between 2.0 mg/mL Ag-d-PI alignment layers, and the Vrdc of the cell that
assembled with Ag-d-PI alignment layers decreases about 82%. The decrease of Vrdc is attributed to
the trapping and neutralizing of mobile ions by Ag nano-particles. Regardless of the effect of Ag
nano-particles on the conductivity of Ag-d-PI alignment layers, the voltage holding ratio (VHR) of the
cells is maintained surprisingly. The experiment results reveal a simple design for a low Vrdc LC cell.
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1. Introduction

Liquid crystals (LC) are widely used in electro-optic devices because of their unique electro-optic
anisotropy; however, the mobile ions in LC cause a lot of problems relating to LC switching. The moving
of mobile ions driven by electric forces towards alignment layers results in their accumulation on
alignment layers, which finally generates residual direct current (DC) voltage (Vrdc) inside LC cells and
adversely affects LC’ switching [1–6]. During the last several decades, a series of researches focused
on distinguishing, detecting mobiles ions, and revealing the influences of mobile ions shifting on LC
switching were conducted, and nowadays a lot of explorations are carried out to reduce mobile ions’
adverse functions on LC [7–12]

A lot of attempts have been adopted to prevent the influences of mobile ions on LC electro-optical
performances, such as designing special LC molecules, purifying LC, doping LC [13,14], replacing the
polyimide (PI) alignment layers with conductive materials [15–18], and photo-aligning LC [19–21], etc.
Compared with other methods, doping is much easier; however, doping LC with nano-materials brings
new issues, for instance, the doped nano-materials are too poor to be dispersed, and the aggregation
of these nano-materials makes LC insensitively respond to external voltage. The aggregation of
nano-materials is partially prevented by tightly limiting the amount of doped nano-materials; however,
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because of the electric field, the doped nano-materials in LC move towards alignment layers and are
accumulated on alignment layers, which enhances Vrdc generation. Replacing PI alignment layers with
conductive alignment layers significantly reduces Vrdc on cells; however, the conductive alignment
layers in the cells raise the issue of a voltage holding ratio (VHR) decrease [22,23].

Micro silver (Ag) particles are highly transparent and conductive and have been adopted to
accelerate LC optical switching and trap the ionic charges. In this manuscript, Ag-spurted PI (Ag-s-PI)
alignment layers and Ag nano-particles-doped PI (Ag-d-PI) alignment layers are prepared and used to
trap the mobile ions in LC, and the residual DC of the cell assembled with Ag-d-PI alignment layers
decreases obviously. As shown in Figure 1, the displacement polarization occurs in Ag nano-particles,
when the external voltage is applied on the cell that assembled with Ag-d-PI composite alignment
layers. The Ag nano-particles are immobilized by PI molecules, which restricts their shift to the LC
medium. The mobile ions driven by electric forces move towards and gather near Ag-d-PI composite
alignment layers, and the positive and negative charges carried by mobile ions are trapped and
neutralized by Ag nano-particles. In this case, the Vrdc caused by the accumulation of mobile ions
is prohibited. Because the amount of doped Ag nano-particles is limited up to 2 mg/mL (mAg/VPI),
the electrical conductivity change of Ag-d-PI composite alignment layers could be ignored, and the
decrease of voltage holding ratio on the cell is prevented.
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Figure 1. The schematic of mobile ions accumulating on Ag-d-PI composite alignment layers.

2. Materials and Methods

Ag-doped PI solutions were prepared by doping Ag nano-particles (particle size < 100 nm,
Sigma-Aldrich) into homogeneous PI solutions (SE7792, Nissan Chemical Corporation) with their
concentrations maintained at 0.2 mg/mL, 0.5 mg/mL, 1.0 mg/mL, and 2.0 mg/mL, respectively, and Ag/PI
solution was sonicated at room temperature for 30 min to disperse Ag nano-particles uniformly. Ag-d-PI
thin layers were prepared by spin-coating the prepared Ag/PI solutions on ITO substrates, and Ag
nano-particles spurted PI thin layers were prepared by spurting Ag nano-particle solutions (Ag/acetone,
0.2 mg/mL, 0.5 mg/mL, 1.0 mg/mL, and 2.0 mg/mL) onto spin-coated PI alignment layers. Considering
that the rubbing process is necessary to align LC, and during the rubbing process Ag nano-particles
may be partially removed, two Ag nano-particles-spurted PI alignment layers were prepared. One is
spurting Ag nano-particles on the PI alignment layers and then followed with the rubbing process
(Ag-s-PI), and the other is spurting Ag nano-particles on the rubbed PI alignment layers (Ag-s-rPI).
The transmittance spectra of Ag/PI thin layers on glass slides were characterized by using a double-beam
UV-Vis spectrophotometer (UV-2101, Shimadzu, Japan) and a 3-D laser-beam profiler system.

Anti-parallel cells with the cell gaps of 60 and 5 µm were assembled, and the commercial LC
(ne = 1.5702, n0 = 1.4756, and ∆ε = 10.7; from Merck) was injected into the fabricated cells. Alignment
of LC between Ag/PI composite alignment layers was characterized by a polarized optical microscopy
(POM, BXP 51, Olympus); the anchoring energy of LC on Ag/PI composite alignment layers, the Vrdc

and the capacitance of the cells were evaluated by means of a capacitance-voltage (C-V) hysteresis
method (LCR meter, Agilent 4284A) with the maximum bias voltage of 10 V and a step bias voltage
of 0.1 V.
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3. Results and Discussion

As shown in Figure 2, the prepared Ag/PI alignment layers are transparent and have a transmittance
above 82%; no obvious transmittance difference is observed between Ag-s-rPI, Ag-s-PI and Ag-d-PI
alignment layers. Besides the transmittance decrease, the aggregation of Ag nano-particles may
cause more serious issues, for instance, the aggregated Ag nano-particles block light and result in the
non-uniform transparency of thin layers. The blocking performance of Ag/PI composite thin layers
was characterized by using a 3D profiler as shown in Figure 3, and no significant difference is observed
between the light source and the laser crossing Ag/PI composite thin layers in distribution and intensity,
which reveals the potential application of Ag/PI composite thin layers for real LC devices.
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Figure 3. The schematic diagram of 3-D profiler and the captured images of laser-crossed Ag/PI
alignment layers.

The alignment of LC between Ag/PI composite alignment layers was confirmed by using POM
as shown in Figure 4. Obvious light leakages are observed from the cell assembled with Ag-s-rPI
alignment layers, and due to the Ag nano-particles aggregation effect, the light leakages become more
serious while increasing the amount of spurted Ag nano-particles. The alignment of LC sandwiched
between Ag-s-PI alignment layers is more uniform compared with the mentioned Ag-s-rPI alignment
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layers, which indicates that the aggregated Ag nano-particles have been removed during the rubbing
process. Even the concentrated Ag nano-particles, as high as 2.0 mg/mL, are doped into PI solutions;
LC are homogeneously aligned between Ag-d-PI alignment layers and no obvious light leakages
are observed.
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Figure 4. POM images of LC sandwiched between Ag-s-rPI thin layers, Ag-s-PI thin layers and Ag-d-PI
thin layers, respectively.

The polar anchoring energy of LC sandwiched between Ag/PI composite alignment layers
varies a lot as shown in Figure 5. LC sandwiched between Ag-s-PI alignment layers and Ag-s-rPI
alignment layers have similar polar anchoring energies, however, the polar anchoring energy of LC
sandwiched between Ag-d-PI composite alignment layers decreases a lot in comparison. The surfaces
of Ag nano-particles-spurted PI alignment layers are almost covered with Ag nano-particles, and the
surfaces of Ag-d-PI alignment layers are almost PI molecules conversely. Thus, the difference between
polar anchoring energies is due to the surface composition alterations by spurting or doping Ag
nano-particles, which tunes the interactions between LC and Ag/PI composite thin layers.
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When the external voltage is applied on the cell, the mobile ions in LC are driven to shift towards
alignment layers and trapped in the localized defect regions, and in this case, Vrdc is generated.
The fractional coverage of the alignment layer surface, which indicates alignment layers ability to trap
mobile ions, is determined as ϕs, and

ϕs =
δ
δs

,

here, δ and δs are the surface density of the adsorption sites occupied by ions and the surface density
of all adsorption sites on the alignment layer surface, respectively. After the displacement polarizing
of Ag nano-particles, the Ag nano-particles in PI layers trap and neutralize the mobile ions, and thus
the ϕs of Ag/PI composite alignment layers get much lower compared with that of the conventional PI
alignment layers.

During the rubbing process or driven by external electric filed, partial Ag nano-particles spurted
on PI alignment layers are detached and dive into LC. A small amount of detached Ag nano-particles in
LC trap and neutralize the charged mobile ions and decrease Vrdc. However, if the amount of detached
Ag nano-particles is large, the Ag nano-particles shift towards the alignment layers and contribute to
the generation of Vrdc. By doping and immobilizing Ag nano-particles in PI alignment layers, the Vrdc

generated by detached Ag nano-particles is prevented. As shown in Table 1 and Figure 6, the Vrdc

of the cell assembled with Ag-d-PI alignment layers is as low as 0.1132 V when the concentration of
doped Ag nano-particles in PI alignment layers is increased to 2.0 mg/mL.

Table 1. Vrdc of cells assembled with Ag/PI composite alignment layers.

Ag-s-PI Ag-s-rPI Ag-d-PI

Vrdc
+ Vrdc

− Vrdc Vrdc
+ Vrdc

− Vrdc Vrdc
+ Vrdc

− Vrdc

0.2 0.6735 0.5899 0.6317 0.7455 0.8417 0.7936 0.4915 0.5107 0.5011

0.5 0.6371 0.6685 0.6528 0.8900 0.8608 0.8754 0.3234 0.3518 0.3376

1.0 - - - - - - 0.2121 0.2049 0.2085

2.0 - - - - - - 0.1091 0.1173 0.1132
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Ag-d-PI thin layers.

Trapping and neutralizing the charged mobile ions in LC by the displacement polarization
in Ag nano-particles may cause the undesired screening effect and the decrease of VHR, and the
capacitance of the cells assembled with Ag-d-PI alignment layers is characterized and shown in Figure 7.
The capacitance of the cells assembled with Ag-d-PI alignment layers is found slightly decreased with



Crystals 2019, 9, 181 6 of 8

the increase of the amount of doped Ag nano-particles; however, the maximum capacitance of each
cell is almost maintained at about 2.4. By increasing the frequency of external voltage on the cells up to
10 khz, a slightly red shift of the capacitance is observed; however, no significant capacitance change in
value is observed. The threshold voltage of the cells maintains at about 1.4 V regardless of the increase
of the amount of doped Ag nano-particles or the frequency of external voltage, and the maintained
capacitance and threshold voltage of cells is attributed to the fact that barely any electrical conductivity
change is generated by the different amounts of Ag nano-particles doping.
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4. Conclusions

In conclusion, LC is homogenously aligned between Ag-d-PI alignment layers, and the mobile
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