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Abstract: We demonstrate, by molecular dynamics simulations, that water confined between a pair of
insect hyperactive antifreeze proteins from the longhorn beetle Rhagium inquisitor is discontinuously
expelled as the two proteins approach each other at a certain distance. The extensive striped
hydrophobic–hydrophilic pattern on the surface, comprising arrays of threonine residues, enables
water to form three independent ice channels through the assistance of hydroxyl groups, even at
300 K. The transformation is reminiscent of a freezing–melting transition rather than a drying
transition and governs the stable protein–protein separation in the evaluation of the potential of mean
force. The collectivity of water penetration or expulsion and the hysteresis in the time scale of ten
nanoseconds predict a potential first-order phase transition at the limit of infinite size and provide a
new framework for the water-mediated interaction between solutes.
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1. Introduction

Water confined in nanopores exhibits anomalous behaviors dissimilar to those of bulk water, e.g.,
the transition to low-dimensional ices [1,2] and solid-liquid critical points [3,4]. The dewetting (drying)
transition is one such intriguing behavior; when two large-scale strongly hydrophobic solutes approach
each other at a critical distance, water molecules are expelled from the intersolute region, leading
to hydrophobic collapse [5–9]. Hydrophobicity is believed to play a key role in the self-assembly
of macromolecules [10–14], and hydrophobic dewetting is observed in the formation of protein
complexes [15–20]. On the other hand, most protein–protein interfaces are enriched in polar residues
rather than nonpolar ones [21] and water molecules are involved in the association of hydrophilic
surfaces [22–24]. As a small portion of hydrophilic moieties prevents the occurrence of the dewetting
transition [25,26], the thermodynamic properties of interfacial water are significantly sensitive to the
local geometry and chemical patterning of solutes [27,28]. The precise control of surface heterogeneity
would provide design principles for the alignment and separation of macromolecules in aqueous
solutions [29].

Hydrophobicity is characteristic of the ice-binding surface (IBS) of antifreeze proteins (AFPs) [30–32].
AFPs have evolved in a variety of organisms, e.g., fish, insects, bacteria, and plants that survive in
sub-zero-temperature environments [30]. Although AFPs have a remarkable diversity in structure,
they possess the same function of adsorption to ice [33]. This adsorption to ice results in thermal
hysteresis (TH), a gap between the depressed freezing- and promoted melting-temperatures of ice,
through the Gibbs–Thomson (Kelvin) effect [34,35]. Insect AFPs are categorized as “hyperactive”
in TH and are more than 10 times effective compared with moderately active AFPs, on the basis
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of concentration [36]. In particular, RiAFP from the longhorn beetle Rhagium inquisitor, which can
supercool to below −25 ◦C [37], exhibits the most potent TH activity among the currently known
AFPs [38].

RiAFP has an exceptionally flat and wide IBS comprising four parallel arrays of threonine (T or
Thr) residues, which is referred to as the T-X-T-X-T-X-T motif, with X being a nonconserved amino
acid. Although the flat IBS with T-X-T motif is also observed in the other hyperactive insect AFPs from
Tenebrio molitor (TmAFP) [39] and Choristoneura fumiferana (Cf AFP) [40], the 420 Å2 IBS in RiAFP is
significantly larger than that of TmAFP (150 Å2) and Cf AFP (190 Å2) [41]. On the IBS of RiAFP, the side
chains of the Thr residues exhibit the same orientation, and water molecules are buried between
the arrays of Thr [41]. Hence, the IBS of RiAFP has an extensive striped pattern comprising CH3,
OH groups, and crystallographic water.

In the present study, we performed molecular dynamics (MD) simulations for a pair of RiAFPs
dissolved in water and examined the phase behavior of water in the interprotein region. Our analyses
for hysteresis between the association and dissociation processes and the discontinuous change in
confined water molecules reveal a collective structural transformation of the confined water, dissimilar
to the drying transition [5–9]. Furthermore, we computed the potential of mean force (PMF) as a
function of the interprotein distance and found that three independent ice channels are formed in the
deepest PMF minimum.

2. Methods

2.1. Molecular Dynamics Simulation

MD simulations were conducted using the GROMACS 2018.3 package [42]. The equations of
motion were integrated with the leap-frog algorithm using a time step of 2 fs. The temperature T for
production runs was controlled using the Nose–Hoover thermostat [43,44] with damping constants of
1.0 ps, whereas the Berendsen algorithm [45] was used for equilibration. The pressure p is isotropically
controlled using the Berendsen algorithm [45] with damping constants of 2.0 ps. All the bonds
were constrained using the LINCS algorithm. Periodic boundary conditions were applied in all
three directions.

RiAFP was modelled with full atomistic detail using CHARMM27 (CHARMM22 plus CMAP
correction) [46,47]. Water was modelled with TIP4P/2005 [48]. Intermolecular interactions were
truncated at 0.85 nm. The Lennard-Jones parameters of cross-interactions were obtained using
the Lorentz–Berthelot combining rules. Long-range Coulombic interactions were evaluated using
the particle-mesh Ewald algorithm (Fourier spacing of 0.10 nm), and dispersion corrections were
implemented for the energy and pressure evaluations.

The crystallographic structure of the RiAFP dimer was taken from the protein data bank (PDB
code 4DT5) [41]. In the dimer, the IBS of two chains of the protein face each other. These two chains of
the protein have different sizes and consist of 143 and 138 residues, respectively. We cut five residues
at the end of the longer protein to make it identical to the shorter one, and we capped the proteins with
N-terminal acetyl and C-terminal methyl (CH3) groups. It should be noted that the five cut residues
were not involved in the IBS. The PDB file also included crystallographic water molecules between
two chains of the protein. The RiAFP dimer with these adhered water molecules was immersed
into a rectangular box of bulk water. The total number of water molecules was 10,800 and twelve
chloride ions were added to neutralize the system charge. We arranged the IBS of the protein to be
parallel to the yz-plane, as shown in Figure 1. The system was firstly relaxed using the steepest-descent
method. To relax the solvent structure, we performed a 100 ps MD simulation in the canonical (NVT)
ensemble at 300 K with freezing the proteins. Then, a 100 ps MD simulation in the isobaric isothermal
(NpT) ensemble at 300 K and 10 MPa was followed by a 100 ps NpT-MD simulation at 300 K and
0.1 MPa to equilibrate the volume. During these NpT-MD simulations, the positions of all the alpha
carbon (CA) atoms were harmonically restrained at their original positions with a force constant of



Crystals 2019, 9, 188 3 of 10

1000 kJ·mol−1·nm−2. The resulting configuration with box dimensions of 9.93 × 5.96 × 5.96 nm3 was
used as the initial configuration for the subsequent NVT-MD simulations.Crystals 2018, 8, x FOR PEER REVIEW  3 of 10 

 

 
Figure 1. A dimer of RiAFP (Rhagium inquisitor antifreeze proteins) dissolved in water in the 
configurations: (A) end-on with the simulation box dimension (black lines) and (B) with 90° rotation. 
The Thr residues involved in the protein–protein contact are represented by sticks. Water molecules 
and ions are not shown. The two-way arrow indicates the distance d between the centers of mass of 
the RiAFPs parallel to the x-axis. d for this conformation is 1.50 nm. 
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To compute the PMF between two chains of RiAFPs, a set of NVT-MD simulations were 
performed. To keep the mutual orientation parallel, the x, y, and z positions of all the CA atoms in 
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protein were harmonically restrained at their original positions with a force constant of 1000 
kJ∙mol−1∙nm−2. The controlled interprotein distance d is parallel to the x-axis and is between the 
centers of mass of two chains of the protein. The RiAFP dimer taken from the PDB shows d = 1.50 
nm. To observe the dissociation process, d was increased in stages up to 2.50 nm, in increments of 
0.02 nm. Then, d was decreased from 2.00 to 1.50 nm for the association process. At a given d, an 
NVT-MD simulation was performed for 10 ns at 300 K. Data analysis was performed based on the 
last 4 ns of the simulation runs. We recorded the force acting on each protein every 10 ps and 
obtained the average force F(d) over time and over two chains of the protein [49]. The PMF between 
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orientation. At d = 1.50 nm, the CH3 groups of the two proteins are in contact distance. However, the 
crystallographic water molecules remain adhered on the protein surface even after an MD run of 10 
ns, giving an average Nw, <Nw>, of 25, as shown in Figure 2A. The penetration of additional water 

Figure 1. A dimer of RiAFP (Rhagium inquisitor antifreeze proteins) dissolved in water in the
configurations: (A) end-on with the simulation box dimension (black lines) and (B) with 90◦ rotation.
The Thr residues involved in the protein–protein contact are represented by sticks. Water molecules
and ions are not shown. The two-way arrow indicates the distance d between the centers of mass of the
RiAFPs parallel to the x-axis. d for this conformation is 1.50 nm.

2.2. Potential of Mean Force

To compute the PMF between two chains of RiAFPs, a set of NVT-MD simulations were performed.
To keep the mutual orientation parallel, the x, y, and z positions of all the CA atoms in one protein,
as shown on the left in Figure 1, and the y and z positions of the CA atoms in the other protein
were harmonically restrained at their original positions with a force constant of 1000 kJ·mol−1·nm−2.
The controlled interprotein distance d is parallel to the x-axis and is between the centers of mass of
two chains of the protein. The RiAFP dimer taken from the PDB shows d = 1.50 nm. To observe the
dissociation process, d was increased in stages up to 2.50 nm, in increments of 0.02 nm. Then, d was
decreased from 2.00 to 1.50 nm for the association process. At a given d, an NVT-MD simulation was
performed for 10 ns at 300 K. Data analysis was performed based on the last 4 ns of the simulation
runs. We recorded the force acting on each protein every 10 ps and obtained the average force F(d)
over time and over two chains of the protein [49]. The PMF between two chains of RiAFPs w(d) was
computed by an integration

w(d) = −
∫ d

d0

F(r)dr + w0,

where d0 is a reference separation and w0 is an arbitrary constant. The average PMF values between
d = 2.30 and 2.40 nm was set to zero.

2.3. Water Molecules Confined Between Two Chains of RiAFPs

The interprotein region is defined as a rectangular box spanning the CA atoms of Thr on the IBS;
x ranges from the CA of Thr41 of the left protein to the CA of Thr109 of the right protein; y ranges
from the CA of Thr109 of the right protein to the CA of Thr47 of the left protein; z ranges from the CA
of Thr41 to the CA of Thr109 of the right protein. The position of the oxygen atom of a water molecule
was used to judge whether the molecule was included in the above box.

3. Results and Discussion

3.1. Hysteresis Between Association and Dissociation of RiAFP Dimer Without Rotation

We firstly investigated how the number of water molecules (Nw) between two RiAFPs changes
during the association and dissociation processes. The IBSs of the two proteins face each other
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and the interprotein distance perpendicular to the surface (d) varies while preserving a parallel
orientation. At d = 1.50 nm, the CH3 groups of the two proteins are in contact distance. However,
the crystallographic water molecules remain adhered on the protein surface even after an MD run of
10 ns, giving an average Nw, <Nw>, of 25, as shown in Figure 2A. The penetration of additional water
molecules was not observed up to d = 1.60 nm. <Nw> increases gradually from d = 1.62 to 1.72 nm;
at d = 1.74 nm, we observed a distinct increase in <Nw> from 38 to 52. The time evolution of Nw at
d = 1.74 nm demonstrates that the penetration of water molecules takes ~5 ns, as shown in Figure 2B.
At d > 1.74 nm, <Nw> monotonically increases with the interprotein distance. We also computed
<Nw> during the backward association process, as shown by the blue line in Figure 2A. Except for
the distances between 1.68 and 1.72 nm, <Nw> during the association process is almost identical to
the values in the dissociation process, indicating that <Nw> is independent of the history. In contrast,
at d = 1.68, 1.70, and 1.72 nm, <Nw> differs for the inverse processes. For example, 48 water molecules
remain in the interprotein region as the two proteins approach d = 1.70 nm, whereas only 33 molecules
are included in the same volume as the two proteins separate. Furthermore, at d = 1.66 nm during the
association process, several water molecules are simultaneously expelled from the interprotein region,
which takes ~6 ns, as shown in Figure 2C. Although d was further decreased to 1.50 nm, complete
drying did not occur. The observed discontinuous change in <Nw> and hysteresis implies a collective
structural transformation, which may lead a first-order phase transition at the infinite limit of surface
size, in both the association and dissociation processes.
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simulations were performed at each d during the association, the water structure and the resulting 
free energy would be identical to that observed for the dissociation. We claim that the PMFs 

Figure 2. Number of water molecules Nw between two proteins; (A) the average, <Nw>, as a function
of the intersolute distance d during the association (blue) and dissociation (red) processes, and the time
evolution of Nw at (B) d = 1.74 nm during the dissociation, and (C) d = 1.66 nm during the association.

3.2. Potential of Mean Force

The PMF, w(r), for a pair of RiAFPs was computed as a function of the separation d, as shown in
Figure 3A. For each of the association and dissociation processes, we firstly estimated two PMFs in
the regions before and after the distinct jump of <Nw>. Then, we assumed that the two PMFs were
connected at d = 1.70 nm, which is the middle of hysteresis. The PMFs at 1.70 < d < 2.00 nm well agree
for these inverse processes. On the other hand, the depth of the PMF minimum at around d = 1.52 nm
depends on the history. Although <Nw>s in the two processes were almost identical at d < 1.66 nm,
as shown in Figure 2A, the water structure in the interprotein region during the dissociation was more
ordered than the association. More specifically, the water hexamers in the interprotein region were
more disrupted by defects during the association than those during the dissociation. If much longer
simulations were performed at each d during the association, the water structure and the resulting free
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energy would be identical to that observed for the dissociation. We claim that the PMFs computed for
the association and dissociation were qualitatively the same. In the following analyses, we use the
conformations sampled during the dissociation.
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3.3. Three Ice Channels 

To characterize the collective transformation, we observed the molecular structures comprising 
of the caught water molecules and hydroxyl (OH) groups of Thr in the interprotein region. At 
distances between 1.50 and 1.60 nm, we found that three independent ice channels were formed, as 
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Figure 3. (A) Potential of mean force w(d) between RiAFPs as a function of the separation d during
the dissociation (blue) and association (red) processes. The dashed and solid lines represent third-
and fourth-order polynomial fits, respectively. (B) Density profile of water confined between the two
proteins at d = 1.52 nm, (C) 1.86 nm, and (D) 2.20 nm. In panels B–D, the center of the two proteins is
set to x = 0.0. The typical error bars in the potential of mean force (PMF) are of the order of 5 kJ/mol.

The deepest minimum in the PMF was at d = 1.52 nm. Figure 3B depicts the density profile
of water molecules in the interprotein region at this minimum. Two strong peaks arise from the
water molecules localized between arrays of Thr residues. The second-deepest minimum was located
at d = 1.86 nm. The water density profile shows three symmetric intervening water layers at this
separation, as shown in Figure 3C. Two side peaks from the water molecules on the IBSs broaden at
this separation, indicating that these molecules were less localized than those at the deepest minimum.
The remaining large peak at the center arises from one water layer spread over the interprotein
region. These results indicate that the free energy barrier separating these minima at d = 1.52 and
1.86 nm were associated with the penetration or expulsion of a single water layer in the confined space.
The activation free energy from the second minimum to the first one was approximately 45 kJ/mol,
corresponding to 18 kBT, with kB being the Boltzmann constant. This significantly high barrier to form
a dimer may pertain to the experimental observation that RiAFPs exist as monomers in solution [41].

A further increase in d leads to the penetration of one more water layer between two chains of
the protein and the formation of a shallow PMF minimum at d = 2.20 nm, with four symmetric water
layers, as shown in Figure 3D. The separation between the first and second minima and between
the second and third minima was 0.34 nm, consistent with the size of water molecules computed
from the radial distribution function [48]. Therefore, as observed for the water between hydrophobic
plates [49,50], the distinct number of water layers stabilizes the protein–protein separation, leading to
the minima in PMF. Furthermore, the penetration or expulsion of one water layer results in the free
energy barriers between these minima.

3.3. Three Ice Channels

To characterize the collective transformation, we observed the molecular structures comprising of
the caught water molecules and hydroxyl (OH) groups of Thr in the interprotein region. At distances
between 1.50 and 1.60 nm, we found that three independent ice channels were formed, as shown in
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Figure 4A. A hexamer consists of three water molecules and three OH groups, and the neighboring
three or four hexamers make one channel. The arrays of CH3 groups assist these channels to be
independent, by separating the interprotein space. The chair-form hexagonal ring is one of the most
stable conformations for water molecules in terms of potential energy and is observed in hexagonal ice
(ice Ih). Indeed, we found that the average potential energy of −76.4 kJ/mol for the confined water
molecules at d = 1.52 nm was significantly lower than −66.2 kJ/mol at d = 1.86 nm. According to the
hexagonal conformations and the stabilized potential energy, the water structure at small ds can be
considered as an “ice” phase. As d becomes greater than 1.60 nm, additional water molecules begin to
penetrate the interprotein region and disturb the ordered ice structures. Figure 4B shows the snapshot
at d = 1.70 nm during the dissociation, just before the distinct <Nw> jump happens. The penetrated
molecules connect the middle and bottom channels, shown by the red lines in Figure 4B. However,
some hexagonal rings, indicated by orange arrows, are retained. Furthermore, the top channel is still
isolated and has an ordered structure, although the distance between the OH group of one protein
and the water molecules on the other protein is extended. Figure 3A shows that this structure is still
in the same PMF minimum as the three ice channels. Hence, the conformation with d between 1.60
and 1.70 nm can be considered as a defective ice phase. When d is further increased, the network
in the interprotein region percolates and the structure looks disordered, analogous to liquid water,
as shown in Figure 4C. These conformational analyses, along with the PMF, suggest that the collective
water transformation observed in the RiAFP dimerization is similar to the freezing–melting transitions
of water.
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Figure 4. Characteristic instantaneous structures comprising water molecules and OH groups in the
interprotein region, observed at (A) d = 1.52, (B) 1.70, and (C) 1.86 nm during the dissociation. These ds
correspond to the first minimum, first barrier, and second minimum in the PMF. At each d, two views
from different angles are shown. The water molecule and the OH groups are connected by lines if their
oxygen–oxygen distance is shorter than 0.34 nm, which is the first minimum of the oxygen–oxygen radial
distribution function for bulk water [48]. Water molecules are represented by balls. The transparent gray
shapes show proteins in cartoon representation and the sticks represent Thr residues on the ice-binding
surfaces (IBSs). The orange arrows in panel B indicate the remaining hexamers.
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3.4. Ice Channels between Unrestrained Proteins

To confirm the formation of ice channels in a realistic condition, we performed an NVT-MD
simulation of unrestrained RiAFPs for 10 ns. The initial configuration was the dimer with d = 1.52 nm,
obtained in the trajectory for restrained RiAFPs, as shown in Figure 4A. Figure 5 shows that the
parallel dimer configuration was preserved over 10 ns although the dimer itself migrates. The three
independent ice channels were also preserved over 10 ns, which can be seen as hexagonal rings
in Figure 5B. We found that among 26 water molecules between two chains of RiAFP in the initial
configuration, 20 water molecules were arrested at the same position in the interprotein region at the
final time step. Hence, these confined water molecules migrate together with the proteins. These results
indicate that the parallel dimer structure of RiAFP with ice channels was stable, at least in the order of
tens of nanoseconds, even under the realistic condition.
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simulation box.

4. Conclusions

In summary, our MD simulations present that the approach of RiAFPs induces the spontaneous
formation of ordered hydrogen bond networks in the interprotein region, named ice channels, even at
room temperature. The collective structural transformation into chair-form hexamers, comprising
water and OH groups, resembles the crystallization of liquid water, and not the drying transition
observed between large hydrophobic solutes. The discontinuous penetration or expulsion of confined
water and the hysteresis between the association and dissociation of these proteins imply a potential
first-order phase transition at the limit of infinite size.

This unique transition certainly arises from the extensive striped hydrophobic–hydrophilic pattern
on the RiAFP surface, called the T-X-T motif. This T-X-T motif is also present in the other insect
hyperactive AFPs. Similar to RiAFP, these AFPs form multimers with their T-X-T motifs facing each
other in the crystallographic structure [39,40,51,52]. Hence, the collective transformation to ice channels
may be a common feature in their dimerizations. Furthermore, AFPs with the T-X-T motif are known
to be hyperactive in the TH measurement [30], and they bind to ice through an anchored clathrate [53].
The water molecules between arrays of Thr on the IBS and the OH groups of Thr are involved in
the anchored clathrate. Hence, the molecular basis to facilitate the ice channels between two RiAFPs
and the anchored clathrate between RiAFP and ice surface can be considered to be the same. On the
other hand, the formation of an ice-like ordered structure is not necessary for the discontinuous water
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penetration or expulsion, because, in the case of graphene plates, the PMF and the amount of confined
water change smoothly, regardless of the formation of defective bilayer ice [49]. Although a concrete
understanding of the surface chemistry and geometry required to induce the collective transformation
of confined water requires further studies, our finding provides a new framework for water-mediated
solute–solute interactions, which may play a role in the self-organization of soluble molecules.
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