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Abstract: Photonic nanojets formed in the vicinity of the cylindrical graded-index lens with different
types of index grading are numerically investigated based on the finite-difference time-domain
method. The cylindrical lens with 1600 nm diameter is assembled by eighty-seven hexagonally
arranged close-contact nanofibers with 160 nm diameter. Simulation and analysis results show that it
is possible to engineer and elongate the photonic nanojet. Using differently graded-index nanofibers
as building elements to compose this lens, the latitudinal and longitudinal sizes of the produced
photonic nanojet can be flexibly adjusted. At an incident wavelength of 532 nm, the cylindrical lens
with index grading = 2 can generate a photonic nanojet with a waist about 173 nm (0.32 wavelength).
This lens could potentially contribute to the development of a novel device for breaking the diffraction
limit in the field of optical nano-scope and bio-photonics.
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1. Introduction

Optical super-resolution has become significant for many applications including optical
imaging [1,2], optical trapping and manipulation [3,4], nano-patterning and lithography [5,6],
spectroscopy [7], and data storage [8]. Because the traditional objective lens has a diffraction-limited
light spot, many investigations have been devoted to finding a practical way to obtain a small focusing
spot beyond the diffraction limit [9]. One of the practical ways is the photonic nanojet (PNJ). The PNJ
generated by an illuminated dielectric microcylinder is introduced and numerically demonstrated
by Chen et al. in 2004 [10]. The mechanism of super-resolution imaging by dielectric microcylinders
and microspheres have been increasingly attractive to researchers [11–15]. The PNJ is a high-intensity
narrow focusing spot in the near-field of transparent microcylinder. When the diameter of transparent
microcylinder is larger than the incident wavelength, the PNJ is generated due to the interferences
between the scattering and illuminating fields. The main property of the PNJ is that it is a non-resonant
phenomenon with low divergence and a small waist on the sub-wavelength scale. To generate a
PNJ, it has been investigated that the refractive index contrast between the single microcylinder
and its surrounding medium performs a critical role in the characters of PNJ [16]. This feature of
microcylinder-based PNJ restricts the selection of transparent materials.

In order to optimize key parameters (focal length, waist, and intensity) of the PNJ, several
studies indicate that the PNJ distributions depend on the geometric shape and refractive index of
the microcylinder [17–24]. Moreover, the microcylinder or microsphere consisted of a concentric
core-shell structure with different refractive indices for adjusting the propagation length and width
of the PNJ [25–33]. The PNJ phenomenon can be changed significantly by applying shell materials
with refractive index > 2. The PNJ length formed by the core-shell microcylinder is increased to
approximately 20 wavelengths. However, the price for this PNJ elongation is the waist widening and
the intensity attenuation. The fabrication process of layered inhomogeneous core-shell microcylinder is
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very difficult and rather costly. Therefore, the new and simple procedure is an interesting research issue
for PNJ shaping. The transparent medium in other geometries, such as micro-cuboids, micro-axicons,
nanofibers, and optical fiber tips, are presented for the formation of PNJ [34–39]. These novel structures
of transparent medium cause special features of PNJ-like intensity distributions and are highly probable
to develop new applications.

In this paper, the combination of the metamaterial concept with the PNJ by plane wave
illumination is proposed and numerically investigated. The graded-index nanofibers are used as
building blocks to assemble the artificial cylindrical lens. By varying the graded-index type of the
compositional nanofibers, the focusing properties of the lens are able to modulate according to our
requirements. Using the finite-difference time-domain (FDTD) method, we simulated the optical field
propagation of a plane wave passing through the cylindrical lens assembled by hexagonally arranged
nanofibers in the air medium. The physical modeling is given in Section 2 for cylindrical graded-index
lens. The effects of the graded-index types on the shape, focal length, full-width at half-maximum
(FWHM), and intensity of PNJs are presented and discussed in Section 3. Finally, the conclusions of
this investigation are summarized in Section 4.

2. Physical Modeling

Several numerical methods have theoretically studied optical intensity distribution in the vicinity
of a transparent core-shell microcylinder or microsphere illuminated by a light source [26–29]. These
studies suggest that the refractive index contrast between different shells plays a critical role in the
formation of a PNJ. In order to verify the influence of the graded-index nanofibers, we performed
FDTD calculations for modeling computational electromagnetics [40]. The schematic diagram of a PNJ
generated by the cylindrical graded-index lens is shown in Figure 1. Geometrically, this cylindrical lens
is constructed by multiple hexagonally arranged close-contact nanofibers which fully fill a cylindrical
area with a particular diameter of 1600 nm. The number and diameter of these nanofibers are 87 and
160 nm. The proposed cylindrical lens is normally illuminated by a transverse electric plane wave
propagating along x direction with the electric field polarized along the z direction. The length of
this lens along the z direction is defined as infinitely long for guaranteeing the accuracy and speed
of FDTD calculation. The grid size of the FDTD mesh is chosen to be 10 nm after the convergence
verification. The boundary conditions at the x and y directions added enough space to deliver the
power flow distributions of optical beam in the background medium. The background medium is air
with a refractive index of 1.
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Since the location and the intensity of PNJ depend on the refractive index contrast between
each nanofiber layer, we consider a micrometer size cylindrical lens consisting of several concentric
nanofibers with equal diameter. Figure 2a shows the graded-index model of the hexagonally arranged
nanofibers. Every nanofiber layer with a number s is a homogeneous material and is defined by the
refractive index ns (s = 0 to N). In order to specify the refractive index variation from layer to layer,
the refractive index contrast of the cylindrical lens is expressed as ns/n0 = (nN/n0)(s/N)t [26]. The
index grading type parameter is t and the dielectric central core is s = 0. The t > 0 indicates that the
refractive index grading starts from the central nanofiber and terminates in the outermost nanofiber,
which has the lowest value of the refractive index. Figure 2b shows the different index grading types of
refractive index ns in the graded-index lens. The t value defines the variety of refractive index grading
including linear (t = 1), concave (t = 0.2 and t = 0.5), and convex (t = 1.5 and t = 2) types. In the present
lens, the refractive index grading is realized with N = 5 distinct concentric nanofibers. When the t
value is 1, the refractive index grading is the linear layer-by-layer variation with the constant contrast.
The maximum value of refractive index at the central nanofiber is 1.5 and it decreases in the radial
direction to a minimum value of 1.05 at the outer nanofiber. This choice of index values is based on the
practicability of modern micro-scale coating technology of objects with a thin film that has adjustable
refractive indices [41,42]. The refractive indices in the range of 1.05 to 2.0 for material synthesis have
been realized by controlling the porosity of silica glass. This manufacturing process is also possible to
use for the graded-index photonic crystal structure and fiber.
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Figure 2. (a) Graded-index model of the hexagonally arranged nanofibers; (b) Different index grading
types of refractive index ns in the graded-index lens.

3. Results and Discussion

The PNJ produced by a microcylinder has been found to present several important properties.
First, the PNJ intensity is several hundred times higher than the incident light power. Second, the PNJ
has a smaller waist than the classical diffraction limit. Using high-resolution FDTD calculation, we
have simulated the intensity distributions of the cylindrical lens at different index grading types. The
incident beam is linearly polarized with a wavelength of 532 nm. Figure 3 shows the spatial intensity
distributions of PNJs formed in the vicinity of cylindrical graded-index lens with homogeneous
material (n = 1.5), t = 0.2, t = 0.5, t = 1, t = 1.5, and t = 2. Figure 3a represents the reference model at
the same modeling conditions, which are the cylindrical lens with all homogeneous nanofibers. It
demonstrated that an optical beam propagates from the top of the lens and the significant near-field
focusing effect is observed at the bottom of the lens. Accordingly, an intensity peak of the electric field
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is known as the PNJ. The intensity peak in Figure 3a is 3.6 compared to the incident intensity of 1, and
the FWHM of PNJ is 165 nm smaller than the incident wavelength of 532 nm. The similar intensity
distributions representing a cylindrical lens with nanofibers of five different index grading types are
shown in Figure 3b–f. We could see that the PNJ gradually shifts from the outside to the inside of
the lens when the index grading type parameter t increases from 0.2 to 2. The focusing effect plays a
significant role in the propagation of the light wave in the lens and the PNJ is located at the interior
of the nanofibers. Compared to the homogeneous model, PNJs created by different graded-index
nanofibers assembled lens have stronger modulation of intensity peak and FWHM.
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Figure 3. Spatial intensity distributions of photonic nanojets formed in the vicinity of cylindrical
graded-index lens with (a) homogeneous material (n = 1.5), (b) t = 0.2, (c) t = 0.5, (d) t = 1, (e) t = 1.5,
and (f) t = 2.

Figure 4a shows the normalized intensity distributions of PNJ for cylindrical graded-index
lens along the propagation axis (x axis). The longitudinal profile in Figure 4a is acquired as a
two-dimensional cross-section of the intensity distribution by the straight line located at the center
of the lens. The dashed line is the edge of the lens. According to Figure 4a, the position of intensity
peak for PNJ decreases from 1035 nm to 603 nm as the index grading type parameter increases. The
transversal profiles at the highest intensity peak are plotted along the y axis in Figure 4b. The FWHMs
are 326 nm, 261 nm, 213 nm, 177 nm, and 173 nm corresponding to t = 0.2, 0.5, 1, 1.5, and 2, respectively.
The FWHM of the PNJ monotonically increases with the growth of the index grading type parameter
as well. These indicate that the graded-index nanofibers are able to focus a light spot smaller than
the Abbe diffraction limit. The smallest FWHM (173 nm) of the PNJ achieved by the model at t = 2 is
35% smaller than the half of incident wavelength. Meanwhile, the highest intensity peak of the PNJ
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is delivered by the same graded-index nanofibers at t = 2. These graded-index lens can be used in
combination with a traditional objective lens for super-resolution imaging applications.Crystals 2019, 9, x FOR PEER REVIEW 5 of 9 
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along (a) the propagation axis (x axis) and (b) the transversal axis (y axis). The dashed line is the edge
of the lens.

If the PNJ is focused inside the lens, a magnified real image is formed as in the cases of Figure 3d–f.
It can be noted that the cylindrical graded-index lens produces a one-dimensional super-resolution
image along the nanofiber axis. Therefore, we may obtain a complete two-dimensional super-resolution
image in a large area by rotating the cylindrical lens in a circular mode. It is clear that the improved
PNJ properties in the proposed graded-index lens originate from the introduced inhomogeneity of
the refractive index. This graded-index lens is essentially a compact compound scattering media
with altering refractive index along the propagation direction. Figure 5 shows the focal length and
FWHM as a function of the index grading type parameter for cylindrical lens. Apparently, decreasing
grading parameter t results in elongated PNJ, accompanied by an expanded FWHM and decreased
peak intensity. The evolution of the FWHM with the intensity peak with grading parameter t increasing
from 326 nm to 173 nm. Therefore, the key way to manipulate PNJ is to find an optimum graded-index
configuration. If the grading parameter is t > 1, the optical contrast of the serial nanofiber layers
increases with their layer number. The central nanofiber plays the major function in the transformation
of the PNJ inside the lens. When the grading parameter is t >> 1, the graded-index lens according to
its optical properties becomes similar to a homogeneous lens with high refractive index.
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for a cylindrical graded-index lens.

It can be seen from Figure 5 that the PNJ length decreases as t value increases. The intensity peak
is placed inside the nanofibers at the value of t = 2. Combining basic properties of the PNJ, a modified
quality criterion Q is expressed as Q = (L × I) / FWHM [25]. The effective length, maximum peak
intensity, and FWHM of the PNJ are L, I, and FWHM, respectively. The usability of a PNJ can be
estimated by using this quality criterion in the solution of practical problems. When the Q value is high,
the peak intensity of nanojet is high, its FWHM is small, and the effective length is long. Figure 6 shows
the quality criterion as a function of the index grading type parameter for cylindrical graded-index
lens. At the value of t = 0.2, the cylindrical graded-index lens optimally combines the high spatial
localization with high intensity. The super-resolution and the relationship between the nanofibers and
the light beam in the graded-index lens may have a physical connection with photonic crystal [43]. An
individual nanofiber operates like a single nanolens. Due to the hexagonal arrangement, the grading
refractive index is capable of guiding the intensity flow to the bottom nanofiber and generating a
strong focus with a high-intensity peak. The nanofiber-assembled graded-index lens has some singular
points which could be used to focus more power on the same phase. Therefore, this graded-index lens
with the selected refractive index is suitable for nano-scale imaging.
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In order to compare the PNJ properties of our lens assembly to those of a single uniform-index
microcylinder, we also performed FDTD calculation for a single microcylinder. The refractive index of
a single microcylinder is 1.5. Spatial intensity distribution, normalized intensity distributions along
the propagation axis and the transversal axis for PNJ formed by a single microcylinder with 1600 nm
diameter are shown in Figure 7. In comparison with PNJ formed by cylindrical graded-index lens, it is
noted that maximal intensity for the graded-index lens along the propagation axis is larger than peak
intensity for uniform single microcylinder. Moreover, the FWHM for uniform single microcylinder is
277 nm, but the FWHM for the graded-index lens at t = 0.2 is 173 nm. The focal length for uniform
single microcylinder is 65 nm and the normalized peak intensity is 0.76. The location of PNJ is close to
the surface of the microcylinder.
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4. Conclusions

In conclusion, the cylindrical graded-index lens assembled by hexagonally arranged transparent
nanofibers is reported. The effective refractive index of the nanofibers can be changed by tuning the
index grading type parameter. We are able to modulate the PNJ by varying the graded-index type of
the compositional nanofibers. Using high-resolution FDTD calculation, we indicate that the PNJ is
dynamically switched by the graded-index lens. Moreover, we present an optimization demonstration
which pursues better focusing characters of the PNJ. The cylindrical graded-index lens can successfully
achieve lateral resolution beyond the diffraction limit under the plane wave illumination of 532 nm
wavelength. The hexagonal arrangement of the graded-index nanofibers leads to an alternating change
of refractive index that effectively collects evanescent waves accompanied by near-field coupling of
scattering light. Such a mechanism for PNJ manipulation may bring about new applications for optical
imaging with super-resolution.
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