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Abstract: Nanospheres of a new coordination polymer {[Cd2(µ-HL)(µ-L)(NO3)3(H2O)]·H2O}n

(1) were easily prepared by a sonochemical method from cadmium(II) nitrate and HL (HL,
pyridine-2-carboxaldehyde isonicotinoyl hydrazone) in ethanol. Single crystals of 1 were also
obtained using a branched tube method. The crystal structure of 1 indicates that the µ-HL/µ-L−

blocks act as linkers between the Cd(II) centers, assembling them into 1D tooth-shaped interdigitated
chains, which are further interlinked into a complex 3D H-bonded network with a rare hms (3,5-conn)
topology. Nanoparticles of 1 were characterized by elemental analysis, FT-IR spectroscopy, and
powder X-ray diffraction (XPRD), while their spherical morphology was confirmed by transmission
electron microscopy (TEM). Furthermore, in the presence of a surfactant, the thermolysis of
sonochemically generated nanoparticles of 1 led to the formation of cadmium oxide nanospheres
(cubic CdO) with an average diameter of 10 nm. This study extends the application of sonochemical
synthetic methods for the generation of phase pure nanoparticles of coordination polymers and their
thermolysis products.

Keywords: sonochemical synthesis; coordination polymers; metal-organic frameworks; crystal
structure; crystal engineering; cadmium; nanoparticles

1. Introduction

Nanoscale materials feature a variety of interesting physical and chemical properties that are
primarily affected by their structural characteristics, morphological type, shape and size [1–10]. There is
a high diversity of methods for the preparation of nanomaterials [1–3], with notable examples including
the microwave-assisted synthesis [11], solvothermal [12], sol-gel [13], and magnetic-field-driven
methods [11], as well as microemulsion [14,15], micelle-assisted [16] and cluster growth [17] protocols.
Although considerable progress has been made in recent years in the synthetic methodologies for
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nanoscale materials, the development of versatile, facile, and inexpensive methods for the preparation
of nanocrystalline materials still remains a challenging area of research.

Among a variety of strategies applied for the generation of nanoparticles, the sonochemical
synthesis is particularly attractive, given its simplicity, cost effectiveness, quick reaction times, excellent
yields, and purity of products [18,19]. Hence, in the past decade, ultrasonic irradiation has been applied
for the synthesis of nanoparticles for a wide range of compounds [18–28]. In particular, synthesis
of group 12 semiconductor nanoparticles (e.g., CdO, CdS, ZnO, ZnS) is of major interest, due to
their size- and shape-dependent electronic and optical properties, as well as potential applications
in light-emitting devices and nonlinear optics [29–31]. Cadmium oxide (CdO) is also an important
inorganic semiconductor with a large band gap [32].

On the other hand, coordination polymers (CPs) assembled from metal nodes and multidentate
organic linkers can be used as precursors for a desirable type of nanoparticles. Such parameters as
the composition, size and morphology of metal oxide nanoparticles can be influenced by selecting an
appropriate type of metal-organic precursor, and tuning the experimental conditions. Interestingly,
nanoscale CPs can also be applied for the preparation of nanomaterials with controlled particle size
and uniform morphologies, and eventually more desirable properties [33–36].

Considering all these points, and following our interests in crystal engineering, design of
novel coordination polymers and derived functional materials [37–44], we focused our attention on
developing a sonochemical synthetic approach for the preparation of a new cadmium(II) coordination
polymer as a precursor for nanospheres of CdO. Another objective of this study is to synthesize
different forms of Cd(II) CPs, namely nanopsheres and single crystals, by exploring the same type of
the reaction mixture whilst using distinct synthetic methods (i.e., sonochemical synthesis and branched
tube methods, respectively; Scheme 1). Thus, in this study, we report the two different synthetic
pathways, crystal structure, topological features, and full characterization of a new 1D coordination
polymer {[Cd2(µ-HL)(µ-L)(NO3)3(H2O)]·H2O}n (1), which was assembled from cadmium(II) nitrate
and pyridine-2-carboxaldehyde isonicotinoyl hydrazone (HL) in ethanol as a green reaction medium.
In addition, the obtained nanospheres of 1 were used for the preparation of CdO nanoparticles with
spherical morphology (Scheme 1).
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2. Experimental Section

2.1. Materials and Measurements

Unless stated otherwise, all chemicals were obtained from Sigma-Aldrich, and were used as
received. Elemental (C, H, N) analyses were performed on a Vario EL III instrument (Ronkonkoma,
NY, USA). FT-IR spectra were measured in the 4000-400 cm−1 range on a Bruker Tensor 27
FT-IR spectrometer (Bruker Scientific LLC, Billerica, MA, USA) using KBr discs. Powder X-ray
powder diffraction (PXRD) patterns were obtained on a STOE type STADY-MP diffractometer
(PEYBORD Advanced Laboratory Science Co, Tehran, Iran) using Cu-Kα radiation with λ = 1.5418.
Thermogravimetric analysis (TGA) was performed (air atmosphere, 25−800 ◦C, 10 ◦C/min) on a
NETZSCH STA 449C equipment (Burlington, MA, USA). For ultrasonic irradiation, SONICA-2200
EP ultrasonic bath (Röntgen, Milano, Italy) was applied (40 KHz frequency). Transmission electron
microscopy (TEM) images were taken with a JEM-2010 UHR, 200 kV transmission electron microscope
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(Peabody, MA, USA). The size of the nanoparticles was estimated from TEM images using the ImageJ
software (NIH, Bethesda, MD, USA) [45].

2.2. Structure Determination

Intensity data collection was performed on a Bruker APEX-II CCD diffractometer using single
crystals of {[Cd2(µ-HL)(µ-L)(NO3)3(H2O)]·H2O}n (1) and a graphite-monochromated Mo-Kα radiation
(λ = 0.71073 Å). The collected frames were integrated with the Saint software [46] using a narrow-frame
algorithm. Data were corrected for absorption effects, using the multi-scan method in SADABS [47].
The space group was assigned using XPREP of the Bruker ShelXTL package. Despite the absence of
a chiral center in µ-HL/µ-L−, compound 1 crystallized in a noncentrosymmetric space group P21.
The structure was solved with ShelXT and refined with ShelXL [48,49] and the graphical ShelXle [50]
interface. All non-H atoms were refined anisotropically. Hydrogen atoms bonded to C atoms were
placed in idealized positions, and their coordinates and thermal parameters were restrained to ride on
the carrier atom. With the exception of O1W, hydrogen atoms bonded to N or O atoms were located
from the difference map. Their coordinates were allowed to refine freely, while the thermal parameters
were constrained to ride on the carrier atom. For the lattice water molecule O1W, hydrogen atoms
were placed along ideal hydrogen bond vectors, and restrained to be approximately 0.9 Å from the
oxygen atom. After refining them into chemically reasonable positions, their coordinates and thermal
parameters were fixed. The assignment of O1W as a water molecule is supported by charge balance
and hydrogen bond donor-to-acceptor distances. The structure of 1 was refined as a racemic twin with
relative twin fractions of 0.54(3) and 0.46(3). Although the structure was refined in a polar space group,
on average, the crystal is not polar. Structural data for 1 are listed in Table 1. Mercury CSD [51] and
ToposPro [52,53] software was used for structural and topological representation.

Table 1. Crystal data and structure refinement for compound 1.

Formula C24H23Cd2N11O13

Fw 898.33
Crystal system Monoclinic
Space group P21
a (Å) 7.8082(6)
b (Å) 14.9024(9)
c (Å) 13.4584(10)
α (o) 90.00
β (o) 98.903(2)
γ (o) 90.00
V (Å3) 1547.16(19)
Temp (K) 100(2)
Z 2
Dc(g.cm−3) 1.928
µ(mm−1) 1.459
Index ranges −9 < h < 9

−19 < h < 19
−17 < h < 17

F(000) 888
Rint 0.0290
R1 (I > 2σ(I)) 0.0388
wR (all data) 0.0708
GOF 0.985

2.3. Topological Analysis

Topological analysis of the 1D coordination polymer 1 and its 3D H-bonded network was
performed with ToposPro by applying a concept of the underlying (simplified) net [52,53]. A simplified
1D coordination network was obtained by omitting the terminal ligands and contracting the bridging
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ligands to the respective centroids. A simplified 3D H-bonded net was generated by contracting
the [Cd(L)(NO3)(H2O)] and [Cd(HL)(NO3)2] blocks to centroids, maintaining their connectivity via
coordination and hydrogen bonds. Only strong H-bonds (D-H···A) were taken into account, with
the H···A < 2.50 Å, D···A < 3.50 Å, and ∠(D−H···A) > 120◦; D and A refer to donor and acceptor
atoms [52,53]. For simplicity, crystallization H2O molecules were disregarded in topological analysis.
Topological classification of the generated nets was then performed.

2.4. Synthesis of {[Cd2(µ-HL)(µ-L)(NO3)3(H2O)]·H2O}n (1)

HL (pyridine-2-carboxaldehyde isonicotinoyl hydrazone) was prepared according to a literature
method [54,55]. A branched tube method [56,57] was used for the synthesis of 1 (Figure S1, in the
supplementary materials). Hence, solid Cd(NO3)2·4H2O (0.154 g, 0.5 mmol) and HL (0.113 g, 0.5 mmol)
were introduced into the principal arm of a branched tube, followed by a gentle addition of EtOH to fill
the arm. The tube was then sealed and immersed in an oil bath with a temperature of 60 ◦C, whereas
the branched (cooler) arm was kept at ambient temperature. A good amount of single crystals was
formed in the cooler arm in 3 days. These were isolated manually and dried in air to give compound 1
(single crystals form). Yield: 72% (based on cadmium(II) nitrate). Anal. Calcd. for C24H23Cd2N11O13:
C, 32.09; H, 2.58; N, 17.15. Found: C, 32.33; H, 2.66; N: 17.04%. FT-IR data (cm−1): Selected bands:
3436, 3193, 2096, 1992, 1647, 1512, 1462, 1435, 1342, 1290, 1224, 1157, 1091, 1041, 924, 813, 741, 701, 633.

2.5. Synthesis of {[Cd2(µ-HL)(µ-L)(NO3)3(H2O)]·H2O}n (1)

Sonochemical synthesis of 1 was carried out in an ultrasonic bath. A solution of Cd(NO3)2·4H2O
(0.154 g, 0.5 mmol) in EtOH (10 mL) was added dropwise to a solution of HL (0.113 g, 0.5 mmol) in
EtOH (10 mL). The obtained mixture was treated at ambient temperature in the ultrasonic bath for
30 min, resulting in a generation of yellow solid. This was filtered off, washed with ethanol, and
dried in air to furnish nanoparticles of 1. Yield: 76% (based on cadmium(II) nitrate). Anal. Calcd. for
C24H23Cd2N11O13: C, 32.09; H, 2.58; N: 17.15. Found: C, 32.20; H, 2.51; N: 17.19%. FT-IR data (cm−1):
Selected bands: 3437, 3200, 2116, 1997, 1647, 1513, 1463, 1434, 1342, 1292, 1223, 1156, 1091, 1043, 925,
813, 743, 699, 632.

2.6. Preparation of CdO Nanoparticles

Nanoparticles of compound 1 (0.225 g, 0.25 mmol) and oleylamine (OL, 2.0 g, 7.5 mmol) surfactant
were combined in a porcelain crucible. The obtained mixture was heated in a furnace up to 500 ◦C
in air atmosphere and maintained at this temperature for 5 h. After cooling the crucible to ambient
temperature, the obtained solid was washed with a small amount of ethanol and acetone to remove
any organic residue and dried in air to generate CdO nanoparticles.

3. Results and Discussion

3.1. Synthesis of 1

Two different synthetic procedures were used for the preparation of a new Cd(II) 1D coordination
polymer, {[Cd2(µ-HL)(µ-L)(NO3)3(H2O)]·H2O}n (1), which is driven by the N3O-tetradentate
chelating-bridging HL/L− ligands. These procedures include: (a) a branched tube method with
a heat gradient that resulted in a single crystalline form of 1 (Figure S1), and (b) a sonochemical method
that led to the formation of nanoparticles of 1. Both methods are based on a reaction of cadmium(II)
nitrate with HL in ethanol (Scheme 1), wherein HL was used as a recognized organic building block
for the generation of coordination polymers [54–57].

3.2. Structural and Topological Description of 1

Compound 1 features a 1D zigzag coordination polymer structure. An asymmetric unit comprises
two independent Cd(II) centers, one µ-HL and one µ-L− linker, three terminal nitrate and one water
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ligands, and a H2O molecule of crystallization (Figure 1). Selected bonding parameters for 1 are given
in Table 2. The Cd1 center is eight-coordinate and shows a distorted dodecahedral {CdN3O5} geometry
(Figure 2A), which is filled by O1, N3 and N4 donors coming from µ-HL block, a N5 donor from µ-L−

linker, and two pairs of O3/O4 and O6/O7 atoms from two bidentate nitrate ligands. In contrast,
the Cd2 center is seven-coordinate and reveals a distorted monocapped trigonal-prismatic {CdN3O4}
geometry (Fig. 2B). Herein, the µ-L− block acts as an anionic N2,O-chelating ligand via O2, N7 and
N8 donors, and the coordination geometry of Cd2 is completed by a N1 atom from an adjacent µ-HL
moiety, as well as by two terminal nitrate O9/O10 atoms, and an H2O ligand (O12). Given the presence
of a pyridine functionality, both the µ-HL/µ-L− blocks act as the linkers, and lead to the generation
of 1D zigzag coordination polymer chains with the 2C1 topology (Figure 3A,B). These chains are
interdigitated and show a tooth-shaped pattern.
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Figure 1. Anisotropic displacement ellipsoid diagram of 1 with a view of coordination environments
around Cd1 and Cd2 centers. Thermal ellipsoids are at 30% probability. N5 atom was generated by a
symmetry operator (−1 + x, +y, −1 + z).

Table 2. Selected bonding parameters for 1.

Bond Lengths (Å) Bond Angles (◦)

Cd1−O3 2.528(4) O4−Cd1−O3 52.24(13)
Cd1−O4 2.381(4) O7−Cd1−O6 52.61(11)
Cd1−O6 2.526(3) N3−Cd1−N4 67.46(12)
Cd1−O7 2.351(4) N3−Cd1−O1 64.53(10)
Cd1−O1 2.516(3) N5i−Cd1−N4 143.21(13)
Cd1−N3 2.373(3) N5i−Cd1−N3 145.68(12)
Cd1−N4 2.420(4) N5i−Cd1−O1 84.39(12)

Cd1−N5i 2.317(4) O10−Cd2−O9 51.38(11)
Cd2−O9 2.585(3) N7−Cd2−O2 67.33(11)

Cd2−O10 2.384(4) N7−Cd2−N8 68.76(12)
Cd2−O2 2.360(3) N1−Cd2−O12 84.23(13)

Cd2−O12 2.341(3) N1−Cd2−N8 140.20(13)
Cd2−N1 2.341(4) N1−Cd2−O2 83.81(13)
Cd2−N7 2.308(3) N1−Cd2−N7 148.30(12)
Cd2−N8 2.467(4)

i N5 atom was generated by a symmetry operator (−1 + x, +y, −1 + z).
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Figure 3. Structural fragments of 1. (A) 1D zig-zag metal-organic chain and (B) its topological
representation showing three interdigitated chains with the 2C1 topology. (C) Interlinkage of 1D
chains into a 3D H-bonded network. H-bonds are displayed as green lines (for details see Table S1).
(D) Topological representation of 3D H-bonded framework showing a binodal 3,5-connected net with
the hms (3,5-conn) topology and point symbol of (63)(69.8). Further details: (A,C) CH hydrogen atoms
are omitted, Cd (yellow balls), N (blue), O (red), C (gray); (B) Cd nodes (yellow balls), centroids of
µ-HL/µ-L− blocks (gray); (C,D) views along the b (C) and a (D) axis; (D) centroids of 3-connected
Cd2-based [Cd(L)(NO3)(H2O)] nodes (gray balls), centroids of 5-connected Cd1-based [Cd(HL)(NO3)2]
nodes (yellow balls).
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In 1, the µ-HL/µ-L− ligands have four available coordination sites as a (1,3) set, two coordination
poles, one of monodentate, and the other one of tridentate type. Following this strategy, 1 possesses
only a C2 chirality. The non-centrosymmetric character of the compound arises from the presence of
two different coordination environments around Cd(II) centres in the asymmetric unit. In Cd1, there
are two nitrate ligands, and the µ-HL block contains an N2 atom, whereas in Cd2 there are one nitrate,
one water and a deprotonated N6 atom of µ-L−. As the space group P21 possesses only the C2 axis of
symmetry, this polar space group exhibits the polar direction running parallel to the b axis (Figure S4).

The adjacent 1D metal-organic chains are interlinked by strong O−H . . . O, O−H . . . N, and
N−H . . . O hydrogen bonds (D···A = 2.687−3.162 Å, Table S1) that also involve the trapped water
molecules of crystallization. As a result, a complex 3D H-bonded network is generated (Figure 3C
and Figure S4). It was simplified by reducing the Cd2-based [Cd(L)(NO3)(H2O)] and Cd1-based
[Cd(HL)(NO3)2] blocks to centroids, and treating them as the 3-connected and 5-connected nodes,
respectively (Figure 3D and Figure S3). A standard simplification procedure for H-bonded nets was
applied [53,54]. The obtained network can be topologically described as a binodal 3,5-connected net
with the hms (3,5-conn) topology, and the point symbol of (63)(69.8). Herein, the (63) and (69.8) indices
refer to the Cd1- and Cd2-based nodes, respectively. It should be mentioned that the present type of
topology is rare in coordination compounds [58,59].

3.3. FT-IR and TGA

No significant differences were observed between the elemental analyses, the FT-IR spectra of the
single crystals, and nanoparticles of 1, despite the variation in their preparation methods. Figure 4
shows the FT-IR spectra of the free HL ligand, single crystals and nanoparticles of 1. A characteristic
absorption band corresponding to the C=O stretching vibration of the carbonyl group shifts from 1665
cm−1 in HL to 1647 cm−1 in both samples of 1, indicating the coordination of the C=O group to Cd(II)
centers. The bands of NO3

− ligands in 1 (1462, 1224, and 1012 cm−1) are not observed in the spectrum
of HL; the same concerns a broad ν (H2O) band at ~3400 cm−1.

Crystals 2019, 9, x FOR PEER REVIEW 7 of 13 

 

the hms (3,5conn) topology and point symbol of (63)(69.8). Further details: (A,C) CH hydrogen atoms 

are omitted, Cd (yellow balls), N (blue), O (red), C (gray); (B) Cd nodes (yellow balls), centroids of µ

HL/µL− blocks (gray); (C,D) views along the b (C) and a (D) axis; (D) centroids of 3connected Cd2

based [Cd(L)(NO3)(H2O)] nodes (gray balls), centroids of 5connected Cd1based [Cd(HL)(NO3)2] 

nodes (yellow balls). 

The adjacent 1D metalorganic chains are interlinked by strong O−H…O, O−H…N, and N−H…O 

hydrogen bonds (D∙∙∙A = 2.687−3.162 Å, Table S1) that also involve the trapped water molecules of 

crystallization. As a result, a complex 3D Hbonded network is generated (Figures 3C and S4). It was 

simplified by reducing the Cd2based [Cd(L)(NO3)(H2O)] and Cd1based [Cd(HL)(NO3)2] blocks to 

centroids, and treating them as the 3connected and 5connected nodes, respectively (Figures 3D and 

S3). A standard simplification procedure for Hbonded nets was applied [53,54]. The obtained 

network can be topologically described as a binodal 3,5connected net with the hms (3,5conn) 

topology, and the point symbol of (63)(69.8). Herein, the (63) and (69.8) indices refer to the Cd1 and 

Cd2based nodes, respectively. It should be mentioned that the present type of topology is rare in 

coordination compounds [58,59]. 

3.3. FT-IR and TGA 

No significant differences were observed between the elemental analyses, the FTIR spectra of 

the single crystals, and nanoparticles of 1, despite the variation in their preparation methods. Figure 

4 shows the FTIR spectra of the free HL ligand, single crystals and nanoparticles of 1. A characteristic 

absorption band corresponding to the C=O stretching vibration of the carbonyl group shifts from 

1665 cm−1 in HL to 1647 cm−1 in both samples of 1, indicating the coordination of the C=O group to 

Cd(II) centers. The bands of NO3− ligands in 1 (1462, 1224, and 1012 cm−1) are not observed in the 

spectrum of HL; the same concerns a broad ν (H2O) band at ~3400 cm−1. 

TGA of a microcrystalline sample of 1 (Fig. S5) shows a weight variation compatible with the 

release of two water molecules (water ligand and crystallization solvent) in the 125−170 °C range 

(exp. 3.8%; calcd. 4.0%). After this temperature, a multistep decomposition of the sample begins. It is 

essentially complete at 490 °C, revealing the formation of CdO, as attested by a remaining weight of 

the sample (exp. 28.8%; calcd. 28.6%). 

 

Figure 4. FTIR spectra of (A) HL, (B) single crystals of 1, and (C) nanoparticles of 1. 

3.4. Characterization of Nanoparticles of 1 and CdO 

Nanoparticles of the 1D coordination polymer 1 were prepared using the sonochemical method. 

The reaction parameters (molar ratio of the reagents and solvent) of the sonochemical reaction were 

similar to those of the branched tube method that was used to obtain single crystals of 1. Similarities 

Figure 4. FT-IR spectra of (A) HL, (B) single crystals of 1, and (C) nanoparticles of 1.

TGA of a microcrystalline sample of 1 (Fig. S5) shows a weight variation compatible with the
release of two water molecules (water ligand and crystallization solvent) in the 125−170 ◦C range
(exp. 3.8%; calcd. 4.0%). After this temperature, a multistep decomposition of the sample begins. It is
essentially complete at 490 ◦C, revealing the formation of CdO, as attested by a remaining weight of
the sample (exp. 28.8%; calcd. 28.6%).

3.4. Characterization of Nanoparticles of 1 and CdO

Nanoparticles of the 1D coordination polymer 1 were prepared using the sonochemical method.
The reaction parameters (molar ratio of the reagents and solvent) of the sonochemical reaction were
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similar to those of the branched tube method that was used to obtain single crystals of 1. Similarities
between the reaction parameters permitted us to minimize the formation of impurities. In addition
to identical FT-IR spectra of the single crystals and nanoparticles of 1, their PXRD patterns are also
similar. Their comparison with a pattern simulated from the single crystal data (Figure 5) indicates
that there is only one crystalline phase in the obtained samples.
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The size and morphology of the nanostructured coordination polymer 1 were studied by TEM
(transmission electron microscopy). TEM images of the particles indicate their spherical morphology
with the diameter distribution of 30−150 nm (Figure 6 and Figure S6). No significant change in the
size and morphology of the particles was detected on adjusting the sonochemical reaction parameters,
such as reaction time, and a molar ratio of the reagents. However, solvent (EtOH) appears to have an
important effect in achieving the sonochemical synthesis of 1, since PXRD patterns and FT-IR spectra
of a solid formed as a result of similar sonochemical reaction in methanol instead of ethanol were
totally different from the data of 1, thus revealing the formation of structurally different compound
(Figures S7 and S8). A branched tube method using methanol as the solvent did not lead to the
formation of single crystals suitable for X-ray diffraction.
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Nanospheres of CdO were prepared by the thermolysis of nanospheres of 1 at 500 ◦C in the
presence of oleylamine as a surfactant (Figure 7). PXRD pattern of the synthesized CdO nanoparticles
well matches the standard pattern of cubic CdO (ICDD 05-0640), thus confirming the formation of
a pure phase. Major peaks in the PXRD pattern can be indexed as (111), (200), (220), (311), and
(222) planes (Figure 8). TEM images of the prepared CdO nanoparticles show a uniform spherical
morphology with an average diameter of 10 nm (Figure 7 and Figure S6).
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4. Conclusions

In this study, we have shown that a facile sonochemical method can be very efficient for the
generation of a new 1D coordination polymer {[Cd2(µ-HL)(µ-L)(NO3)3(H2O)]·H2O}n (1), which is
driven by pyridine-2-carboxaldehyde isonicotinoyl hydrazone. This method not only complements a
branched tube technique for the assembly of single crystals of 1, but it also allows for the generation of
this coordination polymer in the form of nanoparticles. Both methods result in good product yields
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and phase purity; the obtained samples are essentially equal, as confirmed by elemental analysis, FT-IR
spectroscopy, and PXRD analyses.

Single-crystal X-ray structure of 1 was determined and analyzed in detail, revealing the formation
of interdigitated tooth-shaped 1D metal-organic chains that are further extended (1D→3D) to an
intricate hydrogen-bonded network. Topological analysis of this 3D network was performed, featuring
a very rare hms (3,5-conn) underlying net. The sonochemically generated nanoparticles of 1 act as
precursors for the synthesis of CdO nanospheres (cubic CdO) by thermolysis and in the presence of
surfactant. Uniform spherical morphology of both coordination polymer 1 and CdO was confirmed
by TEM.

In summary, this work widens the application of sonochemical synthetic methods for the
generation of nanoparticles, coordination polymers, and derived products. This work also shows that
such a synthetic methodology can be accomplished within a short period of time, and by using ethanol
as a green and renewable solvent. Further research will be pursued on extending the application of
sonochemical synthetic protocols to broaden the family of hydrazone-driven coordination polymers
and related nanomaterials.

Supplementary Materials: The following materials are available online at http://www.mdpi.com/2073-4352/
9/4/199/s1: H-bond parameters (Table S1), additional figures (Figures S1−S8) and crystal structure of 1 in CIF
format (CCDC 1885947).
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