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Abstract: This work provides a comparative study of the dielectric and piezoelectric properties of
randomly oriented and textured 0.88Na0.5Bi0.5TiO3-0.08K0.5Bi0.5TiO3-0.04BaTiO3 (88NBT) ceramics.
Textured ceramics were fabricated by template grain growth (TGG) method using NaNbO3 (NN)
for templates. For textured ceramics with 4 wt% NN templates, a Lotgering factor of 96% and
piezoelectric coefficient d33 of 185 pC/N were obtained. Compared to the randomly oriented ceramics,
textured ceramics show lower strain hysteresis (H = 7.6%), higher unipolar strain of 0.041% with
corresponding large signal piezoelectric coefficient d33

* of 200 pm/V at applied field of 2 kV/mm.
This enhancement can be explained by the grain orientation along <001> direction by texturing, where
an engineered domain configuration is formed after polarization, leading to decreased hysteresis and
increased piezoelectric property.

Keywords: textured ceramics; template grain growth; piezoelectric materials; electrical conductivity

1. Introduction

Na0.5Bi0.5TiO3 (NBT) has attracted extensive attention due to their strong ferroelectric properties,
with large remnant polarization (Pr = 38 µC/cm2) and high Curie temperature (Tc = 320 ◦C) [1].
However, the piezoelectric properties of NBT are inferior to lead based ferroelectric materials,
requiring further improvement prior to replacing the lead based counterparts. In the past few
decades, several solid solutions have been developed to improve the piezoelectric properties,
including Na0.5Bi0.5TiO3-BaTiO3 (NBT-BT) [2–4], Na0.5Bi0.5TiO3-K0.5Bi0.5TiO3 (NBT-KBT) [5,6],
Na0.5Bi0.5TiO3-BaZrO3 (NBT-BZT) [7], Na0.5Bi0.5TiO3-K0.5Bi0.5TiO3-NaNbO3 (NBT-KBT-NN) [8],
Na0.5Bi0.5TiO3-K0.5Bi0.5TiO3-BaTiO3 (NBT-KBT-BT) [9–13], and Na0.5Bi0.5TiO3-SrTiO3-BaTiO3

(NBT-ST-BT) [14], to name a few.
Many researchers are focusing on the NBT-KBT-BT ternary system, because it provides freedom

to tune the compositions to enhance the electromechanical performance, however it sacrifices the
temperature stability [9]. Textured method is another approach to improve piezoelectric properties
by controlling microstructure and grain orientation, with minimal impact on the Curie temperature
Tc. Of particular importance is that the textured ceramics are low cost compared to their single
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crystal counterparts [15,16] while exhibiting the anisotropic features similar to single crystal, thus
attracting much attention in recent years [16–21]. Enhancements in the piezoelectric d33 value of highly
textured piezoelectric ceramics have been reported in <001>-textured NBT-BT [16], NBT-KBT [17],
NBT-KBT-BT [18], NBT-BT-KNN [19], and Bi1/2Na1/2TiO3-BaTiO3-AgNbO3 (BNT-BT-AN) [20] ceramics,
where the effect of templates on dielectric, piezoelectric, and ferroelectric properties of the textured
ceramics were discussed. However, the studies on electrical conductivity are limited, which plays
an important role in ferroelectric materials since the poling process is impacted by the nature of
conductivity of the materials, thus affecting their piezoelectricity. Complex impedance spectroscopy
(CIS) is a powerful method to analyze electrical properties, and it has been widely employed to study
the conductivity of NBT-based ceramics [22–25].

In this work, 0.88Na0.5Bi0.5TiO3-0.08K0.5Bi0.5TiO3-0.04BaTiO3 (88NBT) textured ceramics with
morphotropic phase boundary (MPB) composition were prepared by the TGG method. The electrical
conductivity, dielectric, piezoelectric, and ferroelectric properties were analyzed in detail.

2. Materials and Methods

<001>-textured 88NBT ceramics were fabricated by TGG using 4 wt % NN templates.
NN templates were synthesized by double molten salts synthesis (DMSS). Plate-like layered-perovskite
Bi2.5Na3.5Nb5O18 (BNN5) was prepared by a molten synthesis method, using Na2CO3 (Sinopharm
Chemical Reagent Co. Ltd, Shanghai, China, >99.8%), Nb2O5 (Sinopharm Chemical Reagent Co. Ltd,
Shanghai, China, 99.99%), and Bi2O3 (Aladdin Industrial Corportation, Shanghai, China, 99.9%) as
starting powders, with NaCl (Sinopharm Chemical Reagent Co. Ltd, Shanghai, China, 99.5%) as
salt (with a weight ratio of oxide to salt at 1:1) [17,26,27]. The mixture was ball milled in ethanol for
24 hours. The dried mixture was placed in a sealed alumina crucible, heated to 1100 ◦C at a heating
rate of 2 ◦C/min and hold for 4 hours. The resulting mixture was washed several times with hot
deionized water to remove the salt until no Cl− was detected by AgNO3 solution. The synthesized
BNN5 particles were then mixed with Na2CO3 and equal weight of KCl [28]. After mixing, the mixture
was dried for about 24 h, then placed in a sealed alumina crucible. The NN templates were achieved
by topo-chemical reaction at 1000 ◦C for 3 h. Then the crucible was cooled to room temperature with a
rate of 5 ◦C/min. The alumina crucible can be reused many times for fabrication of the templates. After
removing the salt, NN templates with a length of ~10µm were synthesized.

We selected 0.88Na0.5Bi0.5TiO3-0.08K0.5Bi0.5TiO3-0.04BaTiO3 (88NBT) with MPB composition as
the matrix. 88NBT matrix powders were prepared using Bi2O3 (Aladdin Industrial Corportation,
Shanghai, China, 99.9%), Na2CO3 (Sinopharm Chemical Reagent Co. Ltd, Shanghai, China, 99%),
TiO2 (Aladdin Industrial Corportation, Shanghai, China, 99%), K2CO3 (Sinopharm Chemical Reagent
Co. Ltd, Shanghai, China, 99%), and BaCO3 (Sinopharm Chemical Reagent Co. Ltd, Shanghai,
China, 99%) as raw materials by the conventional solid-state reaction method. The powders were
ball milled in ethanol for 24 hours, dried, and subsequently calcined at 850 ◦C for 3 hours. The
phase structure was measured by X-ray diffraction (XRD, PANalytical X´ Pert PRO, Eindhoven, The
Netherlands). The 88NBT matrix powders were mixed with NN templates, binder, solvents, plasticizers,
and dispersant to make slurry, being magnetically stirred for 48 h. The slurry was tape-cast on plastic
tape by a doctor blade with a 150 µm gap in height. After drying at room temperature, the green tapes
were punched, stacked and laminated at 75 ◦C with pressure of 50 MPa into disk samples. The green
samples were heated to 550 ◦C with a ramping rate of 1 ◦C/min and kept for 3 h to burn out the binder
and other organic contents. After the burnout process, samples were cold isostatic pressed (CIP) with a
pressure of 250 MPa in order to increase the green density and followed by sintering at 1165 ◦C for 10 h.

The phase structure was measured by X-ray diffraction (XRD, PANalytical X´ Pert PRO, Eindhoven,
the Netherlands) and the Lotgering factor was calculated. The samples were poled at 5 kV/mm at
room temperature for 15 minutes in a silicone oil bath. The piezoelectric coefficient (d33) was measured
by a quasi-static piezoelectric d33-meter (ZJ-3A, Institute of Acoustics, Chinese Academy of Sciences,
Beijing, China). Microstructure was examined using a scanning electron microscope (SEM, JSM-7001F,
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JEOL, Tokyo, Japan). Dielectric constant (ε) and dielectric loss (tan δ), complex impedance spectra
were tested by LCR meter (E4980A, Agilent, Santa Clara, USA) with heating rate of 3 ◦C/min. The
polarization-electric field (P–E) loops and strain-electric field (S–E) were measured at 10Hz by a
piezo-measurement system (aixACCT TF Analyzer 2000, aixACCT Systems GmbH, Aachen, Germany)
with a high voltage amplifier (TREK 610E, Medina, New York, USA).

3. Results and Discussion

Figure 1 shows the XRD pattern and SEM image of the NN templates. The NN templates were
prepared from precursor BNN5 particles by the double molten salt method. No other peaks were
detected, indicating that a pure perovskite NaNbO3 phase was obtained. All the NN particles have a
plate-like shape with a length of 5~10 µm and average thickness of 0.5~1 µm. This large aspect ratio is
expected to benefit the fabrication of textured ceramics by tape-casting technology [29].
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Figure 1. XRD pattern of NaNbO3 templates; the inset shows an SEM image of the NaNbO3 templates.

Figure 2a shows the XRD patterns of 88NBT randomly oriented ceramics and textured ceramics.
No impurity phase was detected, suggesting the samples were in pure perovskite structure. It is
noticed that the most intensive peak is <110> in randomly oriented ceramics, while the <100> and
<200> peaks increase rapidly with significantly reduced non-<l00> peaks for the 88NBT textured
ceramics, demonstrating a strongly-preferred grain orientation of the 88NBT textured ceramics along
the <l00> direction. The <200> peak located at 46◦ splits into <200>/<002>, suggesting the coexistence
of the rhombohedral phase and tetragonal phase. The Lotgering factor (F) was calculated from the
XRD pattern in the range of 20◦–60◦ by the formula [30]

F =
P− P0

1− P0
(1)

where P and P0 are
∑

I(h00)/
∑

I(hkl) in the textured and randomly oriented ceramics, respectively.
The Lotgering factor of the textured sample was found to be approximately 96%. This result shows

that the high degree of the textured 88NBT ceramics can be obtained using the plate-like NN templates
by optimizing the fabrication process. The SEM images of matrix powders, randomly oriented and
textured ceramics are shown in Figure 2b–d, respectively. The prepared powders with a small average
size of about 100 nm are shown in Figure 2b, which will benefit the textured ceramic fabrication due to
the smaller particle size in the matrix powders will provide a greater driving force of nucleation along
the preferred orientation [31]. As shown in Figure 2c, the grain size of the randomly-oriented ceramics
is about 1 µm. In contrast, the textured ceramics are observed to possess the brick-like shape with a
larger grain size being on the order of 8 µm, as shown in Figure 2d. The density of both samples is
measured by the Archimedes’ method. The relative density of the textured 88NBT ceramic is found to
be 95% while that of the randomly oriented ceramics is 96%.
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Figure 2. (a) XRD patterns of 88NBT randomly oriented ceramics and textured ceramics. SEM images
of 88NBT (b) matrix powders; (c) randomly oriented ceramics; (d) textured ceramics. The insets give
the grain size distributions.

Temperature-dependent dielectric constant and loss for 88NBT ceramics at different frequencies
are shown in Figure 3, exhibiting two obvious dielectric anomalies in the dielectric constant: Td

(depolarization temperature) and Tm (temperature of the maximum dielectric constant). Td refers to
the temperature of the transition between ferroelectric phase and anti-ferroelectric phase, or polar state
to non-polar state, while Tm stands for the temperature of the transition between anti-ferroelectric
phase and paraelectric phase [32]. The Td and Tm are found to be ~120 ◦C and ~290 ◦C for the randomly
oriented ceramics, respectively, while the textured ceramics are found to possess slightly lower Td

(~110 ◦C) and Tm (~270 ◦C). This phenomenon is attributed to the residual internal stresses from
the template grains, a slight composition deviation, and the integrated aging effect in the textured
ceramics [19,20,33]. The dielectric constant at room temperature (ε25 ◦C) for the randomly-oriented
ceramics is about 800, whereas the ε25◦C for textured ceramics is 810 (at 10 kHz). On the contrary, the
maximum dielectric constant εmax of the randomly oriented ceramics is 5350, decreased significantly
to ~3950 for textured ceramics, where less extrinsic contribution is thought to be the main reason for
the depressed dielectric maxima in the textured ceramics, while the higher residual pore concentration
in the textured ceramics may also impact the crystallinity and maximum dielectric constant [19,34].
With the εmax decreased, the textured ceramics show temperature stable dielectric behavior over a
broad temperature range.
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The randomly-oriented and textured 88NBT ceramics exhibit broad dielectric peaks around Tm

and frequency dependent dielectric near the Td temperature, reflecting the diffuse phase transition
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behavior, which is believed to be associated with the coexistence of complex cations (Na+, Bi3+, K+

and Ba2+) on A-site [35]. The relaxor behavior can be described by the modified Curie–Weiss law [36]

1
ε
−

1
εmax

=
(T − Tm)

γ

C
(2)

where ε is the dielectric constant, εmax is the dielectric constant at Tm, C is the Curie constant, and γ is
the degree of diffuseness in the range of 1–2. The γ = 1 represents a normal ferroelectric and γ = 2
stands for an ideal ferroelectric relaxor. The value of γ is calculated from the slope of ln(1/ε−1/εm)
versus ln(T-Tm) plot at 100 kHz, as shown in Figure 4. The γ of the randomly oriented ceramics is
1.896, slightly increases to 1.917 for the 88NBT textured ceramics, implying the introducing of Nb5+

cations on B site due to the NN template will also contribute to the relaxor behavior.
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Figure 4. The plot of ln (1/ε−1/εm) as a function of ln (T-Tm) for (a) 88NBT randomly oriented ceramics
and (b) 88NBT textured ceramics at 100 kHz.

Figure 5 gives the complex impedance (Z*) plots for randomly oriented and textured 88NBT
ceramics over the temperatures range of 340–500 ◦C. All the plots at different temperatures show
similar behaviors. In the complex impedance plots, the low frequency intercept of the impedance data
on the real axis Z′ corresponds to the bulk resistance. An equivalent circuit with two parallel R-C
elements is adopted to fit the experimental data, as shown in Figure 5c. The resistance and capacitance
components of the grains are labeled as R1 and C1, the resistance and capacitance components of the
grain boundaries are labeled as R2 and C2. Based on the equivalent circuit, the resistances (R) and
capacitances (C) of grains and grain boundaries can be calculated by Z-View software. Table 1 lists the
fitted parameters of the randomly-oriented and textured ceramics.

Table 1. Electrical parameters of randomly oriented and textured ceramics.

Temperature (◦C)
Randomly-Oriented Textured

R1 (kΩ) R2 (MΩ) R1 (kΩ) R2 (MΩ)

500 12.8 0.2 24.9 0.07
480 18.1 0.25 45.0 0.13
460 25.3 0.35 69.4 0.18
440 33.6 0.66 93.23 0.22
420 57.1 1.33 108.9 0.24
400 65.8 3.66 113.9 0.40
380 66.2 8.41 127.0 0.79
360 68.5 14.3 149.4 2.7
340 73.5 24.3 168.2 9.2
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The ac conductivity is obtained in accordance with the literature [37]. Figure 6a,b show the plot of
ac conductivity (σac) versus frequency at different temperatures. At low frequency, the conductivity
keeps almost constant, while in high frequency region, conductivity increases with frequency.
The ac conductivity data in Figure 6a,b obey the Jonscher’s power law [38,39]. Compared to the
randomly-oriented ceramics, textured ceramics show higher ac conductivity. Figure 6c represents the
variation of dc conductivity with inverse of absolute temperature for randomly oriented and textured
ceramics, in which the dc conductivity values are obtained from non-linear fitting of the ac conductivity
curves using Jonscher’s power law. The σdc can be explained by the empirical relation [40]

σdc = σ0 exp(−Ea/kBT) (3)

where σ0 is pre exponential factor, Ea is the activation energy of conduction, kB is the Boltzmann
constant, and T is the absolute temperature. The Ea of the 88NBT randomly oriented ceramics is
calculated to be 1.49 eV, which is close to the reported data for NBT based ceramics [24,41,42]. The
value of Ea is approximately half the band gap (3.25–3.4 eV) of NBT-BT materials [43], indicating that
the 88NBT randomly oriented ceramics exhibit electronic conductive behavior that is closely related
to intrinsic band-type conduction [24,41]. Compared to the 88NBT randomly oriented ceramics, the
88NBT textured ceramics possess lower Ea, being on the order of 1.13 eV, which may relate to the
increased grain size as well as the lower grain boundary density.

Figure 7a exhibits polarization-electric field (P-E) loops for textured and randomly oriented 88NBT
ceramics measured at 7 kV/mm and 1 Hz. The ferroelectric properties of the textured and randomly
oriented ceramics are summarized in Table 2. The remnant polarizations Pr of randomly-oriented and
textured ceramics are 35.2 and 26.4 µC/cm2, respectively, with coercive fields Ec being on the order
of 3.5 and 3.1 kV/mm, respectively. The textured ceramics show lower coercive field and remnant
polarization. The lower coercive field of the textured ceramics is believed to be associated with the
larger grain comparing to randomly oriented one, as observed in Figure 2c,d, where far fewer grain
boundaries will make the ferroelastic domain wall reversal easier. Figure 7b shows the bipolar strain
curves (S–E curves) of randomly-oriented and textured ceramics. Both the S–E curves display a
typical butterfly shape, where the E field-induced strains at 7 kV/mm in randomly and textured 88NBT
ceramics are 0.15% and 0.19%, respectively. In order to understand the strain behavior more clearly, the
unipolar strain curves were also measured and given in Figure 7c. The strain response of the randomly
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oriented ceramics is about ~0.032% at 2 kV/mm, while the maximum strain of Smax~0.041% is observed
for the textured ceramics at the same electric field level. The large signal piezoelectric coefficient d33

*

and strain hysteresis H can be calculated according to the formula [44]

d∗33 = Smax/Emax (4)

H =
HEmax/2

Smax
(5)

The d33
* are 160 and 200 pm/V for the randomly-oriented and textured ceramics at 2 kV/mm,

respectively, where the d33
* of the textured ceramics possess ~25% enhancement comparing to randomly

oriented one. Of particular significance is that the strain hysteresis of the randomly oriented ceramics
is 16%, greatly decreases to 7.6% for the textured 88NBT ceramics. This phenomena can be explained
by the texturing characteristics, where all the grains in the textured ceramics are aligned along
crystallographic <001> direction, analogous to <001> poled single crystals [45], a specific domain
engineered configuration is expected to exist in the <001> poled textured ceramics, being responsible
for the enhanced piezoelectric coefficient. Meanwhile, the reduced hysteresis observed in textured
88NBT ceramics is similar to the dielectric nonlinearity reported in the textured KNN ceramics, where
the pre-orientation of domain configuration in the <001> texture ceramics is responsible for the
reduction [46–49], in addition to the enlarged grain size (thus increased domain size and decreased
domain wall density).Crystals 2019, 9, x FOR PEER REVIEW 7 of 11 
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Table 2. Piezoelectric, dielectric, and ferroelectric properties of 88NBT randomly oriented and
textured ceramics.

Sample Pr
(µC/cm2)

Ec
(kV/mm) Smax H d33 *

(pm/V)
d33

(pC/N)
Td

(◦C)
Tm
(◦C)

ε25 ◦C (at
10 kHz)

εmax (at
10 kHz)

tanδ
(25 ◦C)

Random 35.2 3.5 0.032% 16% 160 150 120 290 800 5350 0.038
Textured 26.4 3.1 0.041% 7.6% 200 185 110 270 810 3950 0.032

Note: d33
* denotes the large signal piezoelectric coefficient of ceramics.

4. Conclusions

In conclusion, highly textured 0.88Na0.5Bi0.5TiO3-0.08K0.5Bi0.5TiO3-0.04BaTiO3 ceramics with
Lotgering factor F = 96% were fabricated by the TGG method using NN as templates. The large
signal d33

* value at 2 kV/mm is found to be on the order of 200 pm/V for the textured ceramic, a
25% enhancement when compared to the randomly-oriented counterpart. In addition, the strain
hysteresis is about 7.6% for textured ceramics, being half the value of the hysteresis in randomly
oriented counterpart. These results demonstrate that the texturing method is an effective way to
enhance the piezoelectric properties by controlling grain alignment and microstructure.
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