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Abstract: An analytical treatment for two-dimensional point group 10 mm decagonal quasicrystals
with defects was suggested based on the complex potential method. On the basis of the assumption of
linear elasticity, two new conformal maps were applied to two examples: the first was an arc with an
elliptic notch inner surface in a decagonal quasicrystal, where the complex potentials could be exactly
obtained; and the second was concerned with a decagonal point group 10 mm quasicrystalline strip
weakened by a Griffith crack, which was subjected to a pair of uniform static pressures. Using the
basic idea underlying crack theory, the extent of the stress intensity factors was analytically estimated.
If the height was allowed to approach infinity, these results can be turned into the known results of
an “ordinary” crystal with only phonon elastic parameters when the phason and phonon-phason
elastic constants are eliminated.
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1. Introduction

Quasicrystal is a new structure as well as a novel material that has presented an important
application prospect in engineering [1]. Quasicrystals are brittle at low and intermediate temperature,
and the structural integrity requires materials to have a sufficient strength and toughness for engineering
applications. Hence, the study of the crack and fracture problems of the material is significant. It is
well-known that the deformation of quasicrystals is governed by two different displacement fields:
one is the phonon field, which is similar to the conventional displacement field u(ux, uy, uz) under the
long-wave length approximation; and the other is the phason field w(wx, wy, wz), which is an unusual
physical quantity compared to the traditional condensed matter physics and materials science [2–9].
The elasticity of quasicrystals is more difficult to determine than the elasticity of crystals or classical
elasticity [2–9]. To investigate the notch/crack and fracture problems of the material, Fan introduced a
mathematical theory of the elasticity of quasicrystals, where one of the mathematical theories can be
found in his recently published monograph [10]. In the over 200 individual quasicrystals observed to
date, there are about 70 individual quasicrystals belonging to two-dimensional decagonal quasicrystals.
Therefore, these kinds of quasicrystals are very important from a fundamental point and from their
applications. In this study, we focused on the discussion of this class of quasicrystal. In order to
measure some of the fracture parameters of the material, some scientists have acquired the fracture
parameters by using the experimental specimens [4–8]. Recently, Mariano and his co-workers, on the
basis of first invariance principles and within the framework of the (both finite and small strain)
continuum mechanics of quasicrystals, have discussed the steady crack propagation and dislocation of
the quasicrystals [11–13]. In addition, Wang et al. studied quasicrystals by experimental observation
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and pointed out that the long-period structure in magnesium alloys as well as the precipitation of
the quasicrystalline phase were very important areas of this research [14]. Li et al. [15,16], Gao [17],
Li et al. [18], and Li [19,20] studied many cracked quasicrystals by adopting a variety of methods.
Of course, many studies on quasicrystals can be found in [21–27], amongst others.

Notch/crack problems for conventional structural materials were studied by Muskhelishvili [28]
in terms of complex analysis. In the present case, we studied the problem for quasicrystals governed by
the quadruple harmonic equation. Therefore, the mathematical solution is much more complicated than
for conventional structural and foam materials. Later, we introduce the complex analysis developed
in monograph [10]. Here, we further developed the complex analysis for so-called Saint-Venant
problems of quasicrystalline materials, which may extend the methodology to more worthwhile
engineering applications.

2. Governing Equations of Elasticity of Decagonal Quasicrystals

Consider a plane in two-dimensional quasicrystals, and assume that it is perpendicular to the
periodic symmetrical axis (e.g., axis z). In this case, the phonon and phason fields are respectively:

u = (ux, uy, uz), w = (wx, wy, 0) (1)

The strain field associated with the phonon displacement field and phason field is respectively
defined by [7]:

εi j =
1
2
(
∂ui
∂x j

+
∂u j

∂xi
), wi j =

∂wi
∂x j

(2)

Here, we considered only the plane problem. It was assumed that all variables were independent
of z, i.e., the deformation is limited in a plane perpendicular to the z-axis, and this leads to εzz = εxz =

εyz = 0. Furthermore, we can obtain the strains wzz = wzx = wxz = wzy = wyz = 0.
If we denote σi j as the stress tensor associated to the strain tensor εi j and Hi j as the stress tensor

associated with the strain tensor wi j, then the generalized Hooke’s law for decagonal quasicrystals
with 10mm point groups can be expressed by [7]:

σxx = L(εxx + εyy) + 2Mεxx + R(wxx + wyy)

σyy = L(εxx + εyy) + 2Mεyy −R(wxx + wyy)

σxy = σyx = 2Mεxy + R(wyx −wxy)

Hxx = K1wxx + K2wyy + R(εxx − εyy)

Hyy = K1wyy + K2wxx + R(εxx − εyy)

Hxy = K1wxy −K2wyx − 2Rεxy

Hyx = K1wyx −K2wxy + 2Rεxy

(3)

where L = C12, M = (C11 − C12)/2 = C66; Ci j represents the phonon elastic constants; Ki represents
the phason elastic constants; and R is the phonon–phason coupling elastic constant. In addition,
the equilibrium equations are as follows:

∂σxx
∂x +

∂σxy
∂y = 0,

∂σyx
∂x +

∂σyy
∂y = 0

∂Hxx
∂x +

∂Hxy
∂y = 0,

∂Hyx
∂x +

∂Hyy
∂y = 0

 (4)

Equations (2)–(4) are the basic equations describing the elasticity of decagonal quasicrystals under
plane deformation, and this is an equation made of 18 field equations.

Based on the deformation compatibility equations,

∂2εxx

∂y2 +
∂2εyy

∂x2 = 2
∂2εxy

∂x∂y
,
∂wxx

∂y
=
∂wxy

∂x
,
∂wyy

∂x
=
∂wyx

∂y
(5)



Crystals 2019, 9, 209 3 of 11

If we introduce the three functions φ(x, y), ψ1(x, y), and ψ2(x, y), as follows: σxx =
∂2φ
∂y2 , σyy =

∂2φ
∂x2 , σxy = σyx = −

∂2φ
∂x∂y

Hxx =
∂ψ1
∂y , Hxy = −

∂ψ1
∂x , Hyx = −

∂ψ2
∂y , Hyy =

∂ψ2
∂x

(6)

Equation (5) can be transformed into the following simple forms:
(

1
2(L+M)

+ K1+K2
2M(K1+K2)−4R2

)
∇

2
∇

2φ+ R
M(K1+K2)−2R2

(
∂
∂y Π1ψ1 −

∂
∂x Π2ψ2

)
= 0(

1
K1−K2

+ M
)
∇

2ψ1 + R ∂
∂y Π1φ = 0(

1
K1−K2

+ M
)
∇

2ψ2 −R ∂
∂x Π2φ = 0

(7)

where∇2 = ∂2

∂x2 +
∂2

∂y2 is the two-dimensional Laplacian operator, and Π1 = 3 ∂2

∂x2 −
∂2

∂y2 , Π2 = 3 ∂2

∂y2 −
∂2

∂x2 .

When we let the three functions φ(x, y), ψ1(x, y), and ψ2(x, y), so that:

φ = c1∇
2
∇

2G, ψ1 = −(R
∂
∂y

Π1)∇
2G, ψ2 = (R

∂
∂x

Π2)∇
2G (8)

then the Equation (7) set can be reduced to a unique equation of a higher order, i.e., the potential
function G(x, y) satisfies the quadruple harmonic equation as follows [10]:

∇
2
∇

2
∇

2
∇

2G = 0 (9)

where the constant is defined by c1 =
2(MK1−R2)

K1−K2
.

By introducing a complex variable, the solution of Equation (9) can be expressed as [10]:

G = 2Re[g1(z) + zg2(z) +
1
2

z2g3(z) +
1
6

z3g4(z)] (10)

where g j(z) ( j = 1, 2, 3, 4) are four analytic functions of a single complex variable z ≡ x + iy = reiθ.
The bar denotes the complex conjugate hereinafter, i.e., z = x− iy = re−iθ. These analytic functions
will be determined by the boundary conditions of practical problems. It is easy to prove that g1(z) has
no contribution to the stress and displacement fields, so g1(z) = 0.

From the fundamental solution of Equation (10), we can find the complex representation of the
stresses as given below [10]: 

σxx = −32c1Re(Ω(z) − 2g′′′4 (z))
σyy = 32c1Re(Ω(z) + 2g′′′4 (z))
σxy = σyx = 32c1ImΩ(z)
Hxx = 32RRe(Θ′(z) −Ω(z))
Hxy = −32RIm(Θ′(z) + Ω(z))
Hyx = −32RIm(Θ′(z) −Ω(z))
Hyy = −32RRe(Θ′(z) + Ω(z))

(11)

and
Θ(z) = g(IV)

2 (z) + zg(IV)
3 (z) +

1
2

z2g(IV)
4 (z), Ω(z) = g(IV)

3 (z) + zg(IV)
4 (z) (12)

where the prime, two prime, three prime, and superscript (IV) denote the first to fourth order

differentiation of g j(z) to the variable z, in addition to Θ′(z) = dΘ(z)
dz , and it is evident that Θ(z) and

Ω(z) are not analytic functions.
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By some derivation from Equation (11), we have the complex representation of the displacements,
as follows:  ux + iuy = 32(4c1c2 − c3 − c1c4)g′′ 4(z) − 32(c1c4 − c3)(g′′′ 3(z) + zg′′′ 4(z))

wx + iwy = 32R
K1−K2

Θ(z)
(13)

and the constants can be expressed by c2 =
2(M(K1+K2)−R2)+L(K1+K2)

4(L+M)(M(K1+K2)−2R2)
, c3 = R2

M(K1+K2)−R2 , c4 =
K1+K2

M(K1+K2)−R2 ; and c1 has been listed in the above expression.
If we introduce the new functions for convenience, such that:

g2
(IV)(z) = h2(z), g3

′′′ (z) = h3(z), g4
′′ (z) = h4(z). (14)

All the stress and displacement components can be rewritten by hi(z)(i = 2, 3, 4), based on these
new functions. In order not to change the stresses and displacements, the analytic functions h3(z)
can be replaced by h3(z) + γ′, and h4(z) can be replaced by h4(z) +

32(c1c4−c3)
32(4c1c2−c3−c1c4)

γ′ [10]. Therefore,
we can obtain the complex function written in the following form:

h4(z) = d1(X + iY) ln z + Bz + h4
0(z),

h3(z) = d2(X − iY) ln z + (B′ + iC′)z + h3
0(z),

h2(z) = (B′′ + iC′′ )z + h2
0(z),

(15)

where B, B′, C′, B′′ , and C′′ are real constants, and d1, d2, h4
0(z), h3

0(z), and h2
0(z) can be expressed as:

d1 = 1
64c1π×(32(4c1c2−c3−c1c4)+1) , d2 = − 4c1c2−c3−c1c4

2c1π×(32(4c1c2−c3−c1c4)+1) ,

h4
0(z) = a1

z + a2
z2 + · · · · · ·, h3

0(z) = b1
z + b2

z2 + · · · · · ·, h2
0(z) = γ1

z +
γ2
z2 + · · · · · · ,

and
B =

1
128c1

(σ1 + σ2), B′ + iC′ = −
1

64c1
(σ1 − σ2)e−2iα,

where σ1, σ2 are principal stresses at infinity, and α is the angle of σ1 and the x-direction. Let z→∞ ,
we have Hyy −Hxx + i(Hxy + Hyx) = −64(R1 + R2)B′′ + iC′′ , and yields B′′ + iC′′ = 1

64(R1+R2)
(σ1
′
−

σ2
′)e−2iα′ , where σ1

′, σ2
′ are the generalized principal stresses at infinity, and α′ is the angle of σ1

′ and
the x-direction.

As is widely-known, Muskhelishvili [28] provided two kinds rational conformal mapping for
solving plane problems of elastic materials for some complicated configurations, and the first kind

of rational conformal mapping reads z = ω(ζ) = R(ζ+
n∑

k=0
dkζ
−k)

n∑
k=0
|dk| ≤ 1. This mapping can

transform the exterior of the unit circle in the ζ-plane into the exterior of the material with defects
in the physical plane. As a result of the transformation, we can obtain the series expansion of the

logarithmic item ln z = ln
[
Rζ(1 +

n∑
k=0

dkζ
−(k+1))

]
= ln R + ln ζ + ln(1 +

n∑
k=0

dkζ
−(k+1)). As |ζ| > 1

outside the unit circle was noted, we can obtain
n∑

k=0

∣∣∣∣ dk
ζk+1

∣∣∣∣ < 1 and also have ln(1 +
n∑

k=0
dkζ
−(k+1)) =

(
n∑

k=0
dkζ
−(k+1)) + 1

2 (
n∑

k=0
dkζ
−(k+1))

2
+ · · · · · · = f (ζ), where f (ζ) is analytic outside the unit circle.

In light of a similar analysis, it is very easy to obtain the following formula for each of the items
h0

4(z), h0
3(z), and h0

2(z) of two dimensional decagonal quasicrystals, for example, the series expansion
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a1
z = a1

Rζ(1+
n∑

k=0
dkζ−(k+1))

= a1
Rζ (1 −

n∑
k=0

dkζ
−(k+1)

− · · · · · · ), and so on. Substituting these results into

Equation (15), we have: 
h4(ζ) = d1(X + iY) ln ζ+ Bω(ζ) + h4

∗(ζ)
h3(ζ) = d2(X − iY) ln ζ+ (B′ + iC′)ω(ζ) + h3

∗(ζ)
h2(ζ) = (B′′ + iC′′ )ω(ζ) + h2

∗(ζ)
(16)

where h4
∗(ζ) =

∞∑
n=1

αnζ−n, h3
∗(ζ) =

∞∑
n=1

βnζ−n, and h2
∗(ζ) =

∞∑
n=1

γnζ−n are single valued analytical

functions of |ζ| > 1. The other kind of rational conformal mapping reads z = ω(ζ) = R( 1
ζ +

n∑
k=0

Ckζ
k)

n∑
k=0
|Ck| ≤ 1. This can transform the interior of the unit circle in the mapping plane into the

exterior of the material with defects in the physical plane. Through a similar analysis with the first
kind of mapping, we have:

h̃4(ζ) = −d1(X + iY) ln ζ+ Bω(ζ) + h̃4
∗(ζ)

h̃3(ζ) = −d2(X − iY) ln ζ+ (B′ + iC′)ω(ζ) + h̃3
∗(ζ)

h̃2(ζ) = (B′′ + iC′′ )ω(ζ) + h̃2
∗(ζ)

(17)

where h̃4
∗(ζ) =

∞∑
n=1

α̃nζn, h̃3
∗(ζ) =

∞∑
n=1

β̃nζn, and h̃2
∗(ζ) =

∞∑
n=1

γ̃nζn are single valued analytical functions

of |ζ| < 1.
Considering the stress boundary conditions for the plane elasticity of decagonal quasicrystals in

the following, we can express them as:{
σxxl + σxym = Tx, σyym + σxyl = Ty (x, y) ∈ L
Hxxl + Hxym = hx , Hyym + Hyxl = hy(x, y) ∈ L

(18)

where the point (x, y) ∈ L represents an arbitrary boundary point of a multi-connected quasicrystalline
material; meanwhile, we need to consider l = cos(n, x) = dy/ds and m = cos(n, y) = −dx/ds.
Here, T = (Tx, Ty) and h = (hx, hy) represent the surface tractions and generalized surface tractions,
respectively, and n denotes the outer unit normal vector of an arbitrary boundary point.

According to Equations (11) and (15) and the boundary conditions in Equation (18), we can write
the boundary conditions based on our analytic functions: h4(z) + h3(z) + zh4

′(z) = i
32c1

∫
(Tx + iTy)ds z ∈ L

h4
′′ (z) + zh3

′(z) + 1
2 z2h4

′′ (z) = i
R2−iR1

∫
(hx + ihy)ds z ∈ L

(19)

3. An Arc of Elliptic Notch Inner Surface in a Decagonal Quasicrystal

We assumed a two dimensional decagonal quasicrystal weakened by an elliptic notch ( x2

a2 +
y2

b2 =

1 ) (see Figure 1), in which the arc
_

z1 M z2 of the elliptic notch was subjected to a uniform pressure p.
For this configuration and based on the above mappings, we can obtain the simplified form of the
conformal mapping:

z = ω(ζ) = R(
m
ζ
+ ζ) (20)

This can transform the exterior of the unit circle in the ζ-plane into the exterior of the ellipse
in the z-plane, where ζ = ξ + iη = ρeiϕ and the constants can be expressed by R = (a + b)/2,
m = (a− b)/(a + b).
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In the boundary of the unit circle, we introduce σ = eiθ and can obtain:

h4
∗(σ) + h3∗(σ) +

ω(σ)

ω′(σ)
· h4
∗ ′(σ) = f0 (21)

where
f0 = i

32c1

∫
(Tx + iTy)ds− (d1 − d2)(X + iY) ln σ− ω(σ)

ω′(σ)
· d1(X − iY) · σ−

2Bω(σ) − (B′ − iC′)ω(σ).

Take the conjugate on both sides of Equation (21), and it will yield:

h4
∗(σ) + h3

∗(σ) +
ω(σ)

ω′(σ)
· h4
∗ ′(σ) = f0 (22)

If we multiply both sides of Equation (21) by 1
2πi

dσ
σ−ζ , and integrate around the unit circle,

then we obtain:

1
2πi

∫
γ

h4
∗(σ)

σ− ζ
dσ+

1
2πi

∫
γ

ω(σ)

ω′(σ)

h4
∗ ′(σ)

σ− ζ
dσ+

1
2πi

∫
γ

h3∗(σ)

σ− ζ
dσ =

1
2πi

∫
γ

f0
σ− ζ

dσ (23)

When we give the same treatment to Equation (12), we can obtain:

1
2πi

∫
γ

h4
∗(σ)

σ− ζ
dσ+

1
2πi

∫
γ

ω(σ)

ω′(σ)

h4
∗ ′(σ)

σ− ζ
dσ+

1
2πi

∫
γ

h3
∗(σ)

σ− ζ
dσ =

1
2πi

∫
γ

f0
σ− ζ

dσ (24)

Meanwhile, according to the mapping equation z = ω(ζ) = R(m
ζ + ζ), we can obtain these

formulas based on the above mapping, i.e., ω(σ) = R(σ+ m
σ ), ω(σ) = R( 1

σ + mσ), ω′(σ) = R(1− m
σ2 ),

and ω′(σ) = R(1 −mσ2). Now, we can solve Equation (23), and because h4
∗(ζ) is a single valued

analytical function of |ζ| > 1, we can obtain:

1
2πi

∫
γ

h4
∗(σ)

σ− ζ
dσ = −h4

∗(ζ) + h4
∗(∞),

1
2πi

∫
γ

h3∗(σ)

σ− ζ
dσ = 0 (25)

where ω(ζ)

ω′(ζ)
h4
∗ ′(σ) =

(ζ2+m)

ζ(1−mζ2)

[
−α1ζ2

− 2α2ζ3
− · · · · · ·

]
is an analytical function of |ζ| < 1, and we

have 1
2πi

∫
γ
ω(σ)

ω′(σ)

h4
∗ ′(σ)
σ−ζ dσ = 0. Therefore, Equation (23) becomes −h4

∗(ζ) = 1
2πi

∫
γ

f0
σ−ζdσ, where the

constants are omitted. Based on the Cauchy integral basic formula for Equation (24), we have
1

2πi

∫
γ

h4
∗(σ)
σ−ζ dσ = 0 and 1

2πi

∫
γ

h3
∗(σ)
σ−ζ dσ = −h3

∗(ζ) + h3
∗(∞). Meanwhile, we find that ω(ζ)

ω′(ζ)h4
∗ ′(σ) =

ζ(mζ2+1)
(ζ2−m)

[
−
α1
ζ2 −

2α2
ζ3 − · · · · · ·

]
is a single valued analytical function of |ζ| > 1, and we have
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1
2πi

∫
γ
ω(σ)
ω′(σ)

h4
∗ ′(σ)
σ−ζ dσ = −

ω(ζ)
ω′(ζ)h4

∗ ′(ζ). Therefore, Equation (24) becomes −h3
∗(ζ) −

ω(ζ)
ω′(ζ)h4

∗ ′(ζ) =

1
2πi

∫
γ

f0
σ−ζdσ, where the constants are omitted. If we assume that the material is not subjected to force at

infinity, it will lead to B = 0 and B′ − iC′ = 0. So, we have:

h∗4(ζ) =
1

32c1
·

[
pR
2πi

∫ σ2

σ1
(σ+ m

σ )
1
σ−ζdσ+ pz2

2πi

∫ σ1
σ2

1
σ−ζdσ

]
+

ip(d1−d2)(z1−z2)
2πi

∫
γ

ln σ
σ−ζdσ+ ipd1(z1−z2)

2πi

∫
γ

(σ2+m)

(1−mσ2)
·

1
σ−ζdσ

(26)

where ∫ σ2

σ1

(σ+
m
σ
)

1
σ− ζ

dσ = σ2 − σ1 −
m
ζ

ln
σ2

σ1
+ (ζ+

m
ζ
) ln

σ2 − ζ
σ1 − ζ

∫ σ1

σ2

1
σ− ζ

dσ = ln
σ1 − ζ
σ2 − ζ

.

As (ζ2+m)

(1−mζ2)
is a single valued analytic function of |ζ| < 1, we have

∫
γ

(σ2+m)

(1−mσ2)
·

1
σ−ζdσ = 0.

For 1
2πi

∫
γ

ln σ
σ−ζdσ, let 1

2πi

∫
γ

ln σ
σ−ζdσ = I(ζ), and we can obtain:

dI(ζ)
dζ = 1

2πi

∫
γ

ln σ
(σ−ζ)2 dσ = − 1

2πi

∫
γ

ln σd( 1
σ−ζ )

= − 1
2πi [

ln σ
σ−ζ ]

σ=ei(ϕ1+2π)

σ=eiϕ1
+ 1

2πi

∫
γ

1
σ(σ−ζ)dσ

= − 1
2πi

1
σ1−ζ

ln ei(ϕ1+2π)

eiϕ1
−

1
ζ

= − 1
σ1−ζ
−

1
ζ

where σ1 = eiϕ1 . Therefore, we have 1
2πi

∫
γ

ln σ
σ−ζdσ = I(ζ) = ln(σ1 − ζ) − ln ζ+ C.

Calculating the sum of the above results, and noting Equation (17), we have:

h4(ζ) =
1

32c1
·

p
2πi ·

[
−

mR
ζ ln σ2

σ1
+ z ln σ2−ζ

σ1−ζ
+ z1 ln(σ1 − ζ) − z2 ln(σ2 − ζ)

]
+ip(d1 − d2)(z1 − z2) ln ζ

(27)

Similarly, by solving Equation (24), one gets:

h3(ζ) =
1

32c1
·

p
2πi ·

[
−

(1+m2)Rζ
(ζ2−m)

ln σ2
σ1

+
R(σ1−σ2)(1+mζ2)

(ζ2−m)
− z2 ln(σ2 − ζ) + z1 ln(σ1 − ζ)

]
−ip(d1 + d2) ·

[
(z1 − z2) ln ζ+ (z1 − z2)

(1+m2)

(ζ2−m)

] (28)

where
z1 = R(σ1 +

m
σ1

), z2 = R(σ2 +
m
σ2

).

4. Solutions to a Decagonal Quasicrystalline Strip Containing a Centric Crack

It is difficult to determine the solutions to a decagonal quasicrystalline strip containing a crack
because of its essential complexity. To avoid this difficulty, we performed a step to determine the
conformal mapping from the interior of the unit circle to the exterior of the given crack. Here,
we present a new approach for finding the wanted conformal transformation. We constructed a
conformal mapping from the physical z plane to the complex ζ plane, where a conformal map z = Φ(ζ)
maps the exterior of the crack in the physical z plane to the interior of the unit circle in the ζ plane.

Figure 2 shows a schematic of a decagonal quasicrystalline strip containing a centric crack.
There was a Griffith crack with a length of 2a along the z axis embedded at the mid plane of a decagonal
quasicrystalline strip with a height of h. The surfaces of the crack can be denoted by two coincident lines,
namely y = 0+ and y = 0−, respectively. The portion y = 0±, −a < x < a of the crack surfaces were
assumed to be subject to the action of uniform loadings σyy = −σ0, Hyy = 0. Meanwhile, we adopted a
to simulate the crack length of the strip.
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Figure 2. A decagonal quasicrystalline strip with a centric crack.

The boundary conditions for this problem can be described as follows:
σyy = σxy = 0, Hyy = Hyx = 0, for y = ±h,−∞ < x < +∞;

σxx = σxy = 0, Hxx = Hxy = 0, for y = ±0, −a < x < +a;

σyy = −σ0, σxy = 0, Hyy = Hyx = 0, for y = ±0, −a < x < +a.

(29)

The essential building block in the present application as well as in all of the applications of the
method of conformal mappings, is the fundamental mapping φ(ζ) that maps the interior circle onto a
Griffith crack with the length of e

πa
h − e−

πa
h in the z1 plane:

z1 = φ(ζ) = α
(
ζ+

1
ζ

) (
α =

e
πa
h − e−

πa
h

4

)
(30)

Second, we introduced some transformations, so that:

z2 = z1 + β = φ(ζ) + β

(
β =

e
πa
h + e−

πa
h

2
), z3 = ln z2, z =

h
π

z3 (31)

The conformal map was constructed as described in the foregoing section. For the discussion
below, we will denote simply Φ(ζ) as follows:

z = Φ(ζ) =
h
π

ln[α(ζ+
1
ζ
) + β] (32)

The point position ζ in the mathematical domain was mapped by Φ−1(z) onto the point position
z in the physical domain. Of course, we could not obtain the solution immediately by means of
this transformation. We maintained that Equation (19) holds on and began by writing the unknown
functions h4(z) and h3(z) by means of the conformal mapping:

h4(ζ) = h4(Φ(ζ)), h3(ζ) = h3(Φ(ζ)) (33)

We can clearly rewrite the boundary condition for the unit circle in the ζ plane. If we denote
σ ≡ eiθ in the unit circle γ, the boundary conditions can result in:

h4(σ) + h3(σ) +
Φ(σ)

Φ′(σ)
h4
′(σ) = f0(σ) (34)

Considering that the phason field can be discussed similarly in the above analysis process, we omit
the procedure of the phason field here. In the calculation below, we affirmed that the coefficients B = 0
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and B′ + iC′ = 0 according to the free stresses at infinity, and meanwhile the circumference of the
resultant force was zero:

f0(σ) =
i

32c1

∫
(Tx + iTy)ds = −

σ0

32c1
Φ(σ) (35)

where Tx and Ty denote the generalized surface tractions in the x-direction and y-direction, respectively.
Multiplying both sides of Equation (34) and its conjugate equation by 1

2πi

∫
γ

1
σ−ζdσ and then calculating

the Cauchy integration results in:

h4(ζ) + h3(0) + 1
2πi

∫
γ

Φ(σ)

Φ′(σ)

h4
′(σ)
σ−ζ dσ = 1

2πi

∫
γ

f0
σ−ζdσ

h3(ζ) + h4(0) + 1
2πi

∫
γ

Φ(σ)
Φ′(σ)

h4
′(σ)
σ−ζ dσ = 1

2πi

∫
γ

f0
σ−ζdσ

 (36)

where σ represents the value of ζ at the boundary of γ in the mapping plane and h4(ζ) =
∞∑

k=1
akζ

k and

h3(ζ) =
∞∑

k=1
bkζ

k are single valued analytic functions in |ζ| < 1. It is necessary to analyze the functions

Φ(σ)

Φ′(σ)
h4
′(σ) and Φ(σ)

Φ′(σ)h4
′(σ) in the mathematical domain to compute these integrations. This is the

most expensive step in our solution. Using the last two equations together with the conformal map in
Equation (32), we obtain:

Φ(σ)

Φ′(σ)
= −

1
σ2 (37)

Φ(σ)

Φ′(σ)
h4
′(σ) = −

1
σ2

∞∑
k=1

kak
1
σk−1

(38)

Φ(σ)

Φ′(σ)
h4
′(σ) = −

∞∑
k=1

kakσ
k+1 (39)

It is very easy to prove that Equation (36) can determine the functions h4(ζ) and h3(ζ) together when
these series and function sets of linear equations are posed distinctly. This has been proved with some
generality, and the fact can be seen in [10], where the result h4

′(ζ), related to the stress intensity factor,
is directly given:

h4
′(ζ) =

σ0

32c1

h
π

{
1
ζ
+

2α
1− β− 2αζ

+
α(ζ2

− 1)
ζ[α(ζ2 + 1) + βζ]

}
(40)

where σ0 denotes the action of uniform loading, and c1, α, β can be seen in the preceding
sections respectively.

When inverse conformal mapping is rarely at hand, it is difficult to calculate the expression of the
stress field in terms of the inverse conformal mapping. However, for this problem, if we substitute these
expressions into Equation (11), it is very easy to calculate the full stress field for a crack. On the other
hand, the stress intensity factor can be seen as the most important quantities, which can be characterized
by the universal near-tip fields. Now, we calculate the stress intensity factors from our solution. In fact,
the calculation can be completed directly from the solution based on the conformal map as described
above. Previous authors derived the following expression for the complex combination (of the real)
stress intensity factor [10]:

KI =

√
π

16c1
lim
ζ→1

h4
′(ζ)√
ω′′ (ζ)

= σ0
√

2h
2− (e

πa
h + e−

πa
h )

1− e
πa
h

√
e
πa
h

e
πa
h − e−

πa
h

(41)
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This result can be extended to mode II of decagonal quasicrystals. Due to its similarity, the process
was omitted. In particular, this special result (Equation (41)) can be converted into the results obtained
in [10]. If we let a

h → 0 or h→∞ , the expression (Equation (41)) can be converted into:

KI = σ0
√
πa (42)

which is the stress intensity factor of the decagonal point group 10 mm quasicrystals of the infinite
plate weakened by a Griffith crack [10].

5. Conclusions and Discussion

Defects occupy a very important role in the study of the mechanical behavior of materials. Of course,
it is very difficult to solve defects, including notch and crack, due to the complicated configuration. By
introducing conformal mapping, we analyzed the strict theory of the complex potential method for the
plane problems of two-dimensional quasicrystals. These results not only developed the methodology
of the complex analysis of quasicrystal elasticity, but are also significant for the fracture analysis of the
material. Meanwhile, the results given in this paper are exact analytical expressions, which provide
a useful theoretical basis for the plane problems of decagonal quasicrystals. The application of the
complex potential method displayed success in solving these problems. These results can be exactly
reduced into the well-known classical solution in conventional structural materials.
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