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Abstract: The extensive research on photonic topological insulators has opened up an intriguing way
to control electromagnetic (EM) waves. In this work, we numerically demonstrate reconfigurable
microwave photon analogues of topological insulator (TIs) in a triangular lattice of elliptical cylinders,
according to the theory of topological defects. Multiple topological transitions between the trivial
and nontrivial photonic phases can be realized by inhomogeneously changing the ellipse orientation,
without altering the lattice structure. Topological protection of the edge states and reconfigurable
topological one-way propagation at microwave frequencies, are further verified. Our approach
provides a new route towards freely steering light propagations in dielectric photonic crystals (PCs),
which has potential applications in the areas of topological signal processing and sensing.

Keywords: photonic topological insulator; multiple topological phase transitions; reconfigurable
topological one-way propagation

1. Introduction

The discovery of topological phases of matter is one of the most exciting advancements inspired by
quantum systems [1–4]. Since then, the concept of nontrivial topological physics has been introduced
to classical systems, such as topological acoustic [5–7], and elastic waves systems [8–10], with particular
interests focusing on achieving one-way protected edge states that are immune to backscattering.
In recent years, photonic equivalents of condensed matter topological insulator (TIs) have led to
unprecedented opportunities in the control of EM waves [11–15], and a variety of theoretical and
experimental demonstrations have been reported from microwaves to optical waves [16–29]. Whereas,
previous realizations of photonic topological states relied on external magnetic fields to emulate
the quantum Hall effect, with the use of time-reversal symmetry breaking [16–20]. Alternatively,
analogues for the Quantum Spin Hall Effect (QSHE) that do not require breaking of the time-reversal
symmetry, have been achieved by appropriately tuning the parameters [30,31]. However, those systems
are characterized by a fixed geometry after fabrication, making the reconfiguration and material
processing between trivial and topological regions a great technical challenge, which severely hinders
the exploration and design of useful applications. It is more imperative to implement the tunability
and capability to manipulate topological EM propagation with an eased strategy in photonic systems.

Recent progress in the research of manipulating EM waves by adopting an artificial gauge field,
has attracted an enormous interest. Several approaches to engineer synthetic gauge fields emulating an
effective magnetic field have been achieved by a dynamic modulation of the system parameters [21–24].
Examples include temporal [23,25,32,33] and spatial modulation [34] utilizing the helical waveguides,
based on the breaking of the time-reversal symmetry. Subsequently, such implementation of
reconfigurable topological phases has been extended to time-reversal symmetric PCs. Cheng et al.
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experimentally realized robust propagation along reconfigurable pathways, by moving the position of
the rods up or down, within the topological photonic metacrystal [35]. Shalaev et al. demonstrated
dynamic control of topologically protected edge states, by modifying the refractive index of a liquid
crystal background medium [36]. However, most previous proposals either rely on applying external
fields or require a deformation of the lattice geometry. The realization of reconfigurable topological
PCs operating in the microwave regime is also still lacking.

In this paper, we introduced the concept of topological defects to PCs and present a theoretical
realization of a reconfigurable photonic TIs in the microwave regime, without utilizing external bias
and without altering the lattice structure. The ellipse cylinders are anisotropic and their angular
orientations vary spatially to produce topological defects in the orientational order, which induce
the right- or left-hand circularly polarized chirality of optical vortices, thereby, leading to multiple
topological phase transitions from the nontrivial to trivial domain, and then back to the nontrivial
domain. Robust one-way propagation of EM waves along reconfigurable topological domain walls
without back-reflection has also been demonstrated. Drastically different from conventional proposals
to obtain photonic TIs based on tuning the filling ratio or changing the position of dielectric pillars,
this highly flexible approach provides a new route to achieve reconfigurable topological edge modes
in dielectric PCs.

2. Simulation Methods and Models

We start with a two-dimensional (2D) triangular lattice of elliptical alumina cylinders with relative
permittivity εrod = 7.5 and permeability µrod = 1 immersed in an air host, as illustrated in Figure 1a.
The distance between the centers of each cluster and each ellipse is l = as/3, where as is the lattice
constant. The major axis of the elliptical cylinder is a = 0.153as and the minor axis is b = 0.077as. Here,
we focus on the transverse magnetic (TM) mode of EM waves with out-of-plane electric field and
in-plane magnetic field. According to the Maxwell equations, the propagation of time-harmonic TM
waves in the PCs can be described by [30,31,37].
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We then introduced a topological modification by rotating individual ellipses within a unit cell in

different directions, while keeping the lattice intact. The theory of topological defects and homotopy
theory [38–40] is adopted to describe the fundamental topological characteristic of the photonic crystal
structure, shown in Figure 1b. Such a modification in the orientational order can be mapped on the
order parameter space θ, and it is given as [38].

θ = kϕ+ C (2)

where ϕ denotes the polar angle of the center position of the ellipse in the polar coordinates L(l,ϕ),
and C is the initial phase for ϕ = 0. k is an integer or a half integer that represents the topological
charge and is equal to the so called winding number n. It is determined by measuring the overall
rotation in θ-space and is described by n =

∮
δΩ ∇θ · dL, where δΩ represents a closed contour. Owing

to the symmetry of θ-space in the present photonic systems, n can take on the values of +1. Herein,
n = +1 corresponds to the vortex and hedgehog structure with the topological stability, which allows
us to explore various topological states. Note that the elliptical scatterers are anisotropic and have the
additional orientation degree of freedom, compared to the circular scatterers. Thus, the choice of the
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initial phase C enables the PCs to possess various symmetries, which can be leveraged to control the
band gap closure and reopening, inducing multiple topological phase transitions. Based on tuning
topological charge k and initial phase C, this approach is more applicable to 2D dielectric PCs than
conventional proposals [30,31,37], due to its high flexibility in the air background, which allows us to
achieve structural reconfigurability in the microwave regime.
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(c) Calculated eigenfrequencies of the two two-fold degenerated states at the Γ point, in dependence 

Figure 1. (a) Schematic of triangular-lattice photonic crystals (PCs), consisting of six elliptical alumina
cylinders (blue) embedded in air background (gray). (b) Top-view unit cell and θ-space of the PCs.
(c) Calculated eigenfrequencies of the two two-fold degenerated states at the Γ point, in dependence to
the initial phase C. Unit cells of the topological transition points are indicated in the inset. The band
inversion effect and multiple topological transitions was clearly observed. The cyan (yellow) regions
represent the nontrivial (trivial) regimes. (d) Dispersion relations of the structures in which C = 43.5◦

and 136.5◦. A double Dirac cone with a four-fold accidental degeneracy is seen at the Γ point. Inset:
First Brillouin zone of triangular lattice.

3. Results and Discussion

In this study, we revealed the topology of the modification structure with n = +1 and observed
multiple topological phase transitions in our system. Rather than refabricating the PCs to obtain
topological orders of photonic states, the spatially inhomogeneous variations of the ellipse orientation
within the unit cells could fine-tune the topological transition, where a continuous band gap closing
and reopening was easily accomplished. Figure 1c provides the eigenfrequencies of the two twofold
degenerated states at the Γ point, as a function of the initial phase C. We observed that the doubly
degenerated band-edge eigenfrequencies changed smoothly and crossed with each other at C = 43.5◦

and 136.5◦. It was shown that, other than the zone folding mechanism [37,41,42], the accidental
quadruple Dirac degeneracy could be formed at the Brillouin zone center. The structural chirality was
introduced by the rotation of the crystalline domains, while preserving the time-reversal symmetry,
indicating that the corresponding band structures with C = 43.5◦ and 136.5◦, were exactly the same,
as displayed in Figure 1d. It is worth noting that the topological modifications of the crystalline
domains and band inversion process induced by the spatial variation of the ellipse orientation were
unique features in the topological photonic system, which ultimately led to the double topological
phase transitions. In particular, when the order parameter maintained its rigidity and the dielectric



Crystals 2019, 9, 221 4 of 9

pillars remained the C2 symmetry, the orientational modification was robust to realize the accidental
Dirac degeneracy, on the triangular lattice. Such phenomena have not been found in previous studies
on core-shell [30,31] or deformed-honeycomb [37,41,42] PCs for TM modes. Moreover, our approach
enabled an easily tunable operation bandwidth and reconfigurable topological domain wall, with no
need of changing the filling ratio or changing the position of the dielectric pillars, which was very
useful in practical applications.

We then introduced a perturbation by varying the initial phase C, which lifted the fourfold
degeneracy at the Γ point and hence opened a complete band gap. Figure 2a,b show the corresponding
dispersion relations of the TM modes for the radical configuration with C = 0◦ and the azimuthal
configuration with C = 90◦, respectively. The simulated electric field distributions of the degenerate
dipolar (p-type) and quadrupolar (d-type) modes are illustrated in Figure 2c, which respectively
correspond to the colored dots at the Γ point. The angular momenta of the wave function of electric
fields p± = (p1 ± ip2)/

√
2 and d± = (d1 ± id2)/

√
2 further construct the spin-1/2 for the pseudospin

in the present PCs. In order to clarify the underlying physics of the pseudospin states, we plot the

real-space distribution of the time-averaged Poynting vector
→

S = Re[
→

E ×
→

H
∗

]/2 around the Γ point,
which expresses the energy flow in the radical and azimuthal configuration, as indicated by the black
arrows. It can be seen that the rotation of the crystalline domains introduces the right- or left-hand
circularly polarized chirality and all eigenstates display remarkable vortex features, encircling the
center of the unit cell, which plays the role of the pseudospin degree of freedom. Instead of changing
the lattice structure, it is shown how topological modes inversion between p-type and d-type states
takes place under the spatial variation of the orientation of elliptical cylinders. For C = 0◦ shown in
Figure 2a, the p-type states are located on the upper side of the band gap, whereas the d-type states
are located on the lower side, as per the analogy to electronic orbital shapes. For C = 90◦ shown in
Figure 2b, the degenerate states are flipped, i.e., the d-type states rise above p-type states, resulting in an
inverted band structure and the topology of the band gap is different from the earlier case. To further
reveal the topological property of the band gaps, we calculate the spin Chern numbers by employing
the k ·P perturbation method [31–33,35], where the effective Hamiltonian of the photonic pseudospin
Hall system, in the vicinity of the Γ point, shares a similar form with the Bernevig–Hughes–Zhang
(BHZ) model for the Cd/Te/HgTe/CdTe quantum well system [4]. We find that the band gap has spin
Chern numbers Cs = ±1 for the case of the radical configuration, hence, implying that it is a nontrivial
band gap. Differently, the azimuthal configuration has the spin Chern numbers Cs = 0, which indicates
the corresponding band gap is trivial in topology. The overall results, hence, confirm a topological
transition from a nontrivial phase to a trivial phase in the present dielectric photonic systems.

A fundamental evidence of the band topology is the appearance of topologically protected helical
edge states at the interfaces between the two PCs, with different topological phases. As shown in
Figure 3a,b, we calculated the projected band structure of a ribbon-shaped supercell composed of
20 unit cells of the topological nontrivial crystal and 20 unit cells of the trivial crystal. There appears to
be a pair of additional edge states (represented by red and blue curves), within the overlapped bulk
band gap of both crystals. The two edges states have opposite group velocities at a given frequency,
indicating the existence of counter-propagations of the edge states. The real-space distributions of the
electric field for the edge states, at points A and B, are plotted in Figure 3c, respectively, and both field
maps indicate that the topologically protected edge states are confined at the interface of the supercell,
and decay exponentially into the bulk. Further, the black arrows represent the time-averaged Poynting
vectors and its anti-clockwise (clockwise) directions demonstrate the existence of the pseudospin-up
(pseudospin-down) state, which unveils the pseudospin characteristics of these TM modes in the
PCs. Note that, there is a tiny gap in the dispersions of the edge states, resulting from the breaking
of the symmetry at the interface between the two PCs. However, the pseudospin is preserved and
these modes can still be utilized to realize robust and backscattering-immune directional waveguides,
as shown below.
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structure of the supercell, where periodic (absorbing) boundary conditions were imposed on the right
and left (top and bottom) boundaries, respectively. The red (blue) curve represents the pseudospin-up
(pseudospin-down) edge state, whereas the shadow regions indicate the bulk photonic bands. (c) The
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The structural reconfigurability is the cornerstone behind the current photonic functional devices and
optical communication systems. To demonstrate the reconfigurability and capability of manipulating
topologically protected edge states in our system, we designed topologically switchable waveguides
at microwave frequencies, in which each elliptical rod attached to the pedestal was equipped with
one computer-controlled motor, as shown in Figure 4a. The rotation orientation of the elliptical
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rods (highlighted in blue) was modified by a computer-controlled motorized stage. As a result,
the topologically protected pathway could be automatically switched between two distinct topological
configurations. Depending on the rotation angle selected, 0◦ or 90◦, respectively, in the reconfigurable
control region, the EM waves were transmitted either from Port 1 to Port 2, or from Port 1 to Port 3,
as shown in Figure 4b,c. In addition, we stress that arbitrarily shaped interfaces could be created,
based on the above controls, by tuning the configuration on both sides of the interface with distinct
topological domains. In contrast to the conventional topological photonic systems, which are limited
by fixed geometry or rely on the movement of the rods [28,30,31,35,37,41,42], this reconfigurable and
flexible platform was highly desirable to realize the accurate control of unique device functionalities,
by simply configuring the elliptical rods to any desired angle.
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Figure 4. (a) Schematic diagram of the reconfigurable topological switch. The pedestals of the elliptical
rods in the blue region are attached to computer-controlled motors by which the elliptical rods could
be rotated to different angles. (b,c) Electric field intensity distributions when switched between the
different topological states. The electromagnetic (EM) waves transmitted through port 2 (or port 3) at
the rotation angle 0◦(90◦) of the reconfigurable control region (highlighted in blue, in (a)). Perfectly
matched layers were imposed to the surrounds of the whole PC structures to absorb output wave.

One of the most striking features of topological edge states is the topological protection from
backscattering caused by defects and robust one-way propagation. Herein, we verified the helicity of
the edge states in the topological photonic system, that is, the pseudospin degree of freedom controlled
the direction of propagation. By selectively exciting the pseudospin-up (pseudospin-down) mode with
the excitation source S+ (S−) of positive (negative) circular polarization, one-way propagation of the
EM wave towards left and right directions, could be observed in Figure 5a,b, respectively. To further
demonstrate the backscattering-immune property of these edge states, we introduced four sharp bends
to the topological microwave channel as displayed in Figure 5c. When an EM wave was excited
from a pseudospin-down source S−, it propagated along the trivial/nontrivial interface and could go
around the structural bends without notable scattering losses. These results confirm the topological
robustness of these edge states against certain defects and the inherently backscattering-immune
one-way transport.
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Figure 5. (a,b) Simulated electric field maps for one-way edge state excited with a positively and
negatively circularly polarized dipole show unidirectional propagation towards left and right directions,
respectively. (c) Electric field maps of robust one-way edge states along interfaces with sharp tuning
angles show that the EM waves can transmit around defects without backscattering. Perfectly matched
layers are imposed to the surrounds of the whole PC structures to absorb output waves.
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4. Conclusions

In summary, we have proposed a feasible scheme to realize the reconfigurable photonic topological
insulator enabled by the photonic analog of QSHE, whose topological phase could be reconfigured
by inhomogeneously tuning the orientation of elliptical cylinders within the unit cells. Our design
principle and topological EM properties demonstrated here in the microwave frequency could be
directly extended to near-infrared or even optical regimes to inspire many optical applications.
Although our simulations focus on a specific type of topological charge (k = 1), we believe that the
mapping θ = kϕ+ C could realize diversified topological photonic phases with distinct characteristics,
by varying the values of k and ϕ. Thus, this flexible and versatile approach could be exploited to
realize structural reconfigurability and adaptation to functional needs, via various θ-spaces, making it
attractive for practical applications. The results open up new possibilities for free steering EM waves,
along arbitrarily-shaped pathways, without any backscattering, which could be of immense value for
future optical science and technology.
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