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Abstract: We studied the effects of internal free surfaces on the evolution of ion-induced void swelling
in pure iron. The study was initially driven by the motivation to introduce a planar free-surface defect
sink at depths that would remove the injected interstitial effect from ion irradiation, possibly enhancing
swelling. Using the focused ion beam technique, deep trenches were created on a cross section of
pure iron at various depths, so as to create bridges of thickness ranging from 0.88 µm to 1.70 µm.
Samples were then irradiated with 3.5 MeV Fe2+ ions at 475 ◦C to a fluence corresponding to a peak
displacement per atom dose of 150 dpa. The projected range of 3.5 MeV Fe2+ ions is about 1.2 µm so
the chosen bridge thicknesses involved fractions of the ion range, thicknesses comparable to the mean
ion range (peak of injected interstitial distribution), and thicknesses beyond the full range. It was
found that introduction of such surfaces did not enhance swelling but actually decreased it, primarily
because there were now two denuded zones with a combined stronger influence than that of the
injected interstitial. The study suggests that such strong surface effects must be considered for ion
irradiation studies of thin films or bridge-like structures.
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1. Introduction

Ion irradiation has been used widely as a surrogate for neutron irradiation due to its ability to
introduce very high displacement per atom (dpa) values at a dpa rate orders of magnitude higher
than attainable in nuclear reactors [1,2]. The ion-simulation technique, however, involves various
neutron-atypical effects which need to be carefully considered in experimental design and data
interpretation [3]. While many of these atypical effects cannot be avoided, some of them can be avoided
or minimized. For example, the pulsing effect associated with beam rastering strongly suppresses
void nucleation but can be avoided using constant defocused beams [4]. Carbon contamination via
beam-induced Coulomb drag, which can become severe for high dpa testing, can also suppress void
swelling and give a false prediction of radiation tolerance, but various technological modifications on
the beam line and target can strongly reduce this problem [5–7].

The most important but unavoidable atypical effects are associated with the proximity of the
ion-incident surface to the measured volume, the mono-directional nature of the ion beam to produce
forward scattering of displaced atoms (defect imbalance), and especially the powerful effect of the
injected ions. All three of these factors have an outsized effect on the void swelling phenomenon in
particular. This sensitivity is concentrated primarily in the void nucleation phase, rather than the
void growth phase, a well-known behavior observed in many neutron irradiation studies where the
primary effect of all material and environmental variables lies in the incubation period and not the
post-incubation swelling rate [8].
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The surface influence usually results in a void-surface-denuded zone whose width increases with
increasing temperature and decreases with increasing dpa rate. The injected interstitial effect and
the defect imbalance effect, which together greatly suppress void nucleation, force data extraction to
be limited to a narrow region in the front half of the projected range, with void nucleation strongly
suppressed in the back half of the ion range [2,9–11]. The defect imbalance effect comes from two
contributions: one is the extra atoms introduced due to ion implants and the other is the spatial
difference between vacancies and interstitials [10]. Due to forward momentum transfer from projectiles
to primary knock-ons, interstitials are distributed slightly deeper than their associated vacancies.
Due to local dynamic defect recombination, excess interstitials are created near the peak damage region
while excess vacancies are created near the surface [10]. In one of our previous void swelling simulation
studies, conducted on pure iron at 450 ◦C using 3.5 MeV Fe2+ ions, we have shown that there is a
~100 nm denuded zone at the ion-incident surface, but most importantly, the void distribution does
not extend very far into the region containing the injected interstitials [4]. Such behavior has been
frequently observed in ion irradiations of many metals and alloys [12].

To further explain mechanism and significance of the phenomena, we replot Figure 1a,b, modified
from one previous study on bulk Fe [10]. In the present study we used the same beam energy for
the easiness to compare simulation and experimental observations. Figure 1a shows interstitial and
vacancy creation by 3.5 MeV Fe2+ ions in pure Fe, calculated using the Boltzmann Transport Equation
method [10]. On a very local small scale, calculations show that the vacancy concentration, Cv, is higher
than the interstitial concentration, Ci, in the region shallower than the peak damage. For the region
deeper than the peak damage, Ci is higher than Cv. The difference is small for data based on one single
ion, but becomes significant for statistically large ion fluences.

Figure 1b shows the defect imbalance calculated for the 3.5 MeV iron atom in iron. An excess
vacancy region is created from the surface up to 850 nm where ∆C = Cv − Ci − CFe, and CFe is the
injected Fe ions counted as interstitials. An excess interstitial region forms from 850 nm to 1.5 µm
where ∆C = Ci + CFe − Cv. It is important to note that this calculation does not include the strong
effect of the surface to produce a void-denuded zone even though the excess vacancy creation rises
toward the surface. The calculation also does not consider the details of defect clustering processes or
possible interstitial diffusion and penetration into the excess vacancy region. The figure does clearly
illustrate, however, why voids are not nucleated in the back-half of the ion range as a direct result of
the injected interstitial deposition.

The problem of injected interstitial interstitials is an “intrinsic” issue that must be addressed in
experiment design for ion simulation of neutron-induced void swelling. If the implanted ion peak
is too shallow, the surface and injected interstitial suppression effects can merge and depress if not
eliminate void nucleation and thereby eliminate swelling. This represents a limit on ion irradiation’s
ability to confidently simulate void swelling and essentially invalidates low energy ion irradiation
testing, i.e., ion irradiation of Fe-based steels using Fe self-ions of energy less than ~2 MeV. Ongoing
studies are directed toward better definition of the optimum self-ion energy to separate these two
depressive influences on void nucleation, and to maintain this separation over the relevant temperature
range of swelling.

The question therefore arises concerning the relative strength at every temperature and dpa rate
of the surface effect, which increases with increasing temperature, and the injected interstitial effect,
which decreases in importance with increasing temperature. Is it possible to better define the ion
energy and dpa rate to improve the simulation of neutron-induced swelling? Is it possible to devise a
better specimen geometry to minimize or eliminate the effect of one or both effects, especially that of
the injected interstitial? Do the injected interstitials diffuse into the excess vacancy zone, extending
their influence outside the deposition boundaries? If the answer to the last question is yes, is there a
way to decrease the influence of injected interstitials on the width of the swelling zone?
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Figure 1. (a) Initially created interstitial and vacancy distributions in Fe irradiated by one 3.5 MeV
Fe atom, and (b) defect imbalance (excessive vacancy and excessive interstitial) at different regions,
calculated by using the Boltzmann Transport Equation method. Figures are modified from Reference [10].

If some of the excess interstitials can diffuse to the new internal surface and be absorbed during
subsequent ion irradiation, it is postulated that void formation might be promoted compared to a
non-trench case. Void denuded zones have been frequently observed at both grain boundaries and
free surfaces. Unlike a grain boundary which may saturate in defect loading/removal capability, a free
surface can be considered as a perfect defect sink with unlimited defect loading/removal capability.

While void depletion zones have been widely observed in numerous neutron studies [13–15], ion
studies [4,10,16–20] and also electron irradiation studies [21,22], some studies observed locally-enhanced
void swelling immediately adjacent to the void denuded zone. The locally enhanced swelling has
been attributed to long-range one-dimensional interstitial migration or biased diffusion, subsequently
leading to incomplete defect recombination and enhanced vacancy concentrations adjacent to the
boundary [2]. Other studies note that such void enhancement may be the result of segregation-induced
compositional changes near the boundary [20]. However, this locally enhanced void swelling is not
always observed, and the mechanism is still not fully understood. We avoided the possibility of
segregation-related increases in swelling in this experiment by using pure iron with minimal impurities
that might segregate.

2. Experimental Procedure

A high purity Fe (99.99%) sample of 1 mm thickness was mechanically polished to P2000 grit
ultrafine level, and then further polished using 0.04 um silica solution. Silica solution residue was
removed with a methanol wipe and then sonicated in acetone. Prior to irradiation we used the
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focused-ion-beam (FIB) technique to create a number of trenches on the polished cross section of a
single Fe specimen, creating a bridge-like Fe thin plate on the top of each trench. By controlling the
trench depth locations, the bridge thickness was determined.

The trench distance from the ion-incident surface was selected to be 0.88 µm, 1.16 µm, 1.26 µm,
and 1.77 µm, respectively. These distances were selected to be shallower, just bracket the peak, or to be
deeper than the mean projected range of 3.5 MeV Fe ions which is about 1.2 µm in pure iron.

Samples were irradiated by 3.5 MeV Fe2+ ions at 475 ◦C to 150 peak dpa, corresponding to a fluence
of 1.47 × 1017 cm−2 by using Stopping Range of Ions in Matter code [23]. The Kinchin-Pease Model and
a threshold displacement energy of 40 eV was used as recommended by Stoller and coworkers [24].
The irradiation was performed using a defocused beam with diameter of 4 mm and beam current of
80 nA. The irradiation temperature fluctuation was previously established to be ±5 ◦C, and its time
dependence was monitored by multiple thermocouples.

The focused-ion-beam (FIB) lift-out technique was used to prepare transmission electron
microscopy (TEM) (Tescan LYRA-3 Model GMH FIB Microscope, manufactured by TESCAN, Brno,
Czech Republic) specimens. The lift-out starts by using a 30 keV Ga+ ion beam, following by specimen
thinning using 5 keV Ga+ ions. The microstructural characterization was performed by using the
FEI Tecnai G2 F20 FE-TEM instrument with a 200 keV electron analysis beam (manufactured by FEI,
Hillsboro, OR, USA).

3. Results

Figure 2 is a TEM micrograph showing the void distribution in a region far from any of the
trenches, showing a relatively small (~100 nm) denuded zone. This serves as a baseline to compare
with distributions that will be perturbed by the trenches. Figure 3 shows TEM micrographs in the
area near a bridge of the maximum thickness of 1.7 µm. In this case it is unlikely that there can be
any significant loss of interstitials into the trench. Note that the voids extend to ~1000 nm in depth
both above the trench and in the adjacent near-trench areas. The denuded zone in the bridge region is
~400 nm.

Figure 4 shows the depth dependence of void density and size in the above-trench region. Due to
limited void analysis region, the error bars are relatively large. Figure 5 plots the void swelling of the
same sample. Voids are maximized in the depth region of about 650 nm to 900 nm. The swelling peak
reaches ~11%, a level high enough to suggest that 150 peak dpa is enough to reach the post-transient
void growth stage.
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Figure 4. Void size and density as a function of depth in the specimen containing a trench starting at
about ~1.7 µm beneath the surface.
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Figure 5. Void swelling as a function of depth in the specimen containing a trench starting at about
~1.7 µm beneath the surface.
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Figure 6 shows a comparison of void swelling in the bridge of 1.7 µm thickness and in the bulk.
The bulk corresponds to the region far from the bridge. The swelling is calculated by S% = (∆V/V)/[1
− (∆V/V)], where ∆V/V is the volume fraction of voids measured from TEM images. Thicknesses of
the TEM lamellae were measured using a standard electron energy loss spectroscopy (EELS) technique.
As shown in Figure 6, the denuded zone is larger above the bridge, and becomes much smaller far
from the bridge. There also is somewhat larger peak swelling in the far-away measurement at ~15%
compared to ~11% in the bridge region. These observations lead us to propose that some long-range
defect migration may still play a role for a thick bridge. Another important factor, to be further
evaluated in future study, is possible heat transfer difference due to the presence of a trench, which
may lead to temperature differences under ion irradiation.Crystals 2018, 8, x FOR PEER REVIEW  7 of 12 
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Figure 6. Comparison of depth dependence of swelling distributions in the bridge of 1.7 thickness and
in the region far away from the bridge.

Figure 7 shows the case where the trench upper surface at ~1.26 µm was at a depth just over the
peak of the injected interstitial distribution. It was found that very little swelling has occurred in the
bridge, indicating that the bridge region represents the sum of the width of the top denuded zone and
the bottom denuded zone. Figure 8 shows the case where the trench upper surface was ~1.16 µm from
the ion-incident surface, just short of the peak implanted depth. Once again, the effect of two denuded
zones completely precluded swelling in the bridge.
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Figure 7. TEM micrograph of irradiated Fe containing a trench with an upper surface located at the
depth 1.26 µm, corresponding to just over the peak of the injected interstitial distribution.
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Figure 8. TEM micrograph of irradiated Fe containing a trench with an upper surface located at the
depth 1.16 µm, corresponding to just under the peak of the injected interstitial distribution.

Figure 9 shows the case where the trench upper surface was only 0.88 µm from the ion-incident
surface, completely short of the peak implanted depth and containing a negligible amount of injected
interstitials. As would be expected there are no voids in the bridge region and there is a horizontal
denuded zone as well. Since a large fraction of the ion energy will be deposited in the metal below the
trench, one might expect to see voids on the bottom side. In this case only one void was observed
below the trench.
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Figure 9. TEM micrograph of irradiated Fe containing a trench with an upper surface located at the
depth corresponding to 0.88 µm, missing the effect of the injected interstitial distribution.

4. Discussion

These results clearly show that the effect of the specimen surface as a sink for point defects is very
strong and apparently even stronger in the presence of any remaining injected interstitials. Cutting out
half or all of the injected interstitials by introducing an internal surface does not promote enhanced
swelling relative to the absence of an internal surface.

At this time, it is not possible to estimate or measure the trench-induced temperature rise but
ongoing studies are directed toward this goal. If the energy deposition rate per unit depth is constant
and the bridge thickness is thicker than or equal to the ion range, there is little consequence to the
temperature rise. If the deposition rate is non-linear (considering the stopping power difference along
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ion penetration depth) and the bridge thickness is less than the ion range, then the fraction of the energy
that is deposited on the bottom side of the track must be taken into account. The two-dimensional flow
of heat between two free surfaces and its corresponding temperature variation has been reported in
previous studies with high voltage electrons [25].

We don’t believe that swelling suppression in thin bridges is caused by FIB introduced artifacts.
Ga doping and Ga ion damage during FIB processing are greatly minimized by using a low energy weak
Ga beam as the last step of specimen thinning. This also minimizes thermal effects on microstructures
around trench regions. We also don’t believe that these effects come from non-uniformity in the milling.
As required by void swelling analysis, the sample thickness was measured by the EELS technique.
The specimen thickness is roughly the same in bridge and bulk regions.

As clear evidence that FIB processing does not destroy voids, Figure 10 shows TEM micrograph
obtained by “irradiation + FIB trenching”, instead of irradiation of pre-trenched structures. In other
words, we repeated the same trenching procedure and FIB lift-out after ion irradiation. As shown in
Figure 10, voids are preserved after FIB processing. Note that the bridge thickness is about 1 µm in
Figure 10.
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Figure 10. TEM micrograph of irradiated Fe, obtained by repeating the same trenching procedure and
FIB lift-out after ion irradiation, in the order of (1) ion irradiation, (2) trenching, and (3) FIB lift-out.
Note that the order of experimental steps is different from Figures 3–9.

Since it is apparent from these results that the denuded zone effect is as powerful or even more
powerful compared to the injected interstitial effect this requires that surface-induced denuding be
addressed. For defect interaction dominated by defect-sink interactions, the width of surface denuded
zone is proportional to Cs

1/2, where Cs is the sink density [26,27]. Under conditions similar to the
present study where defect interactions are thought to be dominated by recombination, the surface

void depletion zone width can be estimated by using ∆x ∼ (DV
K )

1/4
, where DV is vacancy diffusivity

and K is the damage rate (about 1 × 10−3 dpa/s in the present study) [26,27]. Using a vacancy migration
energy of 0.7 eV, the estimated void depletion zone is about 400 nm at 475 ◦C, which is in a good
agreement with our above trench observation.

The results of this study, however, do not support the proposition that an appropriately-placed
internal surface might promote void swelling by draining injected interstitials into the trench, precluding
them from suppressing void nucleation. For the bridges of 1.16 and 1.26 µm depth (comparable to the
peak Fe projected range) and 1.7 µm (deeper than the Fe projected range), there is no evidence that
void swelling within the bridge was higher than that of the bulk region. For the bridges of thickness
880 nm, 1.16 µm, and 1.26 µm, which are either thinner than or comparable to the mean projected
range, we believe the absence of voids is due to vacancy migration and annihilation towards both the
top and bottom free surfaces, considering that the expected void denuded zone is ~400 nm for each
side. For the thickest bridge (1.7 µm), swelling is closer to the far-away value.
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It must be recognized that there are additional features of the bridge analysis that must be
considered other than a temperature difference. The local spatial differences in both swelling and
temperature will introduce stresses in and around the bridge and swelling is known to be sensitive to
the stress state both in neutron and ion irradiations [28]. It has been proposed that the formation of
denuded zones in neutron-produced voids in polished stainless steel foils generates and responds
to stresses during electron irradiation [25]. It should be noted that the tendency to form denuded
zones is universal in that they will form both in virgin unvoided metals and previously voided metals,
as discussed in earlier references [21].

There are implications of our results for other types of studies. Previously we mentioned
the effects of irradiating thin foils where there are strong denuding effects from two surfaces and
resulting two-dimensional heat transfer leading to temperature increases, requiring certain minimum
thicknesses to approach bulk behavior in the center of the foil [25]. Experiments involving irradiation
of a TEM specimen in an electron microscope at lower voltage coupled with an ion beam are
increasingly common [29,30]. Such experiments require specimen thicknesses at ~200 nm or thinner
to be electron-transparent. Due to the strong defect sink strength from two surfaces, defect kinetics
and defect evolution arising from concurrent ion irradiation must also take into account the possible
deviation from bulk behavior. This type of experiment usually runs at much lower dpa rates, a situation
that increases the magnitude of the surface effect. Many previous studies have been performed on
Fe thin foils, via both experimental and modeling approaches [31,32]. Dislocation loops and vacancy
loops were frequently observed [31,32]. Void swelling, however, has not been reported in ultrathin
films, due to strong surface effects. To promote void swelling and suppress surface effects, additional
injection of helium gas atoms might be needed. The trenching method in the present study cannot be
used to create a bridge of thickness down to 200 nm. However, we believe the same surface effects
occur in ultrathin films.

Finally, micro-specimen fracture toughness testing is in progress at several laboratories involving
a trenched structure similar to that of the present study [33]. The major lesson from our study is that
trenching should not precede ion irradiation. Irradiation needs to be performed first on bulk material,
following by trenching, otherwise the toughness results will not be representative of bulk material,
especially if the trench depth is comparable to the ion range to ensure that only irradiated material is
being tested.

5. Summary

It was found that introduction of internal surfaces at various depths relative to the ion range did
not enhance swelling as initially proposed but actually decreased it, primarily because there were
now two denuded zones with a combined stronger influence than that of the injected interstitial.
Such effects need to be appropriately considered in experiments involving ultrathin films. For fracture
toughness testing involving indentation on a bridge-like structure, trenching and bridge fabrication
need to be performed after ion irradiation to avoid such strong surface effects.
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