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Abstract: The development of the sustainable synthesis of zeolites has become a very hot topic in
recent years. Herein, we report a sustainable route for synthesizing all-silica SOD zeolite under
solvent-free conditions. The method of solvent-free synthesis includes mixing, grinding, and heating
raw solids. The all-silica SOD zeolite obtained was well characterized by multiple measurement
techniques (XRD, SEM, IR, thermogravimetric-differential thermal analysis (TG-DTA), and magic
angel spinning nuclear magnetic resonance (MAS NMR)). The crystallization process of all-silica
SOD zeolite was also investigated in detail by XRD, SEM, UV-Raman, and MAS NMR techniques.
In addition, the effects of the crystallization compositions, including the molar ratios of Na2O/SiO2

and ethylene glycol/SiO2, on the synthesis of the pure all-silica SOD zeolite were investigated at
different temperatures.
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1. Introduction

Zeolites, which are constructed by AlO4 or SiO4 tetrahedra, have been widely applied in gas
adsorption and separation, ion exchange, and shape-selective catalysis [1–8]. To date, there are many
zeolites that have been successfully synthesized including silicate, aluminosilicate, germanosilicate,
and so on [1–8]. Silicate (all-silica) zeolites, as an important family of zeolites, have been used as
catalytic supports, low-k dielectric materials, and adsorbents due to their strong hydrophobicity,
high hydrothermal and thermal stability, and dielectric properties [6–13]. For example, all-silica Beta
zeolite as a catalytic support showed excellent performance in formaldehyde combustion at room
temperature [11]; silicalite-1 zeolite as an adsorbent demonstrated good adsorption of volatile organic
compounds [12]; and silicalite-2 zeolite as a low-k dielectric material exhibited a promising ultra-low
dielectric constant [13].

The all-silica SOD zeolite, firstly synthesized under solvothermal conditions by Bibby in 1985, is a
promising candidate for the above applications. It is worth noting that a large amount of ethylene
solvents were necessary in the synthesis, which acted as both an organic template and solvent [14–16].
Later, Gies et al. also reported that all-silica SOD zeolite was synthesized in the presence of pyrrolidine
and ethylamine under solvothermal conditions [17]. Notably, a large amount of organic solvent was
necessary in the process of all-silica SOD zeolite synthesis, which not only increased the production cost,
but also produced polluted waste and thus led to the issue of environmental hazard. Therefore, it is
highly desirable to develop a sustainable route for all-silica SOD zeolite synthesis.

Recently, a solvent-free method has been reported for synthesizing zeolites by mixing, grinding,
and heating raw solids, which is regarded as a sustainable route. To date, various zeolites,
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such as MFI, Beta, FAU, and MOR, have been successfully prepared under this route [18–22].
However, the synthesis of all-silica SOD zeolite has not yet been successful using this sustainable route.
In this work, for the first time, we show a sustainable route for synthesizing all-silica SOD zeolite.
The synthesis is well characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM),
thermogravimetric-differential thermal analysis (TG-DTA), infrared spectroscopy (IR), UV-Raman,
and magic angel spinning nuclear magnetic resonance (MAS NMR).

2. Materials and Methods

2.1. Materials

Ethylene glycol (EG, 98%, Aladdin Chemistry Co., Ltd., Shanghai, China), solid silica gel (SiO2,
98%, Qingdao Haiyang Chemical Reagent Co., Ltd., Qingdao, China), and sodium metasilicate
nonahydrate (Na2SiO3·9H2O, 98%, Aladdin Chemistry Co., Ltd., Shanghai, China) were used without
further purification.

2.2. Synthesis

In a typical example of synthesizing the all-silica SOD zeolite, 0.5 g of Na2SiO3·9H2O, 1.57 g of
SiO2, and 2.6 g of ethylene glycol were added into a mortar one by one and mixed together uniformly.
After grinding for 15 min at room temperature, the powder was transferred to a 15 mL autoclave
and sealed. After crystallization at 200 ◦C for 24 h, the product was fully crystalline. After filtering,
washing with water at room temperature, and drying at 100 ◦C for 12 h, the final product was obtained,
yielding a 1.75 g sample. This sample is denoted as S–Si–SOD.

2.3. Characterization

The X-ray diffraction (XRD) patterns were measured with a Rigaku Ultimate VI X-ray diffractometer
(40 kV, 40 mA, Rigaku, Tokyo, Japan) using CuKα (λ= 1.5406 Å) radiation. Scanning electron microscopy
(SEM) experiments were performed on Hitachi SU-1510 electron microscopes (Hitachi, Tokyo, Japan).
The Fourier transform infrared spectroscopy (FTIR) spectra were recorded using a Bruker 66 V FTIR
spectrometer (Bruker, Karlsruhe, Germany). UV-Raman spectra were measured with a Jobin-Yvon
T64000 triple-stage spectrometer (Jobin-Yvon, Paris, France) with a spectral resolution of 2 cm−1.
The laser line at 325 nm of a He/Cd laser was used as an excitation source with an output of 50 mW.
The power of the laser at the sample was about 3.0 mW. 1H-13C CP/MAS NMR experiments were
performed on a Bruker AVANCE-III 500 spectrometer (Bruker, Karlsruhe, Germany) using a 1.9 mm
MAS probe with a sample spinning rate of 30 kHz; a total of 30,000 scans were accumulated with a
recycle time of 5 s. Single-pulse 29Si MAS NMR experiments with 1H decoupling were performed on a
Bruker AVANCE-III 500WB spectrometer (Bruker, Karlsruhe, Germany) using a 7 mm probe with a
π/4 pulse width of 4.0 µs, a 60 s pulse delay, and a spinning rate of 4 kHz. TG-DTA analysis was carried
out with a NETZSCH STA 449C (Netstal, Bavaria, Germany) in air at a heating rate of 10 ◦C/min from
room temperature to 800 ◦C.

3. Results and Discussion

3.1. Synthesis and Characterization of S–Si–SOD Zeolite

Figure 1 displays the XRD pattern of the as-made S–Si–SOD zeolite crystallized for 24 h at 200
◦C under solvent-free conditions, giving a series of typical peaks associated with the SOD structure,
in good agreement with the reported literature [14–16]. Figure 2 shows the different magnification
SEM images of the as-made S–Si–SOD zeolite, which exhibits a blocky crystal morphology with a
size of about 10 µm. Figure 3 shows the 29Si MAS NMR spectrum of the as-made S–Si–SOD zeolite,
giving three peaks with chemical shifts at around −117.2, −110.3, and −102.0 ppm. The peaks at
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about −117.2 and −110.3 ppm are assigned to the Q4 silica species (Si(OSi)4), and the peak at about
−102.0 ppm is assigned to the Q3 silica species (Si(OSi)3(OH)).
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Figure 2. (a) Low magnification and (b) high magnification SEM images of the as-made S–Si–SOD
zeolite synthesized at 200 ◦C.
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Figure 3. 29Si MAS NMR spectrum of the as-made S–Si–SOD zeolite synthesized at 200 ◦C.

Figure 4a shows the 13C MAS NMR spectrum of the as-made S–Si–SOD zeolite, giving the only
one peak centered at about 64.0 ppm, which is assigned to the presence of ethylene glycol in the
product. Figure 4b displays the IR spectra of the as-made S–Si–SOD zeolite. From Figure 4b, two bands
at 2800–3000 cm−1 and one band centered at about 3440 cm−1 can be seen, which are assigned to the
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ethyl group and hydroxyl group, respectively. Figure 4c shows the TG-DTA of the as-made S–Si–SOD
zeolite, which gives the major exothermic peak at about 300–500 ◦C accompanied by a weight loss
at about 5.8%, which is attributed to the decomposition of ethylene glycol in the S–Si–SOD zeolite
framework. The above results support that the ethylene glycol is indeed used as an organic template
to direct the formation of the S–Si–SOD zeolite.
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Figure 4. (a) 13C MAS NMR spectrum, (b) IR spectrum, and (c) TG-DTA curves of the as-made
S–Si–SOD zeolite synthesized at 200 ◦C.

3.2. Critical Factors for Synthesizing S–Si–SOD Zeolite

In the preparation process of S–Si–SOD zeolite, various factors influence the results
of crystallization, such as the ratios of Na2O/SiO2, EG/SiO2 and the synthesis temperature.
Notably, the ratio of Na2O/SiO2 was very crucial to the synthesis of the final product. When the
Na2O/SiO2 ratio was 0.01, the product was always amorphous (Table 1, Run 1, Figure 5a). Increasing the
ratio of Na2O/SiO2 to 0.04, the S–Si–SOD zeolite product was dominant together with some amorphous
phase (Table 1, Run 2, Figure 5b). Further increasing the ratio of Na2O/SiO2 to 0.06, the S–Si–SOD
zeolite product with high crystallinity could be successfully obtained (Table 1, Run 3, Figure 1).
However, a higher Na2O/SiO2 ratio would lead to the production of some amorphous phase again
(Table 1, Run 4, Figure 5c). In addition, the ratio of EG/SiO2 was also a very important factor for
crystallization. When EG was absent in the starting mixture, the quartz and amorphous phase was
always obtained (Table 1, Run 5, Figure 5d). When the EG/SiO2 ratio was 1.0, the S–Si–SOD would be
obtained accompanied by some amorphous phase (Table 1, Run 6, Figure 5e). Moreover, the influence
of temperature on crystallization was also investigated. When the temperature was 160 ◦C, the product
obtained was the amorphous phase (Table 1, Run 7, Figure 5f). When the temperature was 230 ◦C,
the S–Si–SOD zeolite product could be obtained and the crystallization time was significantly decreased
(Table 1, Run 8, Figure 5g). Furthermore, it was found that the addition of seed in the initial mixture
also influenced the crystallization. When seed added it, the crystallization time greatly decreased and
it only required 3 h (Table 1, Run 9, Figure 6a). More interestingly, the size of the S–Si–SOD zeolite was
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about 1–2 µm, which was significantly smaller than that of the product without the addition of seed
(Figure 6b).

Table 1. Synthesis of S–Si–SOD zeolite product under various conditions.

Run Na2O/SiO2 EG/SiO2 Temperature (◦C) Time (h) Products a

1 0.01 1.5 200 24 Amor
2 0.04 1.5 200 24 SOD + Amor
3 0.06 1.5 200 24 SOD
4 0.11 1.5 200 24 SOD + Amor
5 0.06 0 200 24 Q + Amor
6 0.06 1.0 200 24 SOD + Amor
7 0.06 1.5 160 24 Amor
8 0.06 1.5 230 12 SOD

9 b 0.06 1.5 200 3 SOD
a The phase appearing first is dominant (Amor: Amorphous; Q: Quartz). b The addition of SOD seed in the
synthesis system.
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Figure 5. XRD patterns of solid samples synthesized from the starting mixtures with a molar ratio of
1.0 SiO2/0.01–0.11 Na2O/0–1.5 ethylene glycol (EG) at 160–230 ◦C. Na2O/SiO2 ratios of (a) 0.01, (b) 0.04,
and (c) 0.11; EG/SiO2 ratios of (d) 0, and (e) 1.0; (f) 160 ◦C for 24 h; (g) 230 ◦C for 12 h.
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Based on the aforementioned experimental results, it could be concluded that the synthesis
of S–Si–SOD zeolite was greatly influenced by many factors and S–Si–SOD zeolite with high
crystallinity could only be obtained in a narrow range of proportions of Na2O–EG–SiO2 at an
appropriate temperature.

3.3. Crystallization Process of S–Si–SOD Zeolite

In order to understand the synthesis, the crystallization process at 200 ◦C was characterized by
XRD, SEM, UV-Raman, and MAS NMR techniques in detail ( Figures 7–10). The photographs of the
products before and after crystallization are shown in Figure 11, revealing that the product was always
in a solid phase, indicating solvent-free synthesis rather than solvothermal synthesis. The XRD patterns
showed that the weak peaks associated with the SOD zeolite structure appeared after crystallization
for 12 h (Figure 7c). At the same time, some crystals could be observed via the SEM image (Figure 8b).
Increasing the time from 14 to 20 h, the intensity of the peaks gradually increased (Figure 7d–f) and
more crystal could be produced (Figure 8c,d). With further increasing the crystallization time to 24 h
(Figure 7g), the intensity of the XRD peaks was similar to that of the product crystallized at 20 h, which
means that the crystallization was completely finished at 20 h.
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to high product yield, environment-friendly production, and simple procedures. The above features 
should open an alternative platform for the efficient synthesis of all-silica SOD zeolite. 
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Figure 11. Photographs of the samples (a) before and (b) after crystallization at 200 ◦C.

Figure 9 showed the UV-Raman spectra of the as-made S–Si–SOD zeolite at various time.
Before crystallization, the starting solid mixture exhibited a major broad band at about 494 cm−1, which
is assigned to the four-membered rings (4MRs) in the amorphous phase (Figure 9a). After crystallization
for 12 h, the product showed the band at about 457 cm−1, which can be reasonably assigned to the
4MRs associated with the SOD zeolite structure (Figure 9c). The intensity of this band increased with
the crystallization time, which was in accordance with the SOD zeolite crystallinity (Figure 9d–f).
The above result shows that the transformation was from the 4MRs in the amorphous phase to 4MRs
in the SOD zeolite structure, suggesting that the 4MRs in the amorphous phase act as be the active
building units for the crystallization of S–Si–SOD zeolite.
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Figure 10 shows the 29Si MAS NMR spectra of the as-made S–Si–SOD zeolite at various times.
Before crystallization, the 29Si MAS NMR spectrum exhibited the main peaks with chemical shifts at
about −111.0 and −101.3 ppm, assigned to the Q4 and Q3 silica species in the solid silica gel (Figure 10a).
As the crystallization time increased, the intensity of the signal peak with the chemical shift at around
−117.2 ppm, associated with the Q4 silica species in the SOD zeolite product, was observe to gradually
increase (Figure 10b–f). This indicates the formation of more SOD zeolite crystals, which is in good
agreement with the results of the XRD patterns and SEM images. The above results reveal that the
condensation of solid silica assisted with EG might be an indication of the formation of the SOD
zeolite structure.

4. Conclusions

In summary, we developed a sustainable route to successfully synthesize all-silica S–Si–SOD
zeolite under solvent-free conditions. For the first time, S–Si–SOD zeolite was successfully synthesized
using this sustainable route. Compared with traditional solvothermal synthesis, the novel route in
this work has obvious advantages from the sustainability point of view with respect to high product
yield, environment-friendly production, and simple procedures. The above features should open an
alternative platform for the efficient synthesis of all-silica SOD zeolite.
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