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Abstract: New iron(II) three-dimensional coordination polymer (3D CP), [Fe(µ3-Hcpna)2]n (1), was
assembled under hydrothermal conditions from 5-(4’-carboxyphenoxy)nicotinic acid (H2cpna) as
a trifunctional organic N,O-building block. This stable microcrystalline CP was characterized by
standard methods for coordination compounds in the solid state (infrared spectroscopy, elemental
analysis, thermogravimetric analysis, powder and single-crystal X-ray diffraction). Structure and
topology of 1 were examined and permitted an identification of a 3,6-connected framework of
the rtl topological type. In addition, compound 1 acts as effective catalyst precursor for oxidative
functionalization of alkanes (propane and cyclic C5−C8 alkanes) under homogeneous catalysis
conditions, namely for the oxidation of saturated hydrocarbons with H2O2/H+ system to produce
ketones and alcohols, and for alkane carboxylation with CO/H2O/S2O8

2− system to obtain carboxylic
acids. The influence of an acid promoter and substrate scope (propane and cyclic C5−C8 alkanes)
were investigated.

Keywords: metal-organic frameworks; coordination polymers; iron; hydrothermal synthesis;
crystal engineering; C-H functionalization; homogeneous catalysis; cycloalkanes; propane;
oxidation; carboxylation

1. Introduction

Coordination polymers (CPs) are now very popular compounds because of their highly diverse
and unusual structures and interesting applications in various areas, which range from separation
and sorption of gases [1–3] to luminescent [4,5] and catalytic materials [6–8], as well as molecular
magnets [9,10] and sensors [11,12]. CPs are typically built from metal nodes and organic ligands such
as polycarboxylic acids that act as spacers and/or linkers. Assembly and functional properties of CPs
are usually affected by a diversity of parameters such as conditions of the synthesis, coordination
preferences of metal nodes, as well as types of organic linkers or spacers [13–19].

The use of polycarboxylic acid ligands that combine different functional groups represents an
interesting research direction for designing new types of coordination polymers or metal-organic
frameworks (MOFs) [20–22]. Following our continuous interest in exploring new or poorly studied
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multicarboxylic acids for the design of CPs [23–30], in this work we selected a trifunctional nicotinic acid
derivative, 5-(4’-carboxyphenoxy)nicotinic acid (H2cpna) as a main building block. Selection of H2cpna
can be justified by the following points. (1) This carboxylic acid can potentially act as a trifunctional
ligand containing one phenyl and one pyridine ring which are connected by a gyrating O-ether
functionality. (2) There are three different functional group classes (i.e., N-pyridyl, –COOH, O-ether)
in H2cpna and six possible coordination sites. (3) H2cpna is still barely investigated for synthesis
of CPs or MOFs. In fact, a search of the Cambridge Structural Database shows that there are only
several examples of Zn, Cu, Ni, Co, Mn, Cd, and Pb coordination polymers assembled from H2cpna;
some of them revealed interesting catalytic [8], sensing [11], gas sorption [21], luminescent [11,27], and
magnetic [27] properties. Notable examples include a 2D Co(II) CP [Co(µ3-cpna)(phen)(H2O)]n·nH2O
{phen, 1,10-phenanthroline} applied as a heterogeneous catalyst for alcohol oxidation [8], a Tb3+-doped
3D Cu(II) MOF [Cu(µ3-cpna)2]n used as a luminescent probe for sensing H2S [11], and a 2D porous
framework [Cu(µ3-cpna)(Me2NH)]n·nDMF·nH2O {DMF, dimethylformamide} with remarkable CO2

sorption behavior in addition to single-crystal to single-crystal transformation features [21]. Despite
these examples, iron derivatives of H2cpna remain virtually unknown.

Apart from this point, the selection of iron as a metal to construct a new coordination polymer is
explained by its availability and high coordination versatility, as well as interesting redox chemistry
that might be important for applications in catalysis. Thus, iron(II) sulfate (FeSO4·7H2O) was
explored as a low-cost and water-soluble iron(II) precursor for the hydrothermal synthesis of an
H2cpna-derived compound. On the other hand, the hydrothermal synthetic conditions were used to
aid the crystallization of a product as single crystals in addition to other advantages such as use of
water as green reaction medium and no need for work-up to purify and isolate the product [26].

In this study, we describe a hydrothermal generation, characterization, crystal structure, topological
interpretation, thermal stability, as well as catalytic behavior of a new iron(II) coordination polymer
assembled from 5-(4’-carboxyphenoxy)nicotinic acid. The obtained product [Fe(µ3-Hcpna)2]n (1)
is the first Fe coordination compound assembled from H2cpna. Besides, it also acts an efficient
catalyst precursor for the oxidative functionalization of different saturated hydrocarbons under
homogeneous conditions.

2. Experimental

2.1. Materials and Physical Measurements

Analytical reagent grade chemicals were applied. H2cpna was acquired from a commercial
supplier (Jinan Henghua Sci. & Tec. Co., Ltd, http://www.chemhh.com, catalogue code: 120511H-1B,
purity 98%, CAS: 1777822-70-4). Elemental C, H, N analysis was run on an Elementar Vario EL
elemental analyzer. Infrared (IR) spectra were obtained on a Bruker EQUINOX 55 spectrometer
(KBr disks). TGA (thermogravimetric analysis) was carried out on a LINSEIS STA PT1600 thermal
analyzer (N2 atmosphere, 10 ◦C/min heating rate). PXRD (powder X-ray diffraction) pattern was
obtained on a Rigaku-Dmax 2400 diffractometer (Cu-Kα radiation; λ = 1.54060 Å). UV-Vis absorption
spectra were determined on a Cary 5000 UV-vis-NIR spectrophotometer. For catalytic tests, GC
(gas chromatography) analyses were carried out using an Agilent Technologies 7820A series gas
chromatograph (FID: flame ionization detector; carrier gas: He; capillary column: BP20/SGE).

2.2. Synthesis of [Fe(µ3-Hcpna)2]n (1)

FeSO4·7H2O (0.15 mmol, 41.7 mg), H2cpna (0.3 mmol, 77.7 mg), NaOH (0.3 mmol, 12.0 mg), and
water (10 mL) were combined in a Teflon-lined stainless-steel reactor (25 mL volume) and stirred for 15
min at ambient temperature. The reactor was then sealed, heated for 3 days at 160 ◦C, and gradually
cooled (10 ◦C/h rate) to ambient temperature. Yellow crystals (blocks) were manually isolated, washed
with bidistilled water, and then air-dried to furnish compound 1. Yield: 55% (on the bases of H2cpna).
Calcd for C26H16FeN2O10: C 54.57, H 2.82, N 4.90%. Found: C 54.79, H 2.80, N 4.93%. IR (KBr, cm−1):

http://www.chemhh.com
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1646 s, 1605 m, 1579 m, 1511 w, 1455 w, 1398 s, 1304 m, 1273 s, 1242 w, 1206 m, 1164 m, 1112 w, 1050 w,
1014 w, 962 w, 895 w, 848 w, 785 w, 713 w, 693 w, 604 w, 547 w.

2.3. X-ray Crystallography

For 1, single-crystal X-ray data were collected using a Bruker APEX-II CCD diffractometer with a
graphite-monochromated Mo Kα radiation (λ = 0.71073 Å, Bruker Corporation, Billerica, MA, USA).
Semiempirical absorption corrections were performed with SADABS software (Bruker AXS, version
5.624, Madison, Wisconsin, USA). Structure of 1 was determined by direct methods, followed by
a refinement (full-matrix least-squares on F2) with SHELXS-97/SHELXL-97 [31,32]. Apart from H
atoms, all other types of atoms underwent an anisotropic refinement (full-matrix least-squares on F2).
Hydrogen atoms (with an exception of COOH group) were positioned in calculated sites having fixed
isotropic thermal parameters. These were considered in structure factor calculations at the final stage
of full-matrix least-squares refinement. For COOH group, H atom of was found using difference maps,
followed by its restriction to be at its parent oxygen atom. Crystal parameters for 1 are summarized
in Table 1. Topological description of metal-organic net in 1 was performed following the concept
of underlying (simplified) network [33]. This net was built [33] by reducing µ3-Hcpna− blocks to
respective centroids, while their connections with iron(II) nodes were maintained [34]. CCDC-1906984
for 1 contains the supplementary crystallographic data.

Table 1. Crystal structure parameters for coordination polymer 1.

Compound 1

Chemical formula C26H16FeN2O10
Molecular weight 572.26

Crystal system Monoclinic
Space group P21/n

a/Å 9.4673(7)
b/Å 9.2170(6)
c/Å 14.0358(9)
α/ (◦) 90
β/(◦) 108.079(8)
γ/ (◦) 90
V/Å3 1164.30(15)

Z 2
F(000) 584

Crystal size/mm 0.27 × 0.25 × 0.23
θ Range for data collection 3.770–25.049

Limiting indices −9 ≤ h ≤ 11, −10 ≤ k ≤ 10, −16 ≤ l ≤ 10
Reflections collected/unique (Rint) 4273/2053 (0.0558)

Dc / (Mg·cm−3) 1.632
µ/mm−1 0.715

Data/restraints/parameters 2053/0/179
Goodness-of-fit on F2 1.029

Final R indices [(I ≥ 2σ(I))] R1, wR2 0.0502, 0.0890
R indices (all data) R1, wR2 0.0895, 0.1084

Largest diff. peak and hole/(e·Å−3) 0.329 and −0.376

2.4. Catalytic Oxidation of Cyclic Alkanes

The reactions were carried out in glass reactors (50 mL volume, thermostated at 50 ◦C, and
equipped with a reflux condenser) under aerobic conditions and constant magnetic stirring; acetonitrile
was used as solvent and added up to 2.5 mL of the total volume of the reaction mixture. Typical
reaction procedure: catalyst precursor 1 (0.005 mmol) was suspended in CH3CN and then an acid
promoter (0.015–0.1 mmol) and a gas chromatography (GC) internal standard (CH3NO2, 250 µL) were
introduced. The oxidation reaction began on addition of cycloalkane (1 mmol) and H2O2 (5 mmol, 50%
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in water) and its progress was followed by taking small aliquots of the reaction mixture at different
periods of time. Before GC analysis (internal standard method), each aliquot was treated with a small
amount of solid triphenylphosphine that is necessary to reduce cycloalkyl hydroperoxides (primary
products in the oxidation of cycloalkanes) and remaining hydrogen peroxide; the product yields are
based on the GC data after the treatment with PPh3. Blank tests were performed and showed that the
oxidation of cycloalkanes does not occur in the absence of Fe catalyst.

2.5. Catalytic Oxidation of Propane

The following reagents were combined in a stainless-steel reactor (20.0 mL total volume): catalyst
precursor 1 (0.005 mmol), solvent CH3CN (up to 2.5 mL of total volume of the reaction mixture), acid
promoter (PCA, 0.015 mmol or TFA, 0.1 mmol), CH3NO2 (GC internal standard, 250 µL), and H2O2

(5 mmol, 50% in water). The reactor was then sealed, pressurized with C3H8 (1 atm) and heated at
50 ◦C for 4 h under magnetic stirring. After cooling the reactor, it was degassed and the samples of the
reaction mixtures were analyzed by GC (internal standard method). Before the analysis, the samples
were treated with PPh3. Blank tests disclosed that the oxidation of propane does not occur in the
absence of Fe catalyst.

2.6. Catalytic Carboxylation of Alkanes

Typical procedure: catalyst precursor 1 (0.01 mmol), CH3CN (4.0 mL), H2O (2.0 mL), cycloalkane
substrate (1.0 mmol), and K2S2O8 (1.50 mmol) were combined in a stainless-steel reactor (20.0 mL
total volume). It was sealed and flushed three times with carbon monoxide to remove air and then
pressurized with CO (20 atm). For carboxylation of C3H8, the reactor was first flushed and pressurized
with the substrate (1 atm) and then CO was added. The reactor was heated at 50 ◦C for 4 h under
magnetic stirring. After cooling the reactor, it was degassed and the reaction mixture was transferred
to a glass flask. Diethyl ether (9.0 mL) and GC internal standard (cycloheptanone, 45 µL) were added
(cyclohexanone was used as a GC standard in cycloheptane carboxylation). The obtained mixture
was stirred for 10 min and then the aliquots were withdrawn from organic layer and analyzed by GC
(internal standard method).

3. Results and Discussion

3.1. Synthesis and Characterization

The hydrothermal synthesis (at 160 ◦C for 3 days) using a mixture in water of iron(II) sulfate
(FeSO4·7H2O), H2cpna (5-(4’-carboxyphenoxy)nicotinic acid) as a trifunctional organic block, and
sodium hydroxide as a base resulted in a 3D coordination polymer formulated as [Fe(µ3-Hcpna)2]n (1).
The molar ratio between FeSO4·7H2O, H2cpna, NaOH, and H2O was 1:2:2:3700, and the pH value
of the initial reaction mixture was in the 4–5 range. The compound 1 was isolated in a good yield
as a crystalline solid (including single crystals of X-ray quality) and characterized by conventional
techniques, which also include a single-crystal X-ray diffraction. Product 1 is insoluble in any solvent
and maintains its stability in e.g. CH3CN/H2O medium at 60 ◦C, as confirmed by powder X-ray
diffraction (Figure S4, Supplementary Materials). In the IR spectrum of compound 1 (Figure S3,
Supplementary Materials), the most characteristic, broad and intense bands of the carboxylate groups
appear at 1605 and 1398 cm−1 and correspond to νas(COO) and νs(COO) vibrations, respectively.
Apart from these broad bands, there are also several minor shoulders or neighboring ν(COO/COOH)
bands centered at 1455, 1398, and 1304 cm−1. For H2cpna, the strongest vibrations of carboxylic acid
groups are observed at 1676 and 1305 cm−1 (Figure S2, Supplementary Materials). Different position of
the main band maxima in 1 and H2cpna indicates the coordination of carboxylic acid ligand to iron(II)
centers in 1, as further supported by elemental and thermogravimetric analyses along with the PXRD
and single-crystal X-ray diffraction data.
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3.2. Description of Structural and Topological Features

Product 1 possesses a 3D coordination polymer structure (Figure 1). Its asymmetric unit bears
one Fe(II) atom (with a half occupancy) and one µ3-Hcpna− block. The six-coordinate Fe1 atom
displays the distorted {FeN2O4} octahedral environment (Figure 1a and Figure S1). It is completed by
two nitrogen and four carboxylate oxygen donors coming from six µ3-Hcpna− moieties. The Fe–O
[2.075(3)–2.183(3) Å] and Fe–N [2.152(3) Å] distances are typical for a present type of Fe(II) coordination
compounds [35,36]. The Hcpna− ligand acts as a µ3-N,O2-spacer (Scheme 1) with the COOH and COO−

groups adopting monodentate modes. The Hcpna− block is considerably bent showing a dihedral
angle of 87.94◦ between benzene and pyridyl functionalities, while a C–Oether–C angle is 117.97◦. The
µ3-N,O2-Hcpna− blocks multiply link neighboring Fe(II) nodes to form a 3D CP structure (Figure 1b,c).
Compound 1 shows no porosity, as confirmed by calculating an effective free volume of the crystal
volume by PLATON; its unit cell contains no residual solvent accessible voids.
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Figure 1. Different structural representations of 1. (a) Connectivity and coordination sphere of the Fe1
center; hydrogen atoms are not shown with an exception of H in COOH. Symmetry operators: i = –x
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Scheme 1. The coordination mode of Hcpna− block in 1.

To better understand such intricate 3D coordination polymer structures, topological classification
was carried out. Topologically, the 3D underlying net in 1 (Figure 1d) is constructed from 6-connected
Fe1 and 3-connected µ3-Hcpna− nodes, thus disclosing a 3,6-connected binodal net of the rtl (rutile)
topological type. This net can be described with a (4·62)2(42

·610
·83) point symbol, in which the (4·62)

and (42
·610
·83) notations are those of µ3-Hcpna− and Fe1 nodes, respectively.

3.3. TGA and PXRD

The stability and thermal behavior of CP 1 were investigated by running TGA (thermogravimetric
analysis, Figure 2a) under nitrogen atmosphere in the 20–800 ◦C range of temperatures. CP 1 does not
contain solvent of crystallization or H2O ligands and remains stable until 248 ◦C; further increase of
temperature leads to the decomposition of the sample.
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Besides, crystalline sample of CP 1 was studied by PXRD (powder X-ray diffraction analysis)
and an experimental PXRD pattern of the bulk product is shown in Figure 2b. Comparison of the
experimental pattern with that calculated from single-crystal X-ray diffraction confirms the presence of
a single pure phase in the sample of 1. Moreover, elemental analysis corroborates an analytical purity
of this coordination polymer.

3.4. Catalytic Functionalization of Alkanes

Following our continuous interest in developing different metal-complex-catalysts and protocols
for oxidative functionalization of saturated hydrocarbons under mild conditions [37–40], we explored
a catalytic potential of 1 in oxidation of cyclic C5−C8 alkanes and propane to give the respective alcohol
and ketone products. Cyclohexane was investigated as a model substrate and the reactions were
performed at 50 ◦C with hydrogen peroxide as oxidant (50% in water) in CH3CN/H2O medium and
using a slight amount of acid as a promoter.
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The use of CH3CN as a solvent is important for solubilization of an alkane and catalyst since the
oxidation reactions practically do not undergo in only H2O as a solvent. Selection of acetonitrile can be
justified by the following factors: (i) miscibility of CH3CN with H2O and aqueous H2O2, (ii) sufficient
solubility of alkanes in CH3CN, (iii) good stability of acetonitrile in the reaction medium, and (iv) good
prior results for oxidative functionalization of alkanes obtained when using CH3CN as a solvent of
choice [37–44].

It should be mentioned that the CP 1 is not intact during catalytic experiments and acts as a
precursor of homogeneous catalytically active species. These form upon dissolution of 1 in the presence
of oxidant and acid promoter. Cyclohexane oxidation to cyclohexanone and cyclohexanol does not
occur without catalyst 1 (Figure 3), either in the absence or in the presence of acid promoter. In
the presence of 1, the oxidation of C6H12 undergoes very slowly unless an acid promoter is added
(Figure 3). However, an addition of TFA (trifluoroacetic acid; commonly used for promoting the
activity of various Cu and Fe based catalytic systems [37–39]) causes a drastic acceleration of reaction
rate and higher quantity of products generated (8% yield after 90 min of the reaction). The presence
of PCA (2-pyrazinecarboxylic acid) in a very low amount (molar ratio PCA:1 = 3:1) results in higher
catalytic activity (15% total product yield after 90 min, Figure 3). It should be mentioned that PCA is a
recognized and powerful promoter in different metal-catalyzed oxidations of hydrocarbons [41].
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Figure 3. Influence of acid promoter on C6H12 oxidation by hydrogen peroxide to a mixture of
cyclohexanone and cyclohexanol (total product yield vs. reaction time) catalysed by 1. Conditions:
1 (0.005 mmol), C6H12 (1.0 mmol), H2O2 (5.0 mmol, 50% in H2O), 2-pyrazinecarboxylic acid (PCA,
0.015 mmol) or trifluoroacetic acid (TFA, 0.05–0.10 mmol), CH3CN (solvent added up to 2.5 mL of
total volume of the reaction), 50 ◦C. Blank tests without catalyst precursor 1 (curve: no catalyst; in the
presence of TFA, 0.1 mmol) or acid promoter (curve: no acid, in the presence of 1; 0.005 mmol) are
given for comparison.

Other cycloalkanes also undergo oxidation with H2O2 in the presence of catalyst 1 and PCA
promoter (Figure 4). In particular, the oxidation of cycloheptane (to cycloheptanol and cycloheptanone)
and cyclooctane (to cyclooctanol and cyclooctanone) proceeds more efficiently (total product yield up
to 22%) than that of cyclohexane and cyclopentane.
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Upon addition of PCA, compound 1 also efficiently catalyses the oxidation of a light gaseous
alkane such as propane (Table 2) to give a mixture of i-propanol, acetone, n-propanol, and propanal
with a total product yield of 22% (based on C3H8). However, if TFA is used as a promoter, the reaction
is less efficient (total product yield of 7.3%). It should be highlighted that the product yield of up
to 22% (based on propane) obtained herein is remarkable, especially if taking into account a very
high inertness of this gaseous hydrocarbon along with rather mild conditions applied for running the
oxidation reaction [37–41].

Table 2. Mild oxidation of propane with H2O2 catalyzed by 1 a.

Catalyst
Product Yield (%)b

i-Propanol Acetone n-Propanol Propanal Total

1/PCA 6.1 11.3 3.0 1.6 22.0
1/TFA 2.1 2.3 1.5 1.4 7.3

a Conditions: 1 (0.005 mmol), PCA (0.015 mmol) or TFA (0.1 mmol), C3H8 (1 atm, 0.7 mmol), H2O2 (50% in H2O, 5.0
mmol), CH3CN (solvent added up to 2.5 mL of total volume of the reaction), 50 ◦C, 4 h in a stainless-steel reactor (20
mL capacity). b.Yields based on C3H8 substrate: (moles of products/moles of C3H8) × 100%.

In addition, compound 1 was evaluated as catalyst precursor in the carboxylation of cyclic Cn

(n = 5−8) alkanes and propane in the presence of CO (carbonyl source), H2O (hydroxyl source) and
K2S2O8 (oxidant and radical initiator) [42–44]. These carboxylations undergo in H2O/CH3CN at 60 ◦C
and result in generation of the respective Cn+1 carboxylic acids (main products, Table 3). The oxidation
Cn products (e.g., cyclic ketones and alcohols) are also formed due to competing oxidation reactions,
especially when using cyloheptane and cyclooctane as substrates.
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Table 3. Single-pot carboxylation of cycloalkanes catalyzed by 1 a.

Substrate
Yield (%)b

Cycloalkane-Carboxylic Acid Cyclic Ketone Cyclic alcohol Total

Cyclopentane 13.9 3.4 1.7 19.0
Cyclohexane 20.9 1.1 0.6 22.6
Cycloheptane 9.2 6.5 2.5 18.2
Cyclooctane 4.8 7.8 5.9 18.5
a Conditions: 1 (0.01 mmol), C5H10−C8H16 (1 mmol), CO (20 atm), K2S2O8 (1.5 mmol), CH3CN (4 mL)/H2O
(2 mL), 60 ◦C, 4 h in a stainless-steel reactor (20 mL capacity). b Yields based on cycloalkane substrate: (moles of
products/moles of cycloalkane) × 100%.

Among the cycloalkane substrates tested, more elevated yields of carboxylic acid products are
obtained in cyclohexane carboxylation (21% of C6H11COOH) and cyclopentane carboxylation (14%
C5H9COOH). Interestingly, the transformations of cycloheptane and cyclooctane result in lower yields
of carboxylic acids (5–9%) but higher yields of ketones and alcohols, while the total yields of products
in all systems are in the 18–23% range. The carboxylation of propane generates i-butyric acid (13.6%
yield; main product) and n-butyric acid (3.8% yield; minor product) owing to two types of C atoms in
C3H8 molecule.

Taking into account the mechanistic considerations from the related oxidation and carboxylation
processes catalysed by various coordination compounds [37–44], we can propose the free radical
pathways for the reactions studied in the present work (Figure 5). In both alkane oxidation and
carboxylation reactions, compound 1 acts as a precursor of homogeneous Fe-cpna species when
reacting with oxidant and/or acid promoter; these species are formed upon partial protonation of some
carboxylate groups and ligand decoordination. In fact, the catalyst precursor facilitates the formation
of active oxidizing species (i.e., hydroxyl radicals from H2O2 in alkane oxidation or sulfate radical
anions from K2S2O8 in alkane carboxylation) and eventually participates in other mechanistic steps
(Figure 5).
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Figure 5. Simplified mechanism for oxidation and carboxylation of alkanes.

Hence, in alkane oxidation, the substrate molecules (RH) are activated by HO• to produce alkyl
radicals (R•). These are coupled with dioxygen (present in air or generated from hydrogen peroxide)
to furnish alkyl peroxo radicals (ROO•) that are further converted, via ROO−, to alkyl hydroperoxides
(ROOH) as intermediate products. In fact, the formation of ROOH was corroborated by performing
the duplicate GC tests for selected reaction mixtures (Shul’pin’s method), namely by analyzing them
after and before treating with PPh3 [45,46]. ROOH are not very stable under the reaction conditions
and undergo decomposition (can also be iron-catalyzed) to generate ROH and R’=O as final alkane
oxidation products [37,42].
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In carboxylation of saturated hydrocarbons, RH react with SO4
− as active oxidizing species to

form R•. Alkyl radicals are carboxylated by CO to give acyl radicals (RCO•) and then acyl cations
(RCO+). These are prone to undergo hydrolysis by H2O to generate carboxylic acids (RCOOH) as
principal products (Figure 5). Competitive oxidation of R• to form ROH and R’=O as by-products is
also observed in the present type of carboxylation processes [42–44].

4. Conclusions

This work described a facile hydrothermal generation and full characterization of the new Fe(II) 3D
coordination polymer derived from 5-(4’-carboxyphenoxy)nicotinic acid (H2cpna) as a multifunctional
organic building block. The obtained product 1 reveals the first structurally characterized Fe(II)
compound assembled from H2cpna [47].

The structure and topology of this iron 3D CP were established and discussed, revealing a
3,6-connected underlying network of the rtl topological type. Compound 1 also functions as active
catalyst precursor for the homogeneous oxidation and carboxylation of propane and cycloalkanes
under mild conditions, leading to up to 23% yields of products (based on alkane substrate). These
values of yields are excellent considering a particular inertness of saturated hydrocarbons (especially
propane) and mild conditions of the reactions studied [48–50]. For example, a related industrial process
of cyclohexane oxidation to cyclohexanone and cyclohexanol (DuPont process with a homogeneous
Co naphthenate catalyst) shows only 5–10% substrate conversions [51,52] and proceeds under harsher
reaction conditions (10–15 atm pressure, 150 ◦C, air oxidant).

Although the present homogeneous catalytic systems derived from 1 still cannot be recycled, we
believe future research aiming at trapping 1 or its soluble derivatives on solid supports might result
in the development of reusable heterogeneous catalysts for alkane functionalization. Furthermore,
further studies on exploring H2cpna and related multifunctional building blocks for the hydrothermal
design of new metal-organic architectures will be continued in our laboratories.
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