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Abstract: An equal-molar CoCrFeMnNi, face-centered-cubic (fcc) high-entropy alloy (HEA) and a
nickel-based superalloy are studied using in situ neutron diffraction experiments. With continuous
measurements, the evolution of diffraction peaks is collected for microscopic lattice strain analyses.
Cyclic hardening and softening are found in both metallic systems. However, as obtained
from the diffraction-peak-width evolution, the underneath deformation mechanisms are quite
different. The CoCrFeMnNi HEA exhibits distinct lattice strain and microstructure responses under
tension-compression cyclic loadings.
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1. Introduction

Fracture toughness and fatigue behavior are the key to the practical applications of high entropy
alloys (HEAs) [1]. Hemphill et al.’s [2] four-point-bending fatigue experiments suggest that the fatigue
behavior of Al0.5CoCrCuFeNi HEA is affected by microstructural defects of oxides and microcracks
while Tang et al.’s [3] high-cycle four-point-bending fatigue experiments reveal that nanotwinning
is the major deformation behavior before fracture in a Al0.5CoCrCuFeNi two-phase HEA. Despite
the convenience of four-point-bending high-cycle fatigue (HCF), more detailed fatigue mechanisms,
especially in the low-cycle fatigue (LCF) in HEAs, need to be further explored, since the deformation
behaviors under HCF and LCF regimes are very different, as suggested by Chen et al.’s review [4].

Thurston et al. [5] report that fatigue behavior of the Cantor alloy is comparable to the austenitic
stainless steels and twinning induced plasticity (TWIP) steels. Recently, Niendorf et al.’s [6]
tension-compression LCF experiments indicate the influence of planarity of slip and partial reversibility
of deformation on the unobvious cyclic hardening at given plastic strain in Fe50Mn30Co10Cr10

HEA. There are few reports revealing the polymorphism of CoCrFeMnNi, which is induced by
tension [7] and compression [8–10], respectively. Moreover, the cyclic tension-compression effects
as well as predominant mechanisms during the LCF process in CoCrFeMnNi still remain elusive.
Meanwhile, the cyclic-loading deformation in face-centered-cubic (fcc) nickel-based superalloy has
been extensively examined in which lattice strain asymmetry associated with dislocation density
evolution governs the irreversible plastic deformation [11–14]. We herein investigate the in-situ
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tension-compression cyclic loading effects and the dominant deformation behaviors of the CoCrFeMnNi
HEA in comparison with the commercially popular nickel-based superalloy by exploiting in-situ
neutron diffraction measurements.

2. Materials and Methods

The nickel-based superalloy HASTELLOY C22™ (Ni-21Cr-17Mo in weight percentage) was
annealed to dissolve most precipitates into the fcc matrix structure. C22™ has been chosen as a
reference because this Ni-based superalloy has been extensively studied using neutron diffraction and
other complimentary experiments [11–17]. Several correlations from diffraction-data characteristics,
microscopic images and underneath deformation mechanisms have been found as benchmarks and
references. Hence, we follow the same protocol and experimental design performed on the C22™
to apply to the current CoCrFeMnNi HEA examinations. In addition, the LCF experiments and
cyclic-loading deformation mechanisms of the C22™ are clarified and cited in many articles [11–16].

For the CoCrFeMnNi HEA, the sample was fabricated by vacuum arc-melting (arc) with equal
molar compositions of constituent powders whose purity is more than 99.9% (in weight percent) and the
diffraction characteristics of the CoCrFeMnNi HEA are also well studied for its microstructure [10,18–20].

The selected gauge volume for both samples was approximately 120 mm3 to associate the
microstructure with the bulk properties. During cyclic deformation of the C22™ alloy, in situ neutron
diffraction measurements with the Spallation Neutron Source were carried out at the Spectrometer for
Materials Research at Temperature and Stress (SMARTS) beamline of Los Alamos Neutron Science
Center (LANSCE). The in situ neutron diffraction measurements for LCF of the HEA were conducted at
TAKUMI beamline in Materials and Life Science Experimental Facilities at J-PARC, Japan. The loading
direction is 45◦ relative to the incident neutron beam direction, with two detector banks located at ±90◦

concomitantly recording diffraction vector patterns in the loading and transverse directions. Both the
in situ neutron diffraction LCF tests were conducted at room temperature with the maximum tensile
strain of 1% and the maximum compressive strain of −1%. The cyclic frequency was 1 Hz. The neutron
diffraction profiles were analyzed by applying pseudo-Voigt function for single peak fitting with the
General Structure Analysis Software (GSAS, Los Alamos National Laboratory, version 1, Los Alamos
County, New Mexico, United States) [21] and Convolutional Multiple Whole Profile (CMWP) [22]
software, following the previously used protocol [13,15].

3. Results

3.1. Chemical Composition of Alloying Elements in CoCrFeMnNi

We employed JEOL 6500 scanning electron microscopy (SEM, Japan Electron Optics Laboratory,
Tokyo, Japan) with energy-dispersive x-ray (EDX, Japan Electron Optics Laboratory, Tokyo, Japan)
spectroscopy for determining the elemental composition. The EDX analysis in Figure 1 discloses the
alloy composition of CoCrFeMnNi with an equal weight percentage distribution of each constituent
element, determining the Co20Cr20Fe20Mn20Ni20 HEA in the present study.
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Figure 1. EDX spectrum of the CoCrFeMnNi HEA. 
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Figure 2 presents the macroscopic stresses evolution versus certain selected fatigue cycles 
measured at the maximum strain of 1% and the minimum strain of −1% for C22™ and CoCrFeMnNi 
alloys. Both the C22™ and HEA performed similar cyclic hardening followed by softening tendency, 
however, the microscopic mechanisms underlying their cyclic hardening/softening-structural 
transformation were in different behaviors. Three distinct regions of the fatigue cycles based on the 
applied stress development can be clearly observed. During continuous tension-compression LCF 
deformation, the C22™ alloy revealed the cyclic hardening within the 100th cycle region with 
increasing applied stress (stage I), followed by the cyclic softening upon the 1000th cycle with a 
gradual decrease in applied stress (stage II) and remaining saturated (stage III) until the 2500th cycle. 
Compared to the C22™, the HEA experienced the hardening/softening transition at the 10th fatigue 
cycle, and then cyclic softening. At the same strain of tensile (1%) or compressive (− 1%) deformation, 
an increase in stress up to the hardening/softening transition on the C22™ was more pronounced 
than that on the HEA, which demonstrated the greater hardening behavior of the C22™ alloy. 

 
Figure 2. The stress evolution at the maximum tension (1%) and compression (–1%) as a function of 
fatigue cycle (presented in log scale) for both the C22™ and CoCrFeMnNi alloys. 

3.3. Lattice Strain Evolution during Tension-Compression Cyclic Loadings 

Figure 1. EDX spectrum of the CoCrFeMnNi HEA.

3.2. Low-Cycle Fatigue Experiments

Figure 2 presents the macroscopic stresses evolution versus certain selected fatigue cycles measured
at the maximum strain of 1% and the minimum strain of −1% for C22™ and CoCrFeMnNi alloys.
Both the C22™ and HEA performed similar cyclic hardening followed by softening tendency, however,
the microscopic mechanisms underlying their cyclic hardening/softening-structural transformation
were in different behaviors. Three distinct regions of the fatigue cycles based on the applied stress
development can be clearly observed. During continuous tension-compression LCF deformation, the
C22™ alloy revealed the cyclic hardening within the 100th cycle region with increasing applied stress
(stage I), followed by the cyclic softening upon the 1000th cycle with a gradual decrease in applied
stress (stage II) and remaining saturated (stage III) until the 2500th cycle. Compared to the C22™,
the HEA experienced the hardening/softening transition at the 10th fatigue cycle, and then cyclic
softening. At the same strain of tensile (1%) or compressive (− 1%) deformation, an increase in stress
up to the hardening/softening transition on the C22™was more pronounced than that on the HEA,
which demonstrated the greater hardening behavior of the C22™ alloy.
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Figure 2. The stress evolution at the maximum tension (1%) and compression (−1%) as a function of
fatigue cycle (presented in log scale) for both the C22™ and CoCrFeMnNi alloys.

3.3. Lattice Strain Evolution during Tension-Compression Cyclic Loadings

The lattice strain evolution was calculated based on the variations in the d-spacing of the refined
neutron diffraction peak positions of lattice planes as a function of fatigue cycle with respect to
the initial d-spacing before deformation. Figure 3 depicts the lattice strain-stress dependence of
the {311} plane at the maximum tensile (1%) and compressive (−1%) strains in both transverse and
axial loading directions since {311} grain families are the least affected crystallographic planes by
intrinsic microstructure deformation rather than external loadings in fcc polycrystalline materials
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under loading [12,23]. The yellow arrows show the trends of lattice strain evolution under cyclic
loadings. Within the cyclic hardening stage in the early fatigue cycles, we can observe a positive
correlation between the elastic strain and applied stress in both C22™ and HEA, which seems to follow
Hooke’s law as Suzuki and Egami reported for cyclic deformation [24]. Specifically, C22™ has a nearly
linear relationship up to the hardening/softening transition. However, although the lattice strain-stress
relationship of HEA is also positive up to the 10th fatigue cycle, the trend is not linear. Several reports
suggest that such a nonlinear trend may be governed by the texture, patterned dislocation structure,
or other anisotropy of the materials [11].Crystals 2019, 9, x FOR PEER REVIEW 4 of 8 
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In the hardening cycles of stage I, both the C22™ and HEA displayed the same propensity in
which the lattice strain increases with the number of fatigue cycles under both tensile and compressive
deformation in both axial loading and transverse directions, ascribed to the cyclic hardening behavior
in this region. However, the increase of elastic strain in the C22™was much greater than that of the
HEA under maximum tension shown in Figure 3a,b. Meanwhile, the lattice strain evolution of the
C22™ and HEA was almost the same under maximum compressive deformation within the cycling
hardening region. In stage II, there was an opposite trend of lattice strain evolution between the two
alloys. The lattice strain of HEA continued to increase while that of C22™ experienced an initially slight
decrease within the cyclic softening region. Furthermore, the elastic strain of C22™ increases under
tension in Figure 3a but decreases under compression in Figure 3c from the 250th to the 1000th fatigue
cycle for the grains oriented along the transverse direction. A similar tendency was also obtained for
the grains of C22™ oriented along the axial loading direction in tension in Figure 3b and compression
in Figure 3d. The deviation of elastic strain within the cyclic softening region was ascribed to the
development of the intergranular strains [16]. In stage III, there was a gradually decrease of lattice
strain of C22™ under both tensile and compressive tests for grains oriented along both axial loading
and transverse directions after the 1000th cycle. Similar to the C22™ alloy, the lattice strain of HEA also
depicted a slight decrease after the 200th cycle. The major discrepancy in the lattice strain evolution of
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the C22™ and HEA was further clarified in terms of the dominant development of dislocation slip
activities and other fatigue-induced defects such as stacking faults and twins.

4. Discussion

In this work, we determine the evolution of average dislocation density (n) and dislocation-wall
spacings (D) by using CMWP software [22] in fitting the neutron diffraction profiles. Figure 4a
depicts the dislocation density and dislocation wall spacings as a function of fatigue cycle at the
maximum strain of 1% in both C22™ [13] and CoCrFeMnNi alloys along the axial loading direction.
For CoCrFeMnNi, the dislocation density sharply increased together with an increasing number
of fatigue cycles in the very early stages in the axial loading direction and reached the maximum
value at the 40th cycle, then decreased with further fatigue cycles undergoing the softening cycles.
The decrease in the density of the randomly distributed dislocations after the hardening cycles seen
in the CoCrFeMnNi was analogous to that obtained in the C22™ alloy [13]. The average distances
between the dislocation-wall structures are largest at a very early cycle because the annealed C22™
alloy has fewer cell structures than Mughrabi’s dislocation wall [25] in the beginning [17]. The C22™
alloy mainly has randomly distributed dislocations before cyclic loading [17]. Upon cyclic loading,
the average distances between the dislocation-wall structures dropped within the hardening region,
and remained constant with higher fatigue cycles undergoing the softening and saturation regimes.
Due to dislocation movement and interaction, a more orderly arrangement of dislocations associated
with the formation of the Mughrabi’s dislocation-wall for cell structures resulted in a decrease and
final saturation of the dislocation-wall distance when the dislocation densities approached a more
stable state in CoCrFeMnNi. The dislocation hardening was demonstrated to be the main deformation
mechanism of the cyclic hardening effect in the C22™ alloy. The calculated dislocation-wall-spacing
evolution within the hardening region of HEA is similar to that of C22™ but the dislocation density
evolution of HEA is quite different from that of C22™, implying that there are other microstructure
formations coupled with cyclic deformation activities in governing the LCF regime. It has been
reported that mechanical nanotwinning is the major deformation mechanism before fatigue crack
initiation and propagation in HEA [3,4,26,27].

The generation of different kinds of defects associated with the dislocation density evolution
under LCF was further elucidated. As reported by Ungar, each kind of defect is simultaneously
governed by distinct diffraction peak aberrations such as peak shift, peak broadening, peak asymmetry,
anisotropic peak broadening, and peak shape [28]. We first examined the deformation fault probability
of CoCrFeMnNi obtained directly from the changes in only diffraction peak separations, which is
applied only for fcc structure, as summarized by Warren [29]. Using this method, we can predict the
presence of deformation fault probability based on only peak-shift correlations between (1 1 1) and
(2 0 0) of polycrystalline metals in fcc structure, specifically, the displacement of d111-d200 separation
toward smaller or larger deviation between these two groups of lattice planes, as shown in Figure 4b.
However, we cannot distinguish whether the deformation fault is intrinsic or extrinsic stacking faults.
To attain the quantitative probability of intrinsic, extrinsic stacking faults, and twinning, a more
complete and reliable analysis of CMWP program [22] was further employed to resolve the convoluted
diffraction data and the corresponding results are presented in Figure 4c.
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It can be seen from CMWP fitting results in Figure 4c that the formation probability of twinning,
extrinsic and intrinsic stacking faults defects started to slightly increase with the dislocation density
evolution and the extrinsic stacking fault plays a major role in deformation in the hardening cycles.
More twinning and extrinsic stacking faults were generated easily, and they governed the cyclic
hardening behavior. Further increase of dislocation densities led to the decrease of twinning, and
the probability of extrinsic and intrinsic stacking faults in the first half of softening cycles. When the
dislocation densities were in the more stable condition, there was a slight variation of extrinsic and
intrinsic stacking faults but an obvious increasing trend of twinning probability, suggesting the
dominant role of twinning in the latter half of softening cycles. The formation of nanotwins and
stacking faults is attributed to the low stacking fault energy (SFE) of HEA.

5. Conclusions

During low-cycle fatigue experiments, both the CoCrFeMnNi and C22™ alloys display obvious
cyclic hardening and softening regimes, however, the CoCrFeMnNi indicated fewer hardening
cycles comparing to the C22™ alloy. The lattice strain-stress relationship of these two alloys are
quite different, indicating that dominant deformation-induced microstructures were distinct under
tension-compression cyclic loadings. The twinning, extrinsic and intrinsic stacking faults are found to
be formed during cyclic hardening regimes, and twinning is the most predominant defect in governing
the main deformation behavior of CoCrFeMnNi in the latter half of softening regimes. The role of twin
formation subjected to tension-compression cyclic loadings on CoCrFeMnNi is revealed, which may
be useful for HEA design for fatigue endurance.
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