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Abstract: A machine learning strategy is presented for the rapid discovery of new polymeric materials
satisfying multiple desirable properties. Of particular interest is the design of high refractive index
polymers. Our in silico approach employs a series of quantitative structure–property relationship
models that facilitate rapid virtual screening of polymers based on relevant properties such as
the refractive index, glass transition and thermal decomposition temperatures, and solubility in
standard solvents. Exploration of the chemical space is carried out using an evolutionary algorithm
that assembles synthetically tractable monomers from a database of existing fragments. Selected
monomer structures that were further evaluated using density functional theory calculations agree
well with model predictions.
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1. Introduction

Polymeric thin films with high refractive indices and high optical clarity are highly sought after in
various applications such as optical data storage [1], lenses [2], anti-reflective coatings [3], immersion
lithography [4] and complementary metal-oxide-semiconductor (CMOS) image sensors [5].

The trends and developments in the field have been summarized in recent reviews [6,7] and the
references therein. In addition to a high refractive index, other properties of interest are the thermal
stability related parameters, such as the glass transition temperatures (Tg > 100 ◦C [8]) and thermal
decomposition temperatures (Td > 200 ◦C) that play a critical role in the optical device fabrication.
Given the performance requirements that need to be satisfied for different applications, the polymer
chemist is faced with the challenge of finding a balance between several complementary properties.

A popular strategy for developing high refractive index polymers (HRIP) is based on using
inorganic nanoparticle-filled polymer composites [9]. Although promising, they pose significant
processing challenges and suffer from high optical losses. A more effective approach has been to alter
the chemical structure of the polymer by incorporating high-molar refraction groups, such as sulfur
atoms and aromatic structures [7]. With a view to rapidly explore the vast chemical space and thereby
fine tune experimental efforts, there has been increased focus on using computational approaches.
Semi-empirical electronic structure methods, for instance, have been used to create a database of porous
polymer networks that can be used as methane adsorbents [10]. In other studies, ab initio approaches
were used to search for polymer dielectrics [11] and also in the design of polymers for photovoltaic
applications [12]. However, the computational costs associated with ab initio methods limit large
scale explorations of the chemical space. Inverse Quantitative Structure-Property Relationship (QSPR)
approaches such as those based on the signature molecular descriptor [13] have also been employed
but require significant computational effort to solve constraint equations.
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More computationally expedient alternatives to standard quantum chemistry (QC) based schemes
for property prediction include those based on data-driven approaches that make use of machine
learning (ML), multivariate statistics and chemometrics. These methods typically rely on establishing
quantitative structure–property relationships [14] (QSPR) and can be used for modelling diverse
properties including those that at present cannot be directly computed using QC (such as the solar
power conversion efficiency [15]). Starting with a representative set of molecules, each structure is
encoded as a vector using a wide range of descriptors that capture geometrical and electronic properties.
Each vector can be associated with one or more responses or class labels that are to be predicted.
The vectors and their responses are stored in matrices that are submitted to ML algorithms [14] that
perform regression or classification to establish a mathematical model between the structure descriptor
variables and the responses. The purpose of the QSPR is two-fold: to discover interesting relationships
between the structure descriptors and the responses and, secondly, as a way to obtain rapid estimations
of the responses. The latter is of particular interest in combinatorial [16] and evolutionary [15,17]
searches in chemical space as the number of possible structures to investigate would -be intractable for
most QC approaches. Thus, using QSPR models to predict relevant responses facilitates searching a
much larger chemical space using fewer computational resources than traditional QC approaches.

In this article, we adopt an in silico molecular design approach that is based on principles of
Darwinian evolution to drive the search for HRIPs. In the past, approaches based on evolutionary
algorithms have been successfully applied to the design of drug-like molecules [18], dyes for solar
cells [15] and olefin metathesis catalysts [19]. In recent years, a number of polymer properties relevant
for optoelectronic applications such as the refractive index [20–22], glass transition temperature [23]
and thermal decomposition temperature [24] have been modelled using QSPR methods wherein
descriptors calculated from the monomer structures have been correlated with the property of interest.
Continuing with this approach, we make use of such models to carry out a multiple criteria-based
virtual screening of polymers. As opposed to the largely intuition-driven trial and error approaches,
we adopt a systems approach advocated by Bicerano [25]. The computational search strategy used
in this study facilitates the accelerated discovery of advanced optical materials in a cost-effective
manner. The most promising repeat units are further subjected to rigorous validation based on
density functional theory [26] (DFT). Application of this multi-pronged strategy has yielded a number
of promising monomers with advantageous properties and may be of considerable value in the
development of photonic materials.

2. Materials and Methods

An overview of the molecular design approach based on Darwinian evolution is depicted in
Figure 1. The process has been discussed in detail in previous articles [15,19,27,28] and only a short
description is provided here. Each proposed structure (repeating unit) is defined as a combination of
fragments attached to a scaffold that has an available set of attachment points (shown as “A” in the
figure). The building blocks are connected with respect to a set of pre-defined rules so as to maximize
the probability of synthesis [29,30]. The molecular fragments were generated by applying the Breaking
of Retrosynthetically Interesting Chemical Substructures (BRICS) [31] fragmentation algorithm to
existing monomer structures taken from various literature sources. Figure 2 lists the various scaffolds
used as starting points to create different monomers. Each structure output by the evolutionary
protocol is then evaluated in terms of the value of the refractive index (the primary fitness estimate),
which is obtained here using an ML model. Over several iterations of the evolutionary algorithm,
the population of monomer structures undergoes computational crossover and mutation operations
involving fragment exchange or substitution. In addition to the refractive index, other properties such
as the Tg, Td and solubility in standard solvents (N-methyl-2-pyrrolidone (NMP), chloroform), etc. are
also evaluated using different machine learning models. Finally, selected candidates that pass initial
criteria are further analyzed using density functional theory approaches [26].
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Figure 1. Schematic shows an outline of the design approach. The “A” on the fragments indicate
points of attachment. The crossover operations (indicated by blue arrows) involve random selection of
fragments (building blocks highlighted by the circles) in the two parent structures and swaps them,
thus producing typically two offspring. In a given structure, the mutation operator (red arrow) may
either replace or delete a randomly selected fragment.

Figure 2. The building block scaffolds used in this study. The attachment points are indicated by the
letter “A”. The fragment recombination proceeds according to a set of fragment compatibility rules [29].
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2.1. Polymer Properties

The refractive index (n) of a polymer is often expressed in terms of the Lorentz–Lorenz [32,33]
equation given by:

n2 − 1
n2 + 2

=
4π

3
ρNA
Mw

α, (1)

where α is the linear molecular polarizability, ρ the polymer density, Mw the molecular weight of
the monomer and NA the Avogadro number [34,35]. The equation thus enables the prediction of the
refractive index, using the polarizability of an isolated molecule.

An important parameter in optics and design of lenses is the Abbe number (vd) [8], which is a
measure of the refractive index dispersion (larger numbers correspond to a lower dispersion) and is
given by:

vd =
nD − 1
nF − nC

, (2)

where nD, nF, and nC are the refractive indices of the material at the wavelengths of the Fraunhofer D
(589.3 nm), F (486.1 nm) and C (656.3 nm) spectral lines, respectively.

In addition to the n and vd, other properties to be considered include birefringence and optical
transparency [7]. The birefringence, calculated as ∆n = nTE − nTM (where nTE and nTM are the
in-plane and out-of-plane refractive indices, respectively), is caused by the orientation of polymer
molecular chains and is required to be minimal, in order to achieve fine focusing in lenses. Furthermore,
for use in optoelectronic materials, a high transparency in the visible range is desirable [36]. Thus,
the spectra of new monomer structures should have minimal absorbance in the visible region
(400–700 nm).

2.2. Machine Learning

Experimental values of the refractive index (n at 589 nm), density (ρ at room temperature),
glass transition temperatures (Tg) and thermal decomposition temperatures (Td 10% weight loss
temperatures recorded in N2 atmosphere) for a diverse set of polymers were collated from
existing literature [20,23,25,37,38]. A complete list of the monomer structures and corresponding
experimental values are provided in the Supplementary Materials (see Tables S2–S6). Table 1
summarizes the available data for the properties studied. The chemistry spans several classes
including polyimides, polyethylenes, polyphosphazenes, polyacrylates, polyarylene sulfides,
phenylquinoxalines, polystyrenes and polycarbonates.

Table 1. Summary of the experimental data available for refractive index (n), density (ρ), glass transition
temperatures (Tg) and decomposition temperatures (Td for 10% weight loss). Nobs is the number of
available samples, while Ncal and Ntest are the respective numbers in the calibration and test sets (based
on a random 50:50 split of the data).

Property Nobs Range Ncal Ntest

n 237 1.34–1.71 120 117
ρ 195 0.84–2.1 99 96

Tg (◦C) 601 −143–399 304 297
Td (◦C) 175 125–563 90 85

Given the previous success of quantum chemical descriptors in modelling polymer properties [39–41]
based on the structure of the monomer, we employ these to model the different properties.
For each monomer, various geometrical and molecular orbital-based descriptors such as the Highest
Occupied Molecular Orbital/Lowest Unoccupied Molecular Orbital (HOMO/LUMO) energies,
charges, polarizabilities, superdelocalizabilities, and radial distribution function (RDF) indices were
calculated using the software KRAKENX (version 0.1.3, www.krakenminer.com) [42]. These descriptors

www.krakenminer.com
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have earlier been shown to be well suited for predicting diverse properties such as power conversion
efficiencies of dyes in solar cells [17,43], densities/viscosities [42], pKa [27] and thermal decomposition
temperatures of ionic liquids [44]. A total of 828 descriptors was calculated for each monomer,
which was reduced to around 818, after the removal of low variance columns and those containing
missing values. Table S1 in the Supplementary Materials provides a description of the variables.

The data fitting was carried out using both linear partial least squares regression [45] (PLSR) and
the ensemble tree-based random forests (RF) [46] method. In order to assess the predictive abilities
of the ML models, the data was split (50:50) randomly for each model. As part of the preprocessing,
a pairwise correlation analysis was performed and only one among the highly correlated pair of
variables (R2 > 0.95) was retained. The remaining variables (<400) were then autoscaled to zero
mean and unit variance. Multiple metrics: the root mean squared error (RMSE), mean absolute
error (MAE), and 10-fold cross-validated correlation coefficient R2

cv were used to evaluate the model
performances. In addition, variable selection was also carried out to improve the predictive ability
and, where possible, reduce model complexity (see previous papers [15,42,44]). The generated models
are constrained by the response and chemical structure space within which they are assumed to
reliable. To establish reliability estimates for the PLSR model predictions, the distance to the model [47]
and the bootstrap variance [15] based on 500 models was computed, while, for the random forests,
the conditional quantiles [48] were used. Predictions for which the estimated variability is small can in
general be trusted while those with large values need to be treated with caution.

2.3. Computational Details

The structures of the monomers were drawn using the MarvinSketch [49] program version 5.9.3
from ChemAxon, https://chemaxon.com/ (or alternatively taken from literature when available)
were converted to 3D using OpenBabel (version 2.4.1, http://openbabel.org/docs/current/) [50]
(based on the Universal Force Field [51]). The initial geometries were further optimized using
the semi-empirical AM1 Hamiltonian in MOPAC (version 16.220L, http://openmopac.net/) [52].
For the refractive index calculations, the MOPAC optimized structures were further subjected to
full geometry optimizations at the DFT level (without symmetry constraints) using the B3LYP [53]
functional and the 6-311G(d,p) basis set. The wavelength-dependent linear polarizabilities were
computed using the range-corrected CAM-B3LYP [54] functional along with the 6-311++G(d,p) [55]
basis set (containing both polarisation and diffuse functions). To assess optical transparency, the UV-Vis
absorption spectra [56] of the monomers was computed using time-dependent DFT (TDDFT) carried
out at the CAM-B3LYP/6-311G(d,p) level of theory. The DFT calculations were performed using the
Gaussian 09 [57] software package. The regression models were developed using the statistical software
R version 3.4.2, https://www.r-project.org/ [58] with the packages pls [59] and randomForest [48,60].

3. Results and Discussion

3.1. Analysis of Regression Models

Table 2 summarizes the results for the regression models corresponding to the n, Tg, ρ and
Td. The complete list of experimental and predicted values is provided in Tables S2–S6 in the
Supplementary Materials. The PLSR model applied to the refractive index prediction yields a
low-complexity 4 latent variable (LV) model, which performs quite well for both the calibration
and independent test sets with R2 ∼ 0.80. While similar metrics for the Tg are achieved, the PLSR
model performance for Td (R2 ∼ 0.60) is considerably poorer. In comparison, the random forests’
(based on 100 trees) regression models perform well on most properties. In general, tree-based models
are less useful for extrapolation as they employ boxing in selected regions of the variable space. Given
the interest in identifying HRIPs (with n > 1.70) for which the models are required to extrapolate
beyond the calibration range of the response variable, we make use of PLSR models for driving
the search for suitable polymers. Since both the experimental Tg and Td values span a desirable

https://chemaxon.com/
http://openbabel.org/docs/current/
http://openmopac.net/
https://www.r-project.org/


Polymers 2018, 10, 103 6 of 16

temperature range, the RF models act as filters by excluding those that have predicted values below a
given threshold. Predictive models for the density were found to be comparatively poorer with the
RF model yielding calibration statistics of R2

cv = 0.64 and a test set R2 = 0.66, while PLSR failed to
produce models with R2

cv > 0.50. Attempts to improve the performance using other methods such as
support vector machines [61], however, did not meet with success.

Figure 3 shows the variable importance plots for the regression models and is based on the
contribution the predictor variables make to the construction of the models. For PLSR, the ranking is
based on the variable importance in projection score [62] (VIP), while, for RF models, the importance
is calculated based on the increase in the mean square error of predictions as a result of a given
descriptor being randomly permuted [63]. The PLSR model for the refractive index n show the
most important variables to be the heat of formation (at the AM1 level of theory) that reflects the
thermodynamic stability of the polymer, the global softness (the inverse of the HOMO-LUMO energy
gap), the nucleophilic (DNR) and electrophilic (DER) delocalizabilities that are dynamic reactivity
indices and signify intermolecular interaction, and the static hyperpolarizability that influences the
electric susceptibility [64]. A small HOMO-LUMO energy gap may also indicate that the molecule is
easily polarized. In addition, a number of charge surface area descriptors that emphasize the charge
distribution can be linked to the size related bulk properties of the repeating unit [39]. For both Tg

and Td models, the prominent features are dominated by variables that emphasize electrophilic and
nucleophilic attack along with other values such as the heat of formation, the global electrophilicity
index [65] (measures the energy stabilization) and the HOMO-LUMO gap that are seen as standard
indicators of stability. The charge based descriptors, on the other hand, may reflect the electrostatic
interactions between the polymer chains. Many of the highlighted variables mirror the findings in
previous studies [39–41].
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Figure 3. Variable importance plots for the (A) Partial Least Squares Regression (PLSR) model for n,
and Random Forest (RF) models for (B) Tg and (C) Td. In all cases, only the top 10 most important
variables are shown.
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Table 2. Summary of the regression model performances for the refractive index (n), glass transition
temperatures (Tg) and decomposition temperatures (Td). Here, MAE is the mean absolute error,
RMSE is the root mean squared error and R2 the squared correlation between the observed and
predicted values.

Model Property Calibration Testing

R2
cv RMSE (MAE) R2 RMSE (MAE)

PLSR
n 0.79 0.04 (0.03) 0.79 0.04 (0.03)

Tg (◦C) 0.81 52 (34) 0.83 49 (38)
Td (◦C) 0.61 49 (24) 0.62 51 (41)

RF
n 0.83 0.03 (0.01) 0.88 0.03 (0.02)

Tg (◦C) 0.86 44 (14) 0.88 40 (30)
Td (◦C) 0.80 35 (12) 0.72 45 (30)

ρ 0.64 0.13 (0.04) 0.66 0.14 (0.08)

3.2. Molecular Evolution Analysis

The evolutionary algorithm was configured to run with a population of 100 structures for a
maximum of 100 generations with crossover and mutation probabilities set to 0.5. In order to prevent
the monomers from becoming too large, a molecular weight restriction was imposed wherein structures
above 1000 daltons were discarded. Over 4000 unique structures were produced from five runs of the
evolutionary algorithm initialized with different starting seeds. For these monomers, the predicted
values of n (at λ = 589.3 nm) ranged between 1.40 to 2.30 (see Figure S1 in the Supplementary Materials),
with approximately 40% of the structures yielding n > 1.68, the maximum n value in the calibration
data set. In order to examine the trends in the predicted response, an analysis of the PLSR latent
variable scores was performed. Figure 4 shows the increasing trend of the refractive indices along
the first two latent vectors. While the presence of conjugated ring structures and sulphur content
have been shown to increase n, other factors such as the higher molecular weight of monomers have
also been seen to influence n (see Figures S2 and S3 in the Supplementary Materials). Similar trends
are seen for the designed structures with nearly one-fourth of the monomers having n > 1.70 and
400 ≤ MW ≤ 1000. Although the molecular weight descriptor was removed during the model
building (highly correlated with other variables and hence excluded), it is interesting to note that
the model nonetheless captures the variations in the refractive index with respect to the chemical
composition reasonably well.

Analysis of the monomers based on the different scaffolds (shown in Figure 2) used show that
structures based on nitrogen or sulfur-containing substituents generally yielded high refractive indices
(n > 1.7) [7,66]. The thiazole moiety (comprising of a sulfur atom and a C=N–C bond) not only
increases the sulphur content but also leads to low molar volumes, thereby yielding high refractive
indices [67,68]. Furthermore, scaffolds based on the diketopyrrolopyrrole (see Figure 5) (linked with
thiazole, furan, thiophene and thienothiophene), π-conjugated benzodithiophene and thianthrene
moieties are seen to have high refractive indices. Incorporating these units has been seen to improve
thermal stability and solubility.

Although the molecular assembly attempts to create structures that are likely to be synthetically
tractable, it is interesting to assess it quantitatively with a synthetic accessibility (SA) score. Here,
we use the ease of synthesis ranging between 1 (easy to make) to 10 (difficult) as a metric to guage
the synthetic accessibility of the proposed monomers [69]. A Python-based implementation [70]
that combines fragment contributions and complexity penalties was used to estimate the SA score.
For a significant majority of the structures, the score was found to be around 5 or less (see Figure S4 in
the Supplementary Materials).
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Figure 4. Scores plot for the first two latent variables shows the spread of the predicted refractive
indices for the designed monomers. The dashed arrow in the centre of the plot shows the direction
of the increasing refractive indices as indicated by the PLSR model. Structures of selected monomers
along this line reflect the chemical diversity in the population.
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Figure 5. The box plot shows the range of refractive index values with respect to each scaffold
(see Figure 2).
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Another important criterion to consider is that of the solubility of the polymer in common organic
solvents [71]. Poor solubility makes processing difficult and limits their applications. Solubility data
for polymers with respect to five commonly used solvents—chloroform (CHCl3), dimethylacetamide
(DMAc), N-methylpyrrolidine (NMP), tetrahydrofuran (THF) and dimethyl sulfoxide (DMSO)—were
collated from the literature. The available data was divided into three classes, which include: S, soluble,
PS, partially soluble/swelling/soluble on heating and I, insoluble. For each solvent, the data were
equally divided into independent calibration and test sets across the different classes. Random forests
classification models were created to predict the solubility class (I/PS/S) using the descriptors as
described above. Since the classes are unevenly distributed for all solvents, we make use of Cohen’s
Kappa statistic [72], which can be applied to both multi-class and imbalanced class problems. Model
performances summarized in Table 3 show that the typical κ values are in the range 0.50–0.60 and
fall in the moderate agreement range [72]. Using these models, the solubility classes for the designed
monomers were predicted. As can be seen from Figure 6, a majority (>70%) of the proposed structures
are potentially soluble in DMAc, DMSO and NMP solvents.

0

1000

2000

3000

4000

CHCl3 DMAC DMSO NMP THF

Solubility
I

PS

S

Figure 6. Predicted solubilities for the de novo designed monomers.

Table 3. Summary of the random forest classification performances for the polymer solubilities in
different solvents. See Tables S7–S12 in the Supplementary Materials for performances with respect to
each solvent. The 10-fold cross-validated κCal and κTest values are reported for each solvent. Here, S,
soluble, PS, partially soluble/swelling/soluble on heating and I, insoluble.

Solvent #Samples I PS S κCal κTest

CHCl3 136 53 34 48 0.56 0.50
NMP 145 10 42 93 0.62 0.36

DMAc 105 8 41 56 0.52 0.48
DMSO 154 19 56 79 0.53 0.58

THF 120 15 59 46 0.49 0.62
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3.3. Comparison with DFT

In order to apply Equation (1) to estimate polymer refractive indices, the polarizability and density
are required. Since the polarizability is assumed to be additive, the monomer polarizability (αDFT) has
been used in a number of studies [26,34,73]. Although this does not sufficiently hold true at a theoretical
level, for computational ease, all calculations were carried out only for the monomers terminated by
hydrogen atoms. The second component of density typically requires molecular dynamics simulations
but is computationally demanding. Hence, for computational ease, the density is estimated using
a QSPR (ρQSPR) model. To evaluate the efficacy of this approach, polarizability calculations were
carried out for a number of polymers for which experimental refractive indices recorded at different
wavelengths (589, 633, 1324 nm) were available (see Table S13 in the Supplementary Materials) and
spanned a range of 1.34–1.79. The higher values were included in particular to assess the ability of
the αDFT-ρQSPR driven approach to estimate the predicted reflective indices that are extrapolated by
the model.
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Figure 7. Plot shows the observed vs. the Density Functional Theory (DFT)-predicted refractive indices.
The density in Equation (1) is calculated using a QSPR model. An overall correlation of 0.81 was
obtained. See Table S13 in the Supplementary Materials for additional details.

Analysis of the results of 160 randomly selected polymers shows that, for most polymers studied,
the absolute deviations are less than 0.10. Figure 7 shows the scatter plot of the experimental vs.
calculated refractive indices. For this data, an overall correlation of 0.81 was obtained. The αDFT-ρQSPR
scheme in particular tends to overestimate n for nearly two-thirds of the samples with the average
deviation around 0.07. Further examination of polymers with n > 1.71 (the maximum value in
the calibration) shows that the αDFT-ρQSPR based n estimations were again overestimated with
errors ranging between 0.01 and 0.09. The deviations could be attributed to the density predictions,
since the QSPR model was not found to have a significantly high performance. To investigate this
further, only cases for which experimental refractive index and density data were available were
considered. For a set of 51 polymers, the mean absolute deviations were around 0.15 with errors
in the range −0.80–0.21 (see Table S14 in the Supplementary Materials). Here again, the αDFT-ρEXP
estimates were found to be larger than the experimental n. These results suggest that the errors in the
polarizability estimates for the hydrogen-terminated monomer units could also be contributing to the
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errors. Given these results, caution must therefore exercised when comparing the QSPR predictions
for n with the αDFT-ρQSPR based estimates.

3.4. Analysis of Selected Monomers

Table 4 summarizes the predicted properties for selected monomers shown in Figure 8.
The structures are likely to show good thermal stability as seen from the glass transition temperatures
that are around 200 ◦C along with relatively high weight loss temperatures (Td > 350 ◦C). The inclusion
of groups such as cyclohexane have been shown to improve stability [73]. The predicted refractive
indices are typically high and can be attributed to the presence of aromatic heterocycles and high
sulfur content [74]. Substituents such as thioethers, thiazoles and nitro groups are also seen to
increase refractive indices [67]. Analysis of the TDDFT calculations suggests that for a majority of the
proposed structures, the absorption wavelengths peak at less than 300 nm (see plots in Figure S5 in
the Supplementary Materials), and we expect these to have good optical transparency. Comparison
of the QSPR and DFT-calculated refractive index estimates shows that—for the monomers: M0002,
M0003, M0006, M0008, M0010—the deviation is not significantly high. The high deviation with respect
to M0001 clearly suggests that there are limits to the extent of extrapolation that can be performed
using the existing model. Table S15 in the Supplementary Materials list additional cases where
there is a significant discrepancy between the QSPR and DFT predictions. Abbe numbers (listed in
Table 4) for monomers M0002, M0009 and M0010 are relatively high, which should correspond to low
wavelength dispersion. Birefringence depends on a number of factors such as the preferred orientations
of the polymer chains, as well as the polarizability and van der Waals volume of the repeating
units [75]. While low values are desirable, for the selected monomers, the calculated birefringence (δn)
is somewhat high. For a few cases, negative birefringences are observed. We attribute this to largely to
the incorrect estimations of the DFT-calculated polarizabilities. Methyl-terminated structures in place
of the standard hydrogen have been shown to improve the accuracy [26] and therefore could be used.

Table 4. Summary of the calculated properties for selected monomers. For the refractive index npred,
ρpred, Tg and Td, the prediction uncertainties are also provided. nDFT is the refractive index calculated
according to Equation (1) with polarizabilities obtained from DFT. The Abbe number vd is calculated
according to Equation (2) and makes use of the DFT-calculated polarizabilities and QSPR based density
estimation. Absorption maxima λmax (in chloroform solvent) are calculated using Time-dependent
Density Functional Theory (TD-DFT). MW, molecular weight.

Structure MW npred Tg Td ρpred nDFT vd ∆n λmax

M0001 927 1.98 ± 0.11 256 ± 27 438 ± 65 1.35 ± 0.23 1.79 7.79 0.09 367
M0002 570 1.75 ± 0.05 226 ± 62 456 ± 56 1.37 ± 0.32 1.72 22.85 0.07 356
M0003 571 1.74 ± 0.15 210 ± 51 398 ± 84 1.29 ± 0.16 1.67 5.85 0.09 420
M0004 663 1.79 ± 0.10 242 ± 50 408 ± 65 1.36 ± 0.31 1.65 7.45 0.38 411
M0005 801 1.80 ± 0.04 222 ± 47 466 ± 50 1.36 ± 0.22 1.98 1.98 0.05 429
M0006 716 1.84 ± 0.06 206 ± 41 396 ± 74 1.27 ± 0.16 1.80 10.88 −0.12 299
M0007 637 1.78 ± 0.14 223 ± 42 439 ± 81 1.37 ± 0.25 1.76 3.49 −0.05 455
M0008 596 1.78 ± 0.09 180 ± 64 370 ± 87 1.33 ± 0.32 1.70 13.13 −0.03 347
M0009 649 1.72 ± 0.04 198 ± 85 387 ± 79 1.63 ± 0.44 1.90 33.36 0.03 257
M0010 935 1.77 ± 0.11 226 ± 38 428 ± 60 1.44 ± 0.35 1.73 24.80 −0.13 305
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Figure 8. Monomers selected from de novo runs.

4. Conclusions

Herein, a series of QSPR models are employed, which, in combination with a Darwinian evolution
based search algorithm, facilitates the discovery of novel polymers that are able to satisfy several
complementary properties. The designed monomers are generally seen to be synthesizable with
polymerization for some candidates requiring specific conditions such as elevated temperatures or the
presence of metal catalysts. For some monomers, the calculated birefringences were found to be high or
negative. While low values are desirable, for the selected monomers, the calculated birefringence (δn)
is somewhat high. Birefringence depends on a number of factors such as the preferred orientations of
the polymer chains, as well as the polarizability and van der Waals volume of the repeating units [75].
For a few cases, negative birefringences were observed. We attribute some of this largely to the
incorrect estimations of the DFT-calculated polarizabilities. Methyl-terminated structures in place of
the standard hydrogen have been shown to improve the accuracy [26] and may help to address the
issue. Alternatively, methods such as copolymerization of monomers with different birefringences,
or the addition of small birefringent crystals, may also be employed [76].

Although the models are sufficiently predictive, there still exist inherent discrepancies between
property estimations and the experimental values. Incorporating information relating to the experimental
uncertainties in combination with nonlinear methods such as kernel-based PLS regression [77] may help
to address some of these issues. Since experimental data are somewhat limited and model extrapolation
is not always reliable, future work will focus on methods such as semi-supervised learning [78] that
aim to build better predictive models using unlabelled data as additional data. Performing DFT
calculations at a high level theory for the numerous candidates produced is still a computational
bottleneck. It is hoped that methods such as deep learning can help approximate such calculations in
shorter timeframes [79].

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4360/10/1/103/s1.
Table S1: Description of the structure variables used in the models; Tables S2–S12: Experimental (data taken from
literature) and model predicted values for n, Tg, Td, ρ and solubility; Table S13: Experimental and predicted n
measured at given wavelengths for different polymers; Table S14: Experimental and predicted n using DFT-based
polarizability estimates and ρQSPR; Table S15: Cases where large deviations between QSPR and DFT estimates for
n are observed; Figure S1: Histogram of the predicted n for the designed monomers; Figure S2: Scatter plot of the
molecular weights vs. the experimental n; Figure S3: Scatter plot of the molecular weights vs. the predicted n of
designed monomers; Figure S4: Histogram of the synthetic accessibility scores for the designed monomers; Figure
F5: Calculated UV-Vis spectra for different polymers.

Acknowledgments: The Norwegian Research Council (NFR) is acknowledged for financial support from the
CLIMIT (Grant No. 233776) and for CPU resources granted through the NOTUR supercomputing programme.
Rajesh Raju is thanked for helpful discussions on synthetic accessibility and polymerizability. We also thank
ChemAxon (http://www.chemaxon.com) for free academic use of the Marvin package.

http://www.mdpi.com/2073-4360/10/1/103/s1
http://www.chemaxon.com


Polymers 2018, 10, 103 13 of 16

Author Contributions: V.V. and B.K.A. conceived the study; V.V. designed and performed the experiments and
analyzed the data; V.V. and B.K.A. wrote the paper.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

QC Quantum Chemistry
QSPR Quantitative Structure Property Relationship
ML Machine Learning
DFT Density Functional Theory
TD-DFT Time-Dependent Density Functional Theory

References

1. Yetisen, A.K.; Montelongo, Y.; Butt, H. Rewritable three-dimensional holographic data storage via optical
forces. Appl. Phys. Lett. 2016, 109, 061106.

2. Kim, K.C. Effective graded refractive-index anti-reflection coating for high refractive-index polymer ophthalmic
lenses. Mater. Lett. 2015, 160, 158–161.

3. Li, X.; Yu, X.; Han, Y. Polymer thin films for antireflection coatings. J. Mater. Chem. C 2013, 1, 2266–2285.
4. Sanders, D.P. Advances in Patterning Materials for 193 nm Immersion Lithography. Chem. Rev. 2010,

110, 321–360.
5. Suwa, M.; Niwa, H.; Tomikawa, M. High Refractive Index Positive Tone Photo-sensitive Coating.

J. Photopolym. Sci. Technol. 2006, 19, 275–276.
6. Macdonald, E.K.; Shaver, M.P. Intrinsic high refractive index polymers. Polym. Int. 2014, 64, 6–14.
7. Higashihara, T.; Ueda, M. Recent Progress in High Refractive Index Polymers. Macromolecules 2015, 48, 1915–1929.
8. Suzuki, Y.; Higashihara, T.; Ando, S.; Ueda, M. Synthesis and Characterization of High Refractive Index and

High Abbe’s Number Poly(thioether sulfone)s based on Tricyclo[5.2.1.02,6]decane Moiety. Macromolecules
2012, 45, 3402–3408.

9. Balazs, A.C.; Emrick, T.; Russell, T.P. Nanoparticle Polymer Composites: Where Two Small Worlds Meet.
Science 2006, 314, 1107–1110.

10. Martin, R.L.; Simon, C.M.; Smit, B.; Haranczyk, M. In Silico Design of Porous Polymer Networks:
High-Throughput Screening for Methane Storage Materials. J. Am. Chem. Soc. 2014, 136, 5006–5022.

11. Sharma, V.; Wang, C.; Lorenzini, R.G.; Ma, R.; Zhu, Q.; Sinkovits, D.W.; Pilania, G.; Oganov, A.R.; Kumar, S.;
Sotzing, G.A.; et al. Rational design of all organic polymer dielectrics. Nat. Commun. 2014, 5, 4845.

12. Bérubé, N.; Gosselin, V.; Gaudreau, J.; Côté, M. Designing Polymers for Photovoltaic Applications Using ab
Initio Calculations. J. Phys. Chem. C 2013, 117, 7964–7972.

13. Martin, S. Lattice Enumeration for Inverse Molecular Design Using the Signature Descriptor. J. Chem.
Inf. Model. 2012, 52, 1787–1797.

14. Le, T.; Epa, V.C.; Burden, F.R.; Winkler, D.A. Quantitative Structure-Property Relationship Modeling of
Diverse Materials Properties. Chem. Rev. 2012, 112, 2889–2919.

15. Venkatraman, V.; Foscato, M.; Jensen, V.R.; Alsberg, B.K. Evolutionary de novo design of phenothiazine
derivatives for dye-sensitized solar cells. J. Mater. Chem. A 2015, 3, 9851–9860.

16. Wang, C.; Pilania, G.; Boggs, S.; Kumar, S.; Breneman, C.; Ramprasad, R. Computational strategies for
polymer dielectrics design. Polymer 2014, 55, 979–988.

17. Venkatraman, V.; Alsberg, B.K. A quantitative structure–property relationship study of the photovoltaic
performance of phenothiazine dyes. Dyes Pigments 2015, 114, 69–77.

18. Lameijer, E.W.; Kok, J.N.; Bäck, T.; IJzerman, A.P. The Molecule Evoluator. An Interactive Evolutionary
Algorithm for the Design of Drug-Like Molecules. J. Chem. Inf. Model. 2006, 46, 545–552.

19. Chu, Y.; Heyndrickx, W.; Occhipinti, G.; Jensen, V.R.; Alsberg, B.K. An Evolutionary Algorithm for de Novo
Optimization of Functional Transition Metal Compounds. J. Am. Chem. Soc. 2012, 134, 8885–8895.

20. Duchowicz, P.R.; Fioressi, S.E.; Bacelo, D.E.; Saavedra, L.M.; Toropova, A.P.; Toropov, A.A. QSPR studies on
refractive indices of structurally heterogeneous polymers. Chemom. Intell. Lab. Syst. 2015, 140, 86–91.



Polymers 2018, 10, 103 14 of 16

21. Katritzky, A.R.; Lobanov, V.S.; Karelson, M. QSPR: The correlation and quantitative prediction of chemical
and physical properties from structure. Chem. Soc. Rev. 1995, 24, 279–287.

22. Astray, G.; Cid, A.; Moldes, O.; Ferreiro-Lage, J.A.; Gaĺvez, J.F.; Mejuto, J.C. Prediction of Refractive Index of
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