Supporting Information for:

High Temperature, Living Polymerization of Ethylene by a Sterically Demanding Nickel(II) α-Diimine Catalyst

Lauren A. Brown, W. Curtis Anderson Jr., Nolan E. Mitchell, Kevin R. Gmernicki, and Brian K. Long*

Department of Chemistry, University of Tennessee, Knoxville, TN 37996

e-mail: long @utk.edu

Table of Contents

Modified synthetic scheme	<u>S2</u>
Liquid chromatography-mass spectra	<u>S2</u>
NMR spectroscopy	<u>S3</u>
Graphs of polymer M_n and \overline{D} using 1/PMAO-IP	<u>S5</u>
GPC data for obtained PE	<u>S7</u>
DSC data for obtained PE	S25
Stress versus Strain data for PE	<u>S27</u>

Figure S1. Modified synthetic route to obtain complex 1 in ultrahigh purity.

Figure S2. LC-MS of bulky *i*Pr* aniline in DCM prior to purification.

Figure S3. LC-MS of bulky *i*Pr* aniline in DCM after four recrystallizations from isopropanol.

Figure S4. ¹H NMR spectrum of polyethylene at 70 °C. (Table 1, Entry 3).

151050-5ppmFigure S6. ¹H NMR spectrum of polyethylene at 80 °C. (Table 1, Entry 11). 10 15 -5 -10

Figure S7. (a) Plot of M_n (blue circles) and D (red triangles) as a function of polymerization time using 1/PMAO-IP at 70 °C. (b) GPC traces (viscometer detector) of polymerizations run at 70 °C at various polymerization times (black = 60 min, purple = 45 min, green = 30 min, orange = 15 min).

Figure S8. Plot of M_n (blue circles) and D (red triangles) as a function of polymer yield using 1/PMAO-IP at 70 °C.

Figure S9. Plot of M_n (blue circles) and D (red triangles) as a function of polymer yield using 1/PMAO-IP at 75 °C.

Figure S10. Plot of M_n (blue circles) and \tilde{D} (red triangles) as a function of polymer yield using 1/PMAO-IP at 80 °C.

Figure S11. GPC of polyethylene. (Table 1, Entry 1)

Figure S12. GPC of polyethylene. (Table 1, Entry 2)

Figure S13. GPC of polyethylene. (Table 1, Entry 3)

Figure S14. GPC of polyethylene. (Table 1, Entry 4)

Figure S15. GPC of polyethylene. (Table 1, Entry 5)

Figure S16. GPC of polyethylene. (Table 1, Entry 6)

Figure S17. GPC of polyethylene. (Table 1, Entry 7)

Figure S18. GPC of polyethylene. (Table 1, Entry 8)

Figure S19. GPC of polyethylene. (Table 1, Entry 9)

Figure S20. GPC of polyethylene. (Table 1, Entry 10)

Figure S21. GPC of polyethylene. (Table 1, Entry 11)

Figure S22. GPC of polyethylene. (Table 1, Entry 12)

Figure S23. GPC of polyethylene. (Table 1, Entry 13)

Figure S24. GPC of polyethylene. (Table 1, Entry 14)

Figure S25. GPC of polyethylene. (Table 2, Entry 1)

Figure S26. GPC of polyethylene. (Table 2, Entry 3)

Peak RV - (ml)	17.777
Mn - (Daltons)	352,561
Mw - (Daltons)	432,344
Mz - (Daltons)	529,745
Mp - (Daltons)	405.716
Mw/Mn	1,226
Percent Above Mw: 0	100.000
Percent Below Mw: 0	0.000
IV - (dl/g)	5.3770
Rh(w) - (nm)	32.741
Rg(w) - (nm)	42.823
Wt Fr (Peak)	1.000
Mark-Houwink a	0.720
Mark-Houwink logK	-3.336
Branches	0.000
Branch Freq.	0.000
RI Area - (nivml)	81.72
UV Area - (mvml)	0.00
RALS Area - (mvml)	330.21
LALS Area - (mvml)	282.65
IVDPArea - (mvml)	1485.35
Sample Recovery (%) dn/dc - (ml/g) dA/dc - (ml/g)	0.000 78.066 0.1040 0.0000 1.0000 0.0000
Annotation	
Method File	LONG GROUP 3-19-17-0000.vcr
Limits File	New 02, 2017, 12, 47, 14
Date Acquired	May 03, 2017 - 15:47:10
Solveni	ICI
Acquisition Operator	admin : Administrato
Calculation Operator	CLMCOLO LITY
Column Set	CLM0210 - HI X
Flow Pate (ml/min)	System 1 000
riow rate - (m/min)	1.00
unj volume - (ul)	200.
Detector Term (deg ()	0.0033.
Detector Temp (deg C)	100.
Column Town (dog (*)	
Column Temp (deg C)	100.

Figure S27. GPC of polyethylene. (Table 2, Entry 4)

Figure S28. Representative GPC of polyethylene produced using complex **1** prior to rigorous ligand purification (*Note the presence of a high molecular weight shoulder*).

Figure S29. DSC of polyethylene. (Table 2, Entry 1)

Figure S30. DSC of polyethylene. (Table 2, Entry 2)

Figure S31. DSC of polyethylene. (Table 2, Entry 3)

Figure S32. DSC of polyethylene. (Table 2, Entry 4)

Figure S33. Plot of Stress versus Strain for polyethylene homopolymers and block copolymers. Key: \bullet = Table 2, entry 1; \bullet = Table 2, entry 2; \bullet = Table 2, entry 3; \bullet = Table 2, entry 4.