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Abstract: Vitrimers are covalently crosslinked polymers that behave as conventional thermosets
below the glass transition temperature (Tg) but can flow above a particular temperature, Tv > Tg,
by bond exchange reactions. In epoxy vitrimers, transesterification reactions are responsible for their
behavior at T > Tv that enables flow, thermoforming, recycling, self-healing and stress relaxation.
A statistical analysis based on the fragment approach was performed to analyze the evolution of the
network structure of epoxy vitrimers during transesterification reactions. An analytical solution was
obtained for a formulation based on a diepoxide and a dicarboxylic acid. A numerical solution was
derived for the reaction of a diepoxide with a tricarboxylic acid, as an example of the way to apply
the model to polyfunctional monomers. As transesterification acts as a disproportionation reaction
that converts two linear fragments (monoesters) into a terminal fragment (glycol) and a branching
fragment (diester), its effect on network structure is to increase the concentration of crosslinks and
pendant chains while leaving a sol fraction. Changes in the network structure of the epoxy vitrimer
can take place after their synthesis, during their use at high temperatures, a fact that has to be
considered in their technological applications.

Keywords: epoxy-acid reactions; epoxy vitrimers; fragment approach; network structure; statistical
analysis; transesterification reactions

1. Introduction

Fatty acids have been employed in epoxy formulations for varnishes and coatings since the
middle of the last century. The esters generated provide excellent properties to the resulting materials,
including adhesion, flexibility, water-resistance and brushing and grinding ease. Unsaturated fatty
acids are used for air-dried coatings while saturated fatty acids are used in sub-stoichiometric ratios
and reaction of the epoxy excess is performed adding conventional hardeners such as polyamines.
Modern high performance-coatings are based on the use of polycarboxylic acids as hardeners of
acrylate-epoxy monomers [1].

The addition reaction of an epoxy group with a carboxylic acid either uncatalyzed or employing a
variety of different catalysts, such as tertiary amines or triphenyl phosphine, generates a β-hydroxyester
as shown in Scheme 1.
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Scheme 1. Addition reaction of a carboxylic acid to an epoxy group. Scheme 1. Addition reaction of a carboxylic acid to an epoxy group.
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Secondary reactions can take place such as the epoxy homopolymerization initiated by the
same catalysts or the esterification of the OH groups with the carboxylic acid leading to a new ester
group and water as a reaction product. In turn, epoxy groups can be hydrolyzed with the water
generated. The sequence of these reactions was clearly established by Dušek and co-workers [2].
They studied the reaction of a monoepoxide (phenyl glycidyl ether) with a monocarboxylic acid
(hexanoic acid), catalyzed by triethylamine. For every stoichiometric ratio investigated, they found
that the epoxy-carboxylic acid reaction took place first up to an almost complete conversion. After
completion of this reaction, homopolymerization was observed in formulations with epoxy excess and
condensation esterification in the presence of a carboxylic acid excess. However, they observed that the
concentration of the monoester (ME) produced by the epoxy-acid reaction did not remain constant but
decreased to a final constant value after keeping the system for several hours at the selected reaction
temperature. The reason was the partial conversion of the monoester into a glycol (G) and a diester
(DE) by a transesterification reaction until equilibrium was attained (Scheme 2).
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Transesterification reactions were well known in organic chemistry but their presence in the
epoxy-acid chemistry had not been previously emphasized. A conclusion of this study was that in
a polyfunctional system this reaction may significantly affect the network structure by breaking the
chains and giving place to new crosslinks.

The significance of the experimental findings of Dušek and co-workers remained dormant for
almost three decades until the group of Leibler in Paris discovered that transesterification reactions
gave unusual properties to the epoxy-carboxylic acid networks giving rise to a new class of materials
called epoxy vitrimers [3–5]. They realized that, in the temperature range where transesterification
reactions take place, the crosslinked epoxy is able to interchange fragments of the network structure.
This takes place by production and recombination of glycol and diester fragments enabling the
interchange of monoester fragments located in different positions of the network. The possibility of
interchanging fragments of the network structure enables flow, thermoforming, recycling, self-healing
and stress relaxation among several other desirable properties. This discovery rapidly led to the design
of a set of new materials for advanced technological applications.

The behavior of a vitrimer can be visualized in Figure 1.
Transesterification reactions are in fact activated at T > Tg where β-hydroxyester segments

acquire enough mobility. However, the observation of flow depends on the timescale of the experiment.
The arbitrary temperature Tv is defined at a viscosity level of 1012 Pa.s, characteristic of a solid-to-liquid
transition. At T > Tv, the flow is governed by the kinetics of transesterification reactions that follow an
Arrhenius equation. This keeps viscosity at high values in a broad temperature range. This behavior
enables the thermoforming of complex shapes and is characteristic of strong glasses like inorganic
silica glass. This is the origin of the identification of these materials as epoxy vitrimers.

Following the seminal papers of Leibler and coworkers [3–5], an explosion in the literature of
epoxy vitrimers based on the epoxy-acid chemistry took place, particularly focused on bio-based
formulations [6], action of transesterification catalysts [7]; characterization and theoretical modeling of
viscoelastic and mechanical properties and welding behavior [8–14]; self-healing, reprocessing and
recycling [15–18]; remote and multi-stimuli activation [19–24]; and silica-reinforced [25] and other
advanced materials [26–32]. The behavior of epoxy vitrimers based on the epoxy-acid anhydride
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chemistry has also been analyzed [3,4,33,34]. However, the epoxy-anhydride reaction produces ester
groups, making it necessary to generate the OH groups needed to promote transesterification by other
set of reactions (homopolymerization of an epoxy excess [35], or alcohol or water addition to the
initial formulation). Epoxy-acid formulations employing a high epoxy-excess are also employed to
manufacture paramagnetic composites [36,37]. In what follows, we will restrict our analysis to epoxy
vitrimers generated by epoxy-carboxylic acid formulations.
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Figure 1. (A) Left: V-T characteristics of an amorphous thermoplastic polymer. Right: At T > Tg,
viscosity follows the WLF equation; (B) Left: V-T characteristics of a vitrimer. At T > Tv, bond exchange
reactions enable flow. Right: At T > Tv, viscosity follows an Arrhenius equation. Reprinted with
permission from Capelot et al. [5].

The focus of the recent literature in the field is placed on the relevant properties of the materials
generated and their possible technological applications. Even if the occurrence of transesterification
reactions is always indicated as the basis of their behavior, the effect of these reactions on the network
structure, mentioned in the pioneering study of Dušek and co-workers [2], is practically not considered
at all. In this article, we will theoretically analyze this effect for two different types of networks: those
based on the stoichiometric reaction of a dicarboxylic acid (A2) with a diepoxide (B2) and those arising
from the stoichiometric reaction of a tricarboxylic acid (A3) with a diepoxide (B2). Again, we will use
as a starting point a (rather) forgotten study of the group of Dušek[38] and we will expand it to analyze
the effect of transesterification reaction on the evolution of average statistical parameters of both types
of epoxy networks. Some concepts related to the modification of average statistical parameters of the
network during the processing of an epoxy vitrimer will be discussed.

2. Equilibrium in Transesterification Reactions

Transesterification reactions of β-hydroxyesters are reversible and lead to an equilibrium
state [2,38]:

2 ME = G + DE (1)
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The equilibrium constant is given by:

K =
(G)(DE)

(ME)2 =
(G)2

(ME)2 (2)

where (G) = (DE). It is convenient to express equilibrium in terms of the conversion in the
transesterification reaction (x): (ME) = (ME)0·(1 − x), and (G) = (DE) = (ME)0·x/2. Therefore,
at equilibrium:

K1/2 =
xeq

2
(
1− xeq

) (3)

or

xeq =
2·K1/2(

1 + 2·K1/2
) (4)

An experimental value of K = 0.15± 0.05 was reported for the model system based on the reaction
product of phenyl glycidyl ether and hexanoic acid after a prolonged heating at 110–120 ◦C, employing
tributylamine as catalyst [38]. This gives xeq = 0.44, meaning that the concentrations of glycol and
diester are significant when equilibrium is attained. In the analysis of the evolution of average statistical
parameters of the networks, we will analyze trends up to an esterification conversion, x = 0.5, to cover
the range of the equilibrium value and considering that the value of the equilibrium conversion might
vary with temperature.

3. Statistical Analysis of Transesterification in a Stoichiometric A2 + B2 (Dicarboxylic Acid +
Diepoxide) Formulation

Several formulations of epoxy vitrimers reported in the literature are based on the reaction of
stoichiometric amounts of a diepoxide (usually diglycidyl ether of bisphenol A, DGEBA) with a
dicarboxylic acid such as adipic (C6), suberic (C8), azelaic (C9) or sebacic (C10) acids. In most of these
studies, authors verify that a gel is formed by swelling the epoxy vitrimer in an appropriate solvent.
The formation of a gel is simply due to the generation of crosslinks by transesterification reactions [38].

Before performing a theoretical analysis of the network structure produced by transesterification,
it is convenient to analyze experimental results obtained in a stoichiometric system of DGEBA and
azelaic acid catalyzed by tributylamine [38]. The reaction was carried out at 110 ◦C. After about
6–6.5 h, the conversion in the epoxy-carboxylic acid reaction was higher than 0.95 and gelation was
experimentally observed. At high conversions of epoxy and carboxylic acid groups, their reaction
rate slows down attaining a comparable rate than the one of transesterification. The linear oligomers
produced by the epoxy-carboxylic acid reaction are branched by transesterification leading to the
formation of a gel. At about 8 h reaction, the residual concentration of free epoxy groups was very low
(about 1–2% of their initial value and comprised within the experimental detection error). The increase
in crosslink density was determined by measuring the elastic modulus of the gel as a function of
the reaction time at 110 ◦C. An asymptotic value was obtained after about 60–100 h, showing that
transesterification reactions were very slow at the selected reaction conditions. The gel fraction attained
an asymptotic value of 83% early in the transesterification reaction.

A statistical treatment of network formation was performed using the tree-like model and
employing cascade substitution [38]. A numerical solution enabled the prediction of the sol fraction
and the concentration of crosslinks for advanced conversions in the epoxy-carboxylic acid reaction
(xE = 0.95, 0.99 and 1) and variable conversions (x) in the transesterification reaction. Here,
the statistical analysis is performed using the fragment approach [39], a method that has been
applied to predict parameters of different systems: epoxy-amine networks with simultaneous or
subsequent polyetherification [40,41], homopolymerization of epoxides initiated by tertiary amines [42],
polymer networks generated by living polymerization [43], polyurethane networks [44], free-radical
polymerizations [45,46], cyclotrimerization of dicyanates [47,48], networks produced by stepwise and
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chainwise chemistries [49], epoxy-anhydride networks [50,51], epoxy monomers crosslinked with
hyperbranched poly(ethyleneimine)s [52], and epoxy-thiol networks [53]. The use of this method led to
simple analytical equations for the gel conversion, the concentration of crosslinks and the sol fraction.

At any conversion of the epoxy-carboxylic acid reaction (xE) and in the transesterification reactions
(x), the polymer structure is composed by the five fragments shown in Figure 2.
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Figure 2. The five fragments present in the polymer structure at arbitrary conversions in the
epoxy-carboxylic acid reaction (xE) and in the transesterification reaction (x). Bonds (a) represent
half of a diepoxide molecule and bonds (b) represent half of a dicarboxylic acid molecule. The network
is built-up by joining bonds (a) to bonds (a) and bonds (b) to bonds (b) with a probability determined
by the concentration of corresponding fragments.

(Ep) represents unreacted epoxy groups with a relative concentration given by (Ep)/(Ep)0 =
1 − xE, where (Ep)0 is the initial molar concentration of epoxy groups. The molar mass of this
fragment is ME/2, where ME is the molar mass of the diepoxide monomer. The monoester (ME)
represents fragments where the epoxy group reacted with a carboxylic acid but was not converted to
transesterification products. Its relative concentration is (ME)/(Ep)0 = xE(1 − x) and its molar mass is
ME/2 + MA/2, where MA is the molar mass of the dicarboxylic acid monomer. The glycol (G) and
diester (DE) are the fragments produced by transesterification of reacted epoxy groups. Their relative
concentrations are given by (G)/(Ep)0 = (DE)/(Ep)0 = xE·x/2. The molar mass of the G fragment
is given by ME/2 + 18 while the one of the diester fragment is ME/2 + MA − 18. Fragments with
unreacted carboxylic acid groups have a relative concentration (Ac)/(Ep)0 = (1 − xE) and a molar mass
equal to MA/2.

To produce gelation, it is necessary to advance the transesterification to a specific conversion xgel
that depends on the previous conversion of the epoxy-carboxylic acid reaction, xE. The gel conversion
can be calculated from the average masses attached to bonds (a) and (b):

W(a) = Σ [probability of joining a bond (a) in fragment (i)] [mass of fragment (i) + average mass
attached to fragment (i) when leaving it from the remaining bonds]

W(b) = Σ [probability of joining a bond (b) in fragment (i)] [mass of fragment (i) + average mass
attached to fragment (i) when leaving it from the remaining bonds]

This gives:

W(a) = (1− xE)
ME
2 + xE(1− x)

[
ME
2 + MA

2 + W(b)
]
+ xE

2 x
[

ME
2 + 18

]
+ xE

2 x
[

ME
2 + MA − 18 + 2·W(b)

]
(5)

W(b) = xE(1− x)
[

ME

2
+

MA

2
+ W(a)

]
+ xE·x

[
ME

2
+ MA − 18 + W(a) + W(b)

]
+ (1− xE)

MA

2
(6)
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From Equations (5) and (6), we get:

W(b) =
f(Mi, xE, x)

[1− xE(x + xE)]
(7)

At the gel conversion, xgel, W(b)→ ∞ and W(a)→ ∞. Therefore, the gel conversion is given by:

xE

(
xgel + xE

)
= 1 (8)

or
xgel =

1
xE
− xE (9)

The minimum epoxy-carboxylic acid conversion to generate a gel by transesterification is
xE = 0.618, making it necessary to attain complete transesterification (x = 1) to obtain a gel. However,
the maximum transesterification conversion is limited by equilibrium. Assuming an equilibrium
conversion, xeq = 0.44, the necessary epoxy-carboxylic acid conversion to generate a gel is xE = 0.804.
In practice, the epoxy-carboxylic acid reaction attains very high conversions before observing any
evidence of transesterification. For xE = 0.95, xgel = 0.103, for xE = 0.98, xgel= 0.040 and for xE = 1, a
giant macromolecule is generated before the beginning of transesterification (xgel = 0).

For x > xgel, average statistical parameters may be calculated employing the same fragments
depicted in Figure 2. We will derive general analytical equations valid for any value of xE comprised
in the gelation region and will illustrate the results for xE = 0.98 and xE = 1 (limiting case where the
epoxy-carboxylic acid and transesterification are strictly consecutive reactions).

Let us call F(a) and F(b) the probability of having finite continuations when looking out of bonds
(a) and (b), respectively.

F(a) = Σ[probability of joining fragment i by a bond (a)](probability to have a finite continuation
from fragment i)

F(b) = Σ[probability of joining fragment i by a bond (b)](probability to have a finite continuation
from fragment i)

This leads to:
F(a) = (1− xE) + xE(1− x)F(b) +

x
2

xE +
x
2

xE·F(b)2 (10)

F(b) = xE(1− x)F(a) + xE·x·F(a)·F(b) + (1− xE) (11)

From Equations (10) and (11), we get

A·F(b)3 + B·F(b)2 + C·F(b) + D = 0 (12)

where

A =

(
1
2

)
x2·x2

E (13)

B =

(
3
2

)
x(1− x)x2

E (14)

C = x2
E(1− x)2 + x·xE

[
1− xE +

(
1
2

)
x·xE

]
− 1 (15)

D = 1− xE + xE(1− x)
[

1− xE +

(
1
2

)
x·xE

]
(16)

Notice that F(b) = 1 is a root of Equation (12) that has only physical sense in the pregel stage.
Eliminating this root from the cubic equation leads to a quadratic equation that can be analytically
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solved giving a positive root comprised between 0 and 1 and a negative root without physical sense.
The positive root is given by:

F(b) =
1

2·x

{[
(3− 2·x)2 + 4·x2

(
D
A

)] 1
2
− (3− 2·x)

}
(17)

and F(a) can be calculated from Equation (10).
It is interesting to visualize the variation of both probabilities in the 0–0.5 conversion range for

xE = 0.98 and xE = 1 (Figure 3). In the case of xE = 0.98, F(a) = F(b) = 1 up to x = xgel = 0.0404 and
then they both decrease with the extent of transesterification. For xE = 1, both probabilities start from
the same value (1/3) and F(a) increases slightly with conversion due to the predominant effect of the
increase in the concentration of glycol, while F(b) decreases with conversion due to the increase in the
connection of branching points to the gel.Polymers 2018, 10, 43  7 of 15 
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Figure 3. Variation of probabilities F(a) and F(b) in the 0–0.5 conversion range of the transesterification
reaction, for xE = 0.98 and xE = 1.

Branching points of the network are directly given by diester units which evolve linearly with
conversion, (DE) = xE(x/2)(Ep)0. Crosslinks (X3) are the fraction of these units with an infinite
continuation to the gel from the bond (a) and both bonds (b):

(X3)= xE

(x
2

)
(Ep)0[1− F(a)][1− F(b)]2 (18)

Figure 4 shows the evolution of the concentration of crosslinks, (X3)/(Ep)0, in the 0–0.5 conversion
range for xE = 0.98 and xE = 1. The concentration of elastic chains is (3/2)(X3).
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Figure 4. Evolution of the concentration of crosslinks during transesterification in the 0–0.5 conversion
range, for xE = 0.98 and xE = 1.

For xE = 1, the concentration of crosslinks increases from the beginning of transesterification.
Due to the opposite variations of F(a) and F(b), only a slight departure of linearity is observed.
For xE = 0.98, the concentration of crosslinks begins to increase from xgel and it exhibits a larger
departure from linearity. This evidences the significant effect of the conversion attained in the
epoxy-carboxylic acid reaction on the statistical parameters in the postgel stage.

The sol fraction can be calculated as:

Wsol = WEp·F(a) + WME·F(a)·F(b) + WG·F(a) + WDE·F(a)·F(b)2 + WAc·F(b) (19)

where the mass fractions are given by WEp = (1 − xE)(ME/2)/MT; WME = xE(1 − x)[(ME/2)
+ (MA/2)]/MT; WG = (x/2)xE[(ME/2) + 18]/MT; WDE = (x/2)xE[(ME/2) + MA − 18]/MT; and
WAc = (1 − xE)(MA/2)/MT. The total mass is MT = (ME/2) + (MA/2) and the summation of mass
fractions equals 1.

It is interesting to compare predicted values with those experimentally found for a stoichiometric
formulation of DGEBA and azelaic acid [38], ME = 340 g/mol and MA = 188 g/mol. Figure 5 shows
the evolution of the predicted sol fractions in the 0–0.5 conversion range for xE = 0.98 and xE = 1.
For xE = 1, the sol fraction remains practically constant from the beginning of the transesterification
reaction (it varies from 11.1% to 12.0%) in the whole conversion range. For xE = 0.98, the sol fraction
decreases rapidly at the gel conversion and more slowly at higher conversions. At conversions
close to equilibrium (assumed as xeq = 0.44), the predicted sol fraction is equal to 15.9% which is
very close to the final experimental value (17%). The matching is almost exact if we exclude the
1% of tertiary amine used as catalyst that can be eluted with the sol. The slow variation of the sol
fraction in a broad conversion predicted by the statistical model is also in qualitative agreement with
experimental observations.

The contribution of every fragment to the sol fraction is shown in Figure 6 for the case of xE = 0.98.
The contribution of the monoester fragment is the highest at low conversions while the contribution of
the glycol becomes similar at conversions close to equilibrium.
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4. Statistical Analysis of Transesterification in Stoichiometric A3 + B2 (Tricarboxylic Acid +
Diepoxide) Formulations

Some formulations of epoxy vitrimers employ trifunctional carboxylic acids such as citric acid,
tricarballylic acid and mixtures of dicarboxylic and tricarboxylic fatty acids (Pripol 1040). Although
the fragment approach may be adapted to analyze any particular combination of polyfunctional
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monomers, we will restrict the discussion to the case of a formulation consisting of stoichiometric
amounts of a tricarboxylic acid and a diepoxide.

In this case, we will assume that the epoxy-carboxylic acid reaction reached complete conversion
(xE = 1), before transesterification begins to take place. At this point, there is no sol fraction and all of
the tricarboxylic acid fragments act as crosslinks of the network. We want to analyze the way in which
transesterification modifies the statistical parameters of this ideal network.

Figure 7 shows the fragments generated during transesterification.
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Figure 7. The four fragments of the polymer network during transesterification reactions. Bonds (a)
represent half of a diepoxide molecule, bonds (b+) and (b−) represent (1/6) of a tricarboxylic acid
molecule. The network is build-up by joining bonds (a) to bonds (a) and bonds (b+) to bonds (b−) with
a probability determined by the concentration of the corresponding fragments.

At any conversion (x) in the transesterification reaction, (ME) = (ME)0·(1 − x), where (ME)0

represents the concentration of the monoester fragments after completion of the epoxy-carboxylic acid
reaction, (ME)0 = (Ep)0. The molar mass of the monoester fragment is equal to (ME/2) + (MA/6), where
ME is the molar mass of the diepoxide and MA the molar mass of the tricarboxylic acid. The molar
concentration of glycol is (G) = (ME)0·x/2. Its molar mass is equal to (ME/2) + 18. The molar
concentration of diester is (ME)0·x/2. Its molar mass is equal to (ME/2) + (MA/3) − 18. The molar
concentration of the acid skeleton is (A) = (ME)0/3 (corresponding to a 1:1 molar ratio of epoxy and
carboxylic acid groups). Its molar mass is equal to MA/2.

After completion of the epoxy-carboxylic acid reaction and before the beginning of
transesterification, only fragments (ME) and (A) are present in the system. The total mass is given by
(ME)0(ME/2 + MA/6) + [(ME)0/3](MA/2) = (ME)0(ME/2 + MA/3). Mass fractions of every fragment
during transesterification are then calculated as: WME = (1 − x)(ME/2 + MA/6)/(ME/2 + MA/3),
WG = (x/2)(ME/2 + 18)/(ME/2 + MA/3), WDE = (x/2)(ME/2 + MA/3 − 18)/(ME/2 + MA/3), and
WA = (1/3)(MA/2)/(ME/2 + MA/3). It can be verified that the sum of all mass fractions equals 1.

Let us call F(a), F(b+) and F(b−) the probabilities of having finite continuations when looking out
of bonds (a), (b+) and (b−), respectively.

F(a) = (1− x)F(b+) +
x
2
+

x
2

F(b+)2 (20)

F(b+) = F(b−)2 (21)

F(b−) = (1− x)F(a) + 2
x
2

F(a)·F(b+) (22)

By substituting Equation (22) into Equation (21) and using Equation (20), we get:[
(1− x)F(b+) +

x
2
+

x
2

F(b+)2
]2
[1− x + x·F(b+)]2 − F(b+) = 0 (23)
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A root for F(b+) comprised between 0 and 1 may be numerically found for any conversion x and
values of F(a) and F(b−) may then be obtained from Equations (20) and (22), respectively. Figure 8
shows the variation of the three probabilities with x. For the equilibrium conversion, assumed as
xeq = 0.44, roots of Equations (20)–(22) are: F(b+) = 0.017, F(b−) = 0.1304 and F(a) = 0.2296.
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B2 formulation.

The concentration of crosslinks at x = 0 was (A)/(ME)0 = (X3)/(ME)0 = 1/3. For any conversion
during transesterification, the concentration of crosslinks is given by:

(X3)

(ME)0
=
(x

2

)
[1− F(a)][1− F(b+)]2 +

1
3
[1− F(b−)]3 (24)

Figure 9 shows the increase in the concentration of crosslinks during transesterification reactions.
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For conversions close to equilibrium, assumed as xeq = 0.44,

(X3)

(ME)0
= 0.164 + 0.219 = 0.383 (25)

Transesterification produced a 15% increase in the concentration of crosslinks, from the initial
value of 0.333 to the final value of 0.383. A fraction of the initial crosslinks supplied by the
tricarboxylic acid disappears but is compensated in excess by crosslinks arising from the diester
fragments. Therefore, it is expected that the elastic modulus of the polymer network increases due
to transesterification.

Pendant chains are also generated in the gel structure. Their concentration at equilibrium is given
by (G)eq [1 − F(a)], so that they reach a value close to 17% (ME)0. The presence of these chains will
affect the viscoelastic properties of the network.

A sol fraction is also generated by transesterification. Just to provide an estimation of its value,
we will consider a stoichiometric formulation of DGEBA (ME = 340 g/mol) and tricarballylic acid
(MA = 176 g/mol). The sol fraction is given by:

Wsol = WME·F(a)·F(b+) + WG·F(a) + WDE·F(a)·F(b+)2 + WA·F(b−)3 (26)

Figure 10 shows the evolution of the sol fraction during transesterification. The mass fraction
of sol at conversions close to equilibrium is 4.4% with the major contribution produced by glycol
fragments (mainly DGEBA molecules with both ends converted to glycol groups).Polymers 2018, 10, 43  12 of 15 
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5. Significance of the Statistical Analysis Regarding the Synthesis and Use of Epoxy Vitrimers

Most of the recent literature concerning epoxy vitrimers is focused on emphasizing the use of this
relevant family of materials in advanced technological applications. The central role of bond exchange
reactions on their properties is indicated but there is no insight into the effect of these reactions on
the possible modification of statistical parameters of the polymer network. Our simple statistical
analysis showed that, in the evolution towards an equilibrium state, transesterification reactions
produce significant changes in the polymer structure. For the usual case of stoichiometric A2 + B2
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formulations, transesterification is responsible for gelation (as shown by the group of Dušek more than
three decades ago [38]), produced by the generation of crosslinks with an increasing concentration
in the course of transesterification. As a counterpart, a relative large sol fraction remains when
equilibrium is attained. For A3 + B2 formulations, chosen as an example of those producing gels during
the previous epoxy-carboxylic acid reaction, transesterification reactions increase the crosslink density
and simultaneously generate pendant chains and a sol fraction.

Transesterification reactions are very much slower than epoxy-carboxylic acid reactions (they
require long times at high temperatures). Therefore, unless the synthesis of the epoxy vitrimer
is performed including a prolonged final step at a high temperature, transesterification could be
out of equilibrium. In this case, during the use of the vitrimer at T > Tv, the network structure
will continuously change towards the equilibrium. As the equilibrium constant might change with
temperature, the structure could still be modified by employing different temperatures in this range.
The evolution of the elastic modulus of the epoxy vitrimer in the rubbery state can be used as an
indicator of the attainment of equilibrium in transesterification reactions. Just to mention an example
from the literature, an epoxy vitrimer based on DGEBA and Pripol 1040, synthesized by heating at
130 ◦C for 6 h, had an elastic modulus of 3.5 MPa at 23 ◦C [15]. Heating for 1 h at 180 ◦C increased
the elastic modulus to 3.7 MPa [15], a fact that might be assigned to the advance of transesterification
reactions. Possibly, a further increase could have been observed if a prolonged heating at 180 ◦C had
been performed.

6. Conclusions

A statistical analysis based on the fragment approach was performed to analyze the evolution of
the network structure of epoxy vitrimers during transesterification reactions. An analytical solution
enabling the calculation of statistical parameters in the postgel stage was obtained for a formulation
based on a diepoxide and a dicarboxylic acid. A numerical solution was presented for the reaction of a
diepoxide with a tricarboxylic acid, as an example of the way to apply the model to polyfunctional
monomers. As transesterification acts as a disproportionation reaction that converts two linear
fragments (monoesters) into a terminal fragment (glycol) and a branching fragment (diester), its effect
is to increase the concentration of crosslinks and pendant chains while leaving a sol fraction. Changes
in the network structure of the epoxy vitrimer can take place after their synthesis, during their use at
high temperatures, a fact that has to be considered in their technological applications.
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