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Abstract: Two large band-gap polymers (PTPACF and PTPA2CF) based on polytriphenylamine
derivatives with the introduction of electron-withdrawing trifluoromethyl groups were designed
and prepared by Suzuki polycondensation reaction. The chemical structures, thermal, optical and
electrochemical properties were characterized in detail. From the UV-visible absorption spectra,
the PTPACF and PTPA2CF showed the optical band gaps of 2.01 and 2.07 eV, respectively. The cyclic
voltammetry (CV) measurement displayed the deep highest occupied molecular orbital (HOMO)
energy levels of −5.33 and −5.38 eV for PTPACF and PTPA2CF, respectively. The hole mobilities,
determined by field-effect transistor characterization, were 2.5 × 10−3 and 1.1 × 10−3 cm2 V−1 S−1

for PTPACF and PTPA2CF, respectively. The polymer solar cells (PSCs) were tested under the
conventional device structure of ITO/PEDOT:PSS/polymer:PC71BM/PFN/Al. All of the PSCs
showed the high open circuit voltages (Vocs) with the values approaching 1 V. The PTPACF and
PTPA2CF based PSCs gave the power conversion efficiencies (PCEs) of 3.24% and 2.40%, respectively.
Hence, it is a reliable methodology to develop high-performance large band-gap polymer donors
with high Vocs through the feasible side-chain modification.

Keywords: triphenylamine; trifluoromethyl; large band gap; polymer solar cells; high open
circuit voltage

1. Introduction

In the past decades, the photovoltaic cells are one of versatile technologies realizing the clean
energy, including the silicon-based inorganic solar cells and carbon-based organic/polymer solar
cells [1–3]. Among them, bulk-heterojunction polymer solar cells (BHJ PSCs) are becoming an attractive
technology both academically and commercially, due to their excellent merits in low cost, flexibility,
large-scale fabrication and feasible accessibility of organic chemicals [4–6]. Recently, the power
conversion efficiencies (PCEs) of BHJ PSCs have been exceeding 14% for the single-junction PSCs [7].
This achievement makes the potential realization in converting the solar power to the electricity for the
general marketing application.

In BHJ PSCs, they comprise of a ‘sandwich structure’ which means the BHJ active layer
is sandwiched by the anode and cathode, respectively [8]. To achieve the high-performance
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PSCs, many works are located at the development of active layers containing polymer donors,
fullerene and non-fullerene acceptors [9–11]. To date, a plenty of polymer donors have been
designed and synthesized, such as polycarbazoles [12], polyfluorenes [13], polyindolcarbazoles [14]
and polydibenzothiophene (PDBTs) [15,16] derivatives. Among them, a PDBT derivative, PBT7-Th,
showed the very high photovoltaic properties in fullerene-based PSCs with the highest PCE over
10% [17]. Due to the weakness of fullerene derivatives in weak light absorption and low stability
in PSCs, a series of non-fullerene organic acceptors are developed, such as ITIC [18] and IDIC [19].
The appearance of non-fullerene acceptors stimulates the fast development of large-band gap
polymers, resulting from the complementary absorption between polymer donors and non-fullerene
acceptors, and matched energy-level alignment [20–22]. For instance, a large band-gap polymer
poly[(2,6-(4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)-benzo[1,2-b:4,5-b′]dithiophene))-alt-(5,5-(1′,3′-di-2-
thienyl-5′,7′-bis(2-ethylhexyl)benzo[1′,2′-c:4′,5′-c′] dithiophene-4,8-dione)] (PBDB-T) could push the
PCE to the over 12% by using the IT-M as the electron acceptor [23]. Therefore, these successful results
open the new era for synthetic chemistry and device engineering in PSCs.

Triphenylamine (TPA) is a versatile aromatic moiety which is utilized widely in organic
electronics, attributing to its advantages in low cost, feasibly chemical modification, high hole mobility,
highly thermal stability and deep highest occupied molecular orbital (HOMO) energy levels [24,25].
The functional molecules prepared from TPA showed high hole transporting ability and high
light-emitting properties in organic light-emitting diodes (OLEDs) [26]. Furthermore, the TPA-based
conjugated polymers or small molecules can be utilized as electron donors and electron acceptors
in PCSs [27,28]. Due to the deep HOMO energy level of TPA unit, the polymers based on TPA
also displayed the high open circuit voltages (Vocs) in PSCs [29]. Moreover, the nature of high hole
mobility triggers the huge application of TPA-based molecules and polymers as hole transporting
layers (HTLs) in organic-halide perovskite solar cells (PVSCs); owing to the introduction of these
versatile materials in PVSCs, both of the Vocs and film formability were improved dramatically with
the very high photovoltaic performance [30]. Hence, these achievements of TPA-based molecules
and polymers in optoelectronic devices will continue the drastic developments of new TPA-based
materials via synthetic functionalization. As displayed in Figure 1, the bare TPA unit has the potential
modification by anchoring functional groups to improve the optoelectronic properties. For instance,
the bare positions of 3-, 4- and 5- are un-functionalized, and they could be modified by introducing the
electron-withdrawing or electron-donating groups to tune the energy levels of the targeting polymers.
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Figure 1. Chemical structure of triphenylamine-based conjugated polymer.

Herein, two large band-gap TPA-based polymers were designed and synthesized. One of them
is trifluoromethyl-substituted polymer (PTPACF), and another is bis(trifluoromethyl)-substituted
polymer (PTPA2CF). Ascribing to the electron-withdrawing ability of trifluoromethyl group,
the HOMO energy levels of PTPACF and PTPA2CF can be tuned to deeper level approaching to about
−5.40 eV. Through testing the photovoltaic performance using PTPACF and PTPA2CF as polymer
donors and [6,6]-phenyl-C71-butyric acid methyl ester (PC71BM) as the acceptors, the Vocs were
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improved to about 1 V. Therefore, this is a reasonable methodology to develop the high-performance
polymer donors with high Voc values.

2. Experimental Section

2.1. Characterization and Instrumentation

Through utilizing Bruker 300 (or 600) MHz DRX spectrometer (Bruker, Karlsruhe, Germany)
with tetramethylsilane (TMS) as the reference, the 1H nuclear magnetic resonance (NMR) and
13C NMR spectra were characterized in detail. By using the linear polystyrene (PS) as standards
with the tetrahydrofuran (THF) as eluent, the number-averaged molecular weight (Mn) and
weight-averaged molecular weight (Mw) of the targeting polymers were tested on a Waters gel
permeation chromatography (GPC) system. Cyclic voltammetry (CV) measurement was performed on
a CHI600D electrochemical workstation (CH Instruments, Shanghai, China) in a nitrogen-saturated
anhydrous acetonitrile solution with a 0.1 mol·L-1 tetrabutylammonium hexafluorophosphates
(Bu4NPF6) as electrolyte. In CV test, it is utilized with a standard three electrodes cell, comprising of
a platinum (Pt) working electrode, a Pt wire counter electrode, against saturated calomel electrode
(SCE) as reference electrode. At the same time, the scan rate was performed at 50 mV·s-1, and the
ferrocene/ferrocenium (Fc/Fc+) was applied as the internal reference. The results of UV-vis absorption
spectra were recorded on a SHIMADZU UV-3600 spectrophotometer (SHIMADZU, Kyoto, Japan).
The atomic force microscopy (AFM) under the tapping-mode was carried out on a Veeco Nanoscope V
scanning probe microscope, for testing topography and phase images of blending films.

2.2. Device Fabrication

All devices were fabricated on indium tin oxide (ITO)-coated glass substrates. A thin-layer
(40 nm) of poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS) (Clevios 4083)
was spin-coated onto UV-ozone treated ITO substrates at 4000 rpm for 40 s and then baked at
140 ◦C for 15 min in air. The solution containing the polymers and PC71BM with different weight
ratios in o-dichlorobenzene (ODCB) were spin-coated inside a glove-box with nitrogen at 1200 rpm
for 40 s to form the active layers (~80 nm). In this study, the conventional device structure was
ITO/PEDOT-PSS/active layer/ PFN/Al, where the PFN is poly[(9,9-dioctyl-2,7-fluorene)-alt-(9,9-bis
(3′-(N,N-dimethylamino)propyl)-2,7-fluorene)]. The PFN layer with a thickness of about 5 nm was
prepared by spin-casting a mixed solution (0.2 mg/ml) in methanol with a trace of acetic acid before
the cathode evaporation. Aluminum (80 nm) was utilized as cathode by thermally evaporation under
vacuum (~10−6 torr) with a shadow mask of 0.16 cm2. The current-voltage (J-V) curves were measured
on a Keithley 2400 multimeter under AM 1.5 G solar illumination at 100 mW cm−2. The incident
photon-to-current conversion efficiency (IPCE) values were recorded by a monochromator under
calibrating with a silicon photodiode. Hole mobility data of neat polymer films were measured by
field-effect transistors (FETs) method with the device configuration of Al/AlOx:Nd/PMMA/PTPACF
or PTPA2CF/Au (W/L = 500 µm/70 µm).

2.3. Synthesis of Monomers and Polymers

All the starting materials and reagents were utilized by purchasing commercially without further
purification. [6,6]-phenyl-C71-butyric acid methyl ester (PC71BM) was purchased from Lumtec Corp.
(Taipei, Taiwan). The monomers of 4,7-Bis(5-bromothiophen-2-yl)-5,6-bis (octyloxy)benzothiadizole 1,
N,N-bis(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)-4-(trifluoromethyl)phenyl)aniline 2
(283 mg, 0.5 mmol) or N,N-bis(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)-3,5-bis
(trifluoromethyl)aniline 3, were synthesized according to the published literatures [29]. The targeting
polymers in this study were prepared by the following synthetic methodologies.
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2.3.1. General Procedure for Preparing Polymers

N,N-bis(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)-4-(trifluoromethyl)phenyl)aniline 2
(283 mg, 0.5 mmol) or N,N-bis(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)-3,5-bis
(trifluoromethyl)aniline 3 (317 mg, 0.5 mmol), 4,7-Bis(5-bromothiophen-2-yl)-5,6-bis (octyloxy)
benzothiadizole 1 (349 mg, 0.5 mmol) and Pd(PPh3)4 (11.6 mg, 0.01 mmol) were dissolved in 10 mL
toluene under the nitrogen protection. The organic basic tetraethyl ammonium hydroxide aqueous
solution (2 mL, 20 wt/wt %) was added in one portion and the mixture was heated to 80 ◦C and
continued to react for 48 h. After 48 h, phenylboronic acid (0.609 g, 5 mmol) in THF was added and
reacted for additional 12 h; then, bromobenzene (1.57 g, 10 mmol) was injected into the reaction system
in one portion and reacted for another 12 h. After that, the mixture was cooled to room temperature
and precipitated in methanol. The crude polymers were then purified by Soxhlet extraction method in
methanol, acetone, hexane and chloroform respectively. Finally, the chloroform solution containing the
polymers was precipitated in methanol, and filtered off and dried at 60 ◦C in the vacuum for 10 h.

2.3.2. Poly(N,N-diphenyl-4-(trifluoromethyl)aniline-alt-4,7di(thiophen-2-yl)-5,6-bis(octyloxy)
benzothiadiazole) PTPACF

Yielding 215 mg of the target polymer as a red solid. 1H NMR (CDCl3, 600 MHz, δ): 8.29–8.12
(m, 2H, Ar–H), 7.57–7.30 (br, 8H, Ar–H), 7.13–6.95 (br, 6H, Ar–H), 4.13–4.07 (m, 4H, CH2), 1.98–1.93
(m, 4H, CH2), 1.42–1.17 (br, 20H, CH2), 0.89–0.76 (m, 6H, CH3). GPC (THF): Mn = 9100, Mw = 15700,
PDI = 1.73.

2.3.3. Poly(N,N-diphenyl-3,5-bis(trifluoromethyl)aniline-alt-4,7di(thiophen-2-yl)-5,6-bis(octyloxy)
benzothiadiazole) PTPA2CF

Yielding 175 mg of the target polymer as a red solid. 1H NMR (CDCl3, 600 MHz, δ):
8.62 (s, 1H, Ar–H), 7.65–7.27 (br, 10H, Ar–H), 7.18–7.12 (br, 4H, Ar–H), 4.21–4.15 (m, 4H, CH2),
2.05–2.02 (m, 4H, CH2), 1.51–1.24 (br, 20H, CH2), 0.93–0.86 (m, 6H, CH3). GPC (THF): Mn = 8400,
Mw = 12900, PDI = 1.54.

3. Results and Discussion

3.1. Synthesis

The detailed synthetic routes of polymers are presented in Scheme 1. The polymers PTPACF and
PTPA2CF were prepared via the general Suzuki polycondensation in the presence of active Pd(PPh3)4

as the catalyst. The crude polymers were purified via the Soxhlet extraction by methanol, acetone,
hexane and chloroform, respectively. Finally, the chloroform solution containing the polymers was
precipitated in methanol to obtain the targeting polymers as the red solids. The PTPACF and PTPA2CF
showed high solubility in common organic solvents, such as toluene, tetrahydrofuran, chloroform
and chlorobenzene. The molecular weights of PTPACF and PTPA2CF were characterized by the
Gel Permeation Chromatography (GPC), using the tetrahydrofuran as the eluent. The measured
number-averaged molecular weights (Mns) of PTPACF and PTPA2CF were 9100 and 8400 with the
polydispersity index (PDIs) of 1.73 and 1.54, respectively. (See Table 1)
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Table 1. Molecular weights and thermal stability for the polymers.

Polymers Mn Mw PDI Td (◦C)

PTPACF 9100 15,700 1.73 335
PTPA2CF 8400 12,900 1.54 338

3.2. Thermal Stability

In PSCs, the thermal stability of polymers is one of the significant parameters to evaluate the device
sustainability and life time, and the highly thermal stability of polymers will permit the high stability
of PSCs for longtime application [31–33]. In this study, the thermal gravimetric analysis (TGA) was
characterized to estimate the thermal stability of PTPACF and PTPA2CF, and the corresponding TGA
curves are presented in Figure 2. From the TGA curves, it is found that the degradation temperatures
at 5% weight loss of PTPACF and PTPA2CF are 335 and 338 ◦C, respectively. (See Table 1) These high
degradation temperatures indicate that all of the polymers can be stable up to 300 ◦C.
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3.3. UV-vis Absorption and Electrochemical Properties

The UV-vis absorption spectra of the polymers in chloroform and in thin film are shown in
Figure 3a. The details acquired from UV-vis absorption measurement are summarized in Table 2.
From Figure 3a, these two polymers display the classic “double hump” absorption peaks; some are
located at short wavelength due to the localized π–π* transition and the others appear at long
wavelength resulting from the internal charge transfer (ICT) interaction between the donor and acceptor
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units [34]. In chloroform solution, PTPACF and PTPA2CF showed the very similar absorption spectra
around 363 and 495 nm because of the similarly chemical structures. In solid thin films, both of PTPACF
and PTPA2CF give the red-shifted absorption spectra by more than 10 nm, which indicate that they
form the π–π stacking between the polymer main chains in the solid state. The onsets of the UV-vis
absorption spectra in solid films are 616 and 610 nm, corresponding to the optical band gaps of 2.01
and 2.07 eV for PTPACF and PTPA2CF, respectively [35]. From optical band gaps, it implies that all of
these two polymers present the large band gaps.

Table 2. Summary of UV-vis absorption and electrochemical properties.

Polymers λmax, in chloroform (nm) λmax, in film (nm) λonset (nm) Eg, optical (eV) Eox (V) EHOMO (eV) ELUMO (eV)

PTPACF 363, 498 375, 516 616 2.01 0.92 −5.33 −3.32
PTPA2CF 365, 495 373, 505 600 2.07 0.97 −5.38 −3.31
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The HOMO energy levels (EHOMOs) of polymers were demonstrated by cyclic voltammetry (CV)
measurement. Electrochemical CV characterization were carried out by the well-known method
with the three electrodes of Pt electrode, saturated calomel electrode, and Pt wire utilized as
the working electrode, reference electrode, and counter electrode, respectively, and 0.1 mol·L−1

tetrabutylammonium hexafluorophosphate (Bu4NPF6) solution in dry acetonitrile (CH3CN) was
used as the electrolyte. The EHOMOs of the polymers were calculated from CV measurements using
the oxidation onset potentials relative to ferrocene as an internal standard, and the relative CV
curves are shown in Figure 3b. The redox potential of Fc/Fc+ internal reference is 0.39 V vs. SCE.
The EHOMOs of PTPACF and PTPA2CF, determined by calculating from the empirical formula
of EHOMO = −e(Eox + 4.8 − E1/2, (Fc/Fc+)), are −5.33 and −5.38 eV, respectively [36]. As we did
not obtain the reductive curves from CV measurements, the lowest unoccupied molecular orbit
(LUMO) energy levels (ELUMOs) of polymers were determined by calculating from the formula of
ELUMO = Eg, optical + EHOMO, where Eg, optical means the optical band gap. Through the calculation,
ELUMOs of PTPACF and PTPA2CF are −3.32 and −3.31 eV, respectively. From CV data, we can see
that both of these two polymers show the deep HOMO energy levels, which will potentially realize
the high Vocs in these two polymers based PSCs.

3.4. Hole Mobility

To evaluate the charge transporting properties of semiconducting polymers, the hole mobility
is an important parameter for polymer donors in PSCs. In this study, we acquired the hole mobility
data of PTPACF and PTPA2CF by utilizing the field-effect transistors (FETs) method. The detailed
FETs properties containing output and transfer characteristics of the PTPACF and PTPA2CF under
the device structure of Al/AlOx:Nd/PMMA/PTPACF or PTPA2CF /Au (W/L = 500 µm/70 µm)
were displayed in Figure 4, and the hole mobility values were summarized in Table 3. From the
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FETs characterization, it shows that the hole mobilities are 2.5 ×10−3 and 1.1 × 10−3 cm2·V−1·S−1 for
PTPACF and PTPA2CF, respectively. As a comparison, we can see that the hole mobilities of PTPACF
and PTPA2CF coincide with the results based on the TPA-derived polymers published in the literature,
in which the hole mobilities would be affected efficiently by different modification of substituting
groups and co-polymerizing monomers [27,29,37]. Furthermore, the PTPACF gives the twice higher
hole mobility than PTPA2CF, which is possibly because PTPACF exists in a better molecular stacking
state than PTPA2CF. These high hole mobilities will be potentially beneficial for the charge transport
in PSCs and achieving high photovoltaic performance.

Table 3. Summarized photovoltaic performance of the PTPACF:PC71BM and PTPA2CF:PC71BM based
PSCs under the illumination of AM1.5G, 100 mW cm−2.

Polymers µ (×10−3, cm2 V−1 S−1) Jsc (mA cm−2) Voc (V) FF (%) PCE (%)

PTPACF 2.5 6.42 0.98 52.0 3.24
PTPA2CF 1.1 5.81 0.99 41.8 2.40
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3.5. Photovoltaic Performance

To study the photovoltaic performance of these two polymers as donors, the
PSCs based on PTPACF and PTPA2CF were fabricated under the device structure of
ITO/PEDOT:PSS/polymer: PC71BM/PFN/Al, where the PFN is poly[(9,9-dioctyl-2,7-fluorene)-
alt-(9,9-bis(30-(N,N-dimethylamino)propyl)-2,7-fluorene)]. The optimized weight ratio of polymer
to PC71BM is 1:4. Here, the PSCs were prepared without further post treatment, such as thermal
annealing and solvent additives. Moreover, PFN was utilized as a cathode interfacial layer in this
device architecture attributing to its versatile functions in protecting active layer when cathode
evaporation, and decreasing the work function of cathode and possibly existing the built-in electric
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fields between the active layer and cathode [38–40]. The current density-voltage (J-V) curves
and incident photon-to-current conversion efficiency (IPCE) curves measured under AM1.5G,
100 mW·cm−2 are shown in Figure 5, and the photovoltaic properties in details are summarized in
Table 3. From the photovoltaic characterization, it was found that all devices incorporating these
two polymers showed short circuit current density (Jsc) at about 6 mA cm−2, but they gave the quite
impressive high Voc values of about 1.0 V resulting from the deep HOMO energy levels of PTPACF
and PTPA2CF within the modification by electron-withdrawing trifluoromethyl groups. Both of
PTPACF and PTPA2CF shows the higher Vocs than the other published bare TPA-based polymers
without any substitution. In these bare TPA-based PSCs, the values of Voc were only located at about
0.9 V [27,29]. The PTPACF-based PSC showed the Jsc of 6.42 mA·cm−2, Voc of 0.98 V, fill factor (FF) of
52.0% and PCE of 3.24%, respectively. On the other hand, the PTPA2CF-based PSC displayed the
Jsc of 5.81 mA·cm−2, Voc of 0.99 V, FF of 41.8% and PCE of 2.40%, respectively. From photovoltaic
performance, PTPA2CF gives the higher Voc than PTPACF-based PSC, which is possibly because
the PTPA2CF has the deeper HOMO energy level than PTPACF. This deeper HOMO energy level
may improve the Voc positively in PTPA2CF-based PSC. Furthermore, the high hole mobility
of PTPACF also improve the charge carriers transport and helps to explain the high Jsc and FF
achieved in PTPACF:PC71BM-based device. The corresponding IPCE curves in Figure 5b exhibited
a broad photoresponse in the range of 300–700 nm for all polymers-based PSCs. Especially for
PTPACF:PC71BM device, IPCE exceeded 30% from 330 to 580 nm, with a peak of 48% at 470 nm.
Therefore, PTPACF based device yielded the highest Jsc. The calculated Jscs from the IPCE spectra are
in good agreement with the values obtained from J-V measurements.
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3.6. Atomic Force Microscopy (AFM) Morphologies

To study the interaction of blend films between these two polymers and PC71BM, the Atomic Force
Microscope (AFM) images of the blend films are shown in Figure 6. In the topography of Figure 6a,b,
the root-mean-square (RMS) roughness of blend films are 0.476, 0.23 nm for PTPACF and PTPA2CF,
respectively, which means that PTPACF and PTPA2CF based blend films have quite smoothly
topographic morphologies with less obvious density fluctuations. Furthermore, the phase images
(Figure 6c,d) display that PTPACF-based blend films give the better nano-scale phase separation,
while PTPA2CF-based blend films show worse phase separation and form bigger aggregation that
would cause carrier transport limitations and nongeminate recombination seriously, and ultimately
decrease the FF values and photovoltaic performance. According to the photovoltaic performance in
Table 3, it also depicts that PTPACF exhibits higher FF value than PTPA2CF, ascribing to their better
nano-scale phase separation in PTPACF:PC71BM blend film.
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4. Conclusions

In summary, two large band-gap polymer donors PTPACF and PTPA2CF with different
trifluoromethyl substitution in TPA unit were designed and synthesized. The optical band gaps
of PTPACF and PTPA2CF were 2.01 and 2.07 eV, respectively. Ascribing to the introduction of
electron-withdrawing trifluoromethyl groups, the PTPACF and PTPA2CF showed deep HOMO energy
levels with −5.33 and −5.38 eV, respectively. Through the photovoltaic characterization in BHJ PSCs,
these two polymer donors displayed high Vocs approaching to 1 V. These results with high Voc values
are very beneficial for the PSCs realizing highly photovoltaic performance. Even though the PCEs of
PTPACF and PTPA2CF based PSCs by utilizing PC71BM as electron acceptors are not so high, it may be
believed that the higher photovoltaic performance would be achieved in non-fullerene PSCs by using
the low band-gap organic acceptors, originating from the versatile merits of PTPACF and PTPA2CF
in large band gaps and low HOMO energy levels. Hence, it is a feasibly accessible way to develop
high-performance polymer donors via side-chain functionalization in polytriphenylamine derivatives.
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