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Abstract: Photoinduced Cu(II)-mediated reversible deactivation radical polymerization (RDRP) was
employed to synthesize poly(vinylidene fluoride-co-chlorotrifluoroethylene)-graft-polyacrylonitrile
(P(VDF-co-CTFE)-g-PAN). The concentration of copper catalyst (CuCl2) loading was as low as
1/64 equivalent to chlorine atom in the presence of Me6-Tren under UV irradiation. The light-responsive
nature of graft polymerization was confirmed by “off-on” impulsive irradiation experiments. Temporal
control of the polymerization process and varied graft contents were achieved via this photoinduced
Cu(II)-mediated RDRP.
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1. Introduction

Atom transfer radical polymerization (ATRP) [1–4] has been one of the most powerful
reversible deactivation radical polymerization (RDRP) methodologies for the synthesis of well-defined
polymers [5–8]. The original ATRP was conducted with a high concentration of Cu(I) catalyst (equivalent
to alkyl halide initiator) in order to compensate for unavoidable radical termination reactions. A series
of ATRP variants have been developed to reduce the catalyst loading. Activators regenerated by
electron transfer (ARGET) ATRP [9], initiators for continuous activator regeneration (ICAR) ATRP [10],
electrochemically-mediated ATRP (eATRP) [11], and Cu(0)-mediated RDRP [12–15] have been proposed
to decrease the copper concentration below 100 ppm.

Photopolymerization has become increasingly popular thanks to its unique advantages in
temporal and spatial control [16–20]. Photoinduced Cu(II)-mediated RDRP achieved remarkable
progress in tailor-made polymer synthesis [21–24]. The combination of low-concentration CuBr2

and excess tris[2-(dimethylamino)ethyl]amine (Me6-Tren) exhibited outstanding efficiency in acrylate
polymerizations [25,26]. Well-defined homopolymers, telechelic block copolymers, brush polymers,
and sequence controlled polymers were obtained via photoinduced Cu(II)-mediated RDRP [27–35].
Iridium [36–39] and ruthenium [40] complexes were also found to be effective photocatalysts to
mediate visible light-induced ATRP. Recently, organocatalyzed ATRP (OATRP) was established to
generate metal-free polymers by using photoredox catalyst [41–51]. This young yet rapidly growing
research area would attract broad interest from both academia and industry.

Poly(vinylidene fluoride-co-chlorotrifluoroethylene) (P(VDF-co-CTFE)) is one of the most used
high-performance fluoropolymers with various applications [52]. Several kinds of chemical and
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physical modification strategies have been presented to improve the functionality and compatibility
of fluoropolymers. ATRP was also employed to synthesize P(VDF-co-CTFE)-g-polystyrene (PS)
and P(VDF-co-CTFE)-g-polyacrylates [53–55]. The dielectric and energy storage properties were
enhanced by the introduction of graft chains, which could reduce the remnant polarization of the
fluoropolymer [54]. This Cu(I)-mediated process required relative high catalyst loading and elevated
reaction temperature to initiate the less active C–Cl bond in P(VDF-co-CTFE) backbone, which resulted
in unexpected chain transfer reactions and dehydrochlorination reactions [56]. Cu(0)-mediated
RDRP of acrylonitrile (AN) and methyl methacrylate (MMA) in the presence of P(VDF-co-CTFE)
allowed colorless and purer P(VDF-co-CTFE)-g-PAN and P(VDF-co-CTFE)-g-PMMA copolymers
for its mild reaction conditions and lower catalyst concentration [57–59]. Improvements were
achieved by transferring the polymerization from a batch reactor to a copper tubular reactor, such as
diminished inconsistent induction time, suppressed “hot spot” effect, and decreased copper and ligand
concentration [60].

Herein, photoinduced Cu(II)-mediated RDRP was utilized for the graft modification of
P(VDF-co-CTFE) (Scheme 1). Polymerizations of acrylonitrile in the presence of CuCl2/Me6-Tren under
UV irradiation was investigated to evaluate its effect on the preparation of P(VDF-co-CTFE)-g-PAN
with low catalyst concentration and temporal control of the polymerization process.

2. Experimental Section

2.1. Materials

P(VDF-co-CTFE) was provided by Solvay Solex (Brussels, Belgium) (Dyneon 31008, with the
[VDF]:[CTFE] = 94:6, containing 0.89 mmol chlorine atom per gram). Acrylonitrile (AN) (J&K, Beijing,
China, 99%) was washed by 5 wt % aqueous sodium hydroxide solution three times, and was
subsequently rinsed with deionized water until neutralization. The resultant solution was dried
overnight with anhydrous MgSO4, then distilled under reduced pressure to remove extant inhibitor
and stored under N2 at −20 ◦C. Dimethyl sulfoxide (DMSO) (Xilong Chemical, Shenzhen, China, AR)
was distilled under vacuum from CaH2. Other reagents were used as received. The source of the UV
light (Shany Cosmetics Company, New York, NY, US) setup was a commercially available UV nail gel
curing lamp with four 9 W bulbs (36 W, λmax ~365 nm, item model number: SH-KD-UVLAMP36W).

2.2. Synthesis Procedure

Polymerizations were conducted by using a Schlenk technique [57]. First, 0.500 g of P(VDF-
co-CTFE) (VDF:CTFE = 94:6) (containing 0.445 mmol Cl atom) was dissolved in 10 mL DMSO
with stirring before CuCl2·2H2O (2.4 mg, 0.0140 mmol) and Me6-Tren (19.2 mg, 0.0834 mmol)
were added under N2 atmosphere. After adding 0.88 mL AN (13.35 mmol), the reactant mixture
([Cl]:[Cu]:[Me6-Tren]:[AN] = 1:(1/32):(6/32):30) was put into the ultraviolet light (λmax ~365 nm) while
cooling with a hair dryer. Samples were taken at regular time intervals followed by precipitation in
H2O/CH3OH (v:v = 1:1) mixture, washed three times with ethyl alcohol, and dried overnight under
reduced pressure. The resultant graft copolymer was obtained for characterization.

2.3. Characterization

Nuclear magnetic resonance (NMR) spectra were recorded on a Bruker (Rheinstetten, Germany)
(Advance III) 400 MHz instrument for solutions in DMSO-d6 containing tetramethylsilane (TMS) as
internal standard. Fourier transform infrared (FTIR) spectroscopy of polymer films was performed on
a Nicolet iS5 (Thermo Scientific, Madison, WI, US). Differential scanning calorimetric (DSC) analysis
was conducted on a Discovery DSC 250 (TA instruments, New Castle, DE, US). After rapid heating
and cooling cycles (at a rate of 20 ◦C/min) to remove the thermal history, the sample was heated at a
rate of 10 ◦C/min under nitrogen atmosphere. Thermogravimetric analysis (TGA) (TA instruments,



Polymers 2018, 10, 68 3 of 10

New Castle, DE, US) results were recorded on Netzsch STA 449 F3 Jupiter (Selb, Germany) in nitrogen
atmosphere at a heating rate of 10 ◦C/min.

3. Results and Discussion

Poly(acrylonitrile) (PAN) and its copolymers have been widely used as precursors for novel
carbon materials with outstanding properties and performances [43]. P(VDF-co-CTFE)-g-PAN
copolymers could be synthesized via Cu(0)-mediated reversible deactivation radical polymerization
(RDRP) in batch and flow reactors [57,60]. Comparing with traditional ATRP protocol, copper
catalyst loading was as low as about 1/4 equivalent to the chlorine atoms in the batch reactor.
Copper catalyst, however, is highly desirable to decrease in order to reduce the amount of metal
residue, which would potentially influence the application of final material. Inspired by the work
about photoinduced Cu(II)-mediated RDRP [25,26], CuCl2/Me6-Tren was employed to promote
the polymerizations of AN with P(VDF-co-CTFE) as macroinitiator. The polymerization results are
listed in Table 1. After 6 h of UV irradiation (λ ~365 nm, 36 W) while cooling with a hair dryer,
P(VDF-co-CTFE)-g-PAN (graft content = 20.8 mol %) was obtained with a low copper concentration
([Cl]:[Cu]:[L]:[AN] = 1:(1/32):(6/32):30) (Table 1, run 5) according to NMR analysis [57]. A 13.4 mol %
graft content was achieved, even upon reducing the catalyst feed ratio into 1/64 (Table 1, run 7).
This would be favorable for the applications of resultant graft copolymers in dielectric devices.
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8 1:(1/32):(6/32):50 9.9 27.5 4.6 

9 1:(1/32):(6/32):80 7.5 32.6 5.5 

[a] Graft content was calculated by 1H NMR according to the literature [57]. [b] Graft length equaled 
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Controlled experiments in the absence of light source or any reagent were conducted. 
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Scheme 1. Photoinduced Cu(II)-mediated reversible deactivation radical polymerization (RDRP)
to P(VDF-co-CTFE)-g-PAN. P(VDF-co-CTFE): poly(vinylidene fluoride-co-chlorotrifluoroethylene);
PAN: poly(acrylonitrile).

Table 1. Summary of photoinduced Cu(II)-mediated RDRP of AN in DMSO with P(VDF-co-CTFE) as
macroinitiator under UV (λmax = 365 nm) irradiation for 6 h.

Run [Cl]:[Cu]:[L]:[AN] Conversion% Graft content [a]mol % Graft length [b]

1[c] 1:(1/32):(6/32):30 0 0 0
2 0:(1/32):(6/32):30 0 - -
3 1:(0):(0):30 0 0 0
4 1:(1/32):(4/32):30 10.0 17.2 2.9
5 1:(1/32):(6/32):30 12.3 20.8 3.5
6 1:(1/32):(8/32):30 8.1 13.7 2.3
7 1:(1/64):(6/64):30 7.8 13.4 2.2
8 1:(1/32):(6/32):50 9.9 27.5 4.6
9 1:(1/32):(6/32):80 7.5 32.6 5.5

[a] Graft content was calculated by 1H NMR according to the literature [57]. [b] Graft length equaled graft
content divided by 6%. [c] Polymerization was conducted without UV.

Controlled experiments in the absence of light source or any reagent were conducted.
P(VDF-co-CTFE) with no PAN graft chains was obtained by the removal of UV irradiation (Table 1,
run 1). To further illustrate the light-responsive nature of the polymerization, a series of polymerizations
were tested by introducing an “off-on” sequence ([Cl]:[Cu]:[L]:[AN] = 1:(1/32):(6/32):30). In Figure 1,
the graft content reached 2.1 mol % after 30 min and stayed almost unchanged during 30 min dark.
The re-exposure to UV enabled the polymerization to start again. These cycles were repeated several
times. The omission of P(VDF-co-CTFE) afforded no product (Table 1, run 2), which indicated that
autopolymerization of AN did not occur under the current condition. In the absence of catalyst/ligand,
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no graft content was observed (Table 1, run 3), which elucidated the control of activation/deactivation
equilibrium by CuCl2/Me6-Tren.

The influence of [Cu]:[L] on graft polymerization was investigated. It was supposed that 1:6 would
be better to yield a higher graft content (Table 1, runs 4, 5, and 6), which was consistent with
previous reports [25,26]. Kinetics study showed a linear dependence between −ln(1-conversion)
and reaction time. This confirmed that the polymerization rate was first-order with respect to
the monomer concentration (Figure 2). Under the optimized reaction conditions, polymerizations
with different monomer feed ratio were carried out to fabricate P(VDF-co-CTFE)-g-PAN with
varied graft contents (Table 1, runs 8 and 9). A chain extension experiment was conducted.
The resultant P(VDF-co-CTFE)-g-PAN (graft content = 20.8 mol %) was used as macroinitiator to
initiate polymerization of AN ([Cl]:[Cu]:[L]:[AN] = 1:(1/32):(6/32):(30), UV (λmax = 365 nm)). The graft
content was increased into 30.2 mol % upon another 6 h exposure.
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The chemical structure of P(VDF-co-CTFE)-g-PAN was characterized by FTIR, 1H NMR, and 19F NMR.
In Figure 3, the characteristic absorption peak at 2247 cm−1 (–CN) indicated the presence of PAN
segments in the copolymer. The 1H NMR spectrum (Figure 4) displayed two multiple peaks of
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head-head and head-tail connections of VDF units (2.2–2.4 ppm and 2.7–3.2 ppm). The shoulder
peak at 3.0–3.3 ppm corresponded to the proton signal of VDF adjacent to CTFE (–CF2CH2CFClCF2–).
A new peak appearing around 1.9–2.1ppm was attributed to the proton on the methylene group of
the AN unit (–CH2CHCN–). Another new peak appeared at 3.0–3.3 ppm and overlapped with the
proton signals of head-to-tail connections of VDF in P(VDF-co-CTFE), which was assigned to the
methine proton (–CH2CHCN–). The signals of –CH2CHFCF2– from hydrogenation of CTFE unites
and –CH=CFlCF2– from elimination of HCl from main chains were not observed. This indicated
that the typical side reactions did not happen in this photoinduced Cu(II)-mediated RDRP process.
The 19F NMR spectrum provided more information about the structure of graft copolymers. In Figure 5,
the new peak appearing at 112.3 ppm was attributed to the AN units inserting into the C–Cl bond,
where the C–C bond took the place of the C–Cl bond, which was consistent with the previous report [57].
No other new peaks were observed, which illustrated that the typical side reactions in traditional
ATRP were avoided in this process.
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The thermal properties of P(VDF-co-CTFE)-g-PAN was explored by using DSC and TGA.
In Figure 6, one endothermic peak was observed on each curve below 180 ◦C, which was assigned to
the melting of the crystalline fluoropolymers. The melting temperature decreased from 149 to 137 ◦C
with the increase of PAN graft content. This suggested that the crystalline degree of P(VDF-co-CTFE)
and the crystal domain size were influenced by the introduction of PAN graft segments. The TGA
(Figure 7) showed that the pristine P(VDF-co-CTFE) began to decompose at about 400 ◦C, and about
40 wt % remained at 500 ◦C. Meanwhile, two polymer degradation stages were observed for the
P(VDF-co-CTFE)-g-PAN copolymers. The first stage started from about 300 ◦C, which corresponded to
the decomposition of PAN segment. The second stage began from about 450 ◦C, which was attributed
to the degradation of P(VDF-co-CTFE) backbone chain. It was noteworthy that the weight remaining
over 500 ◦C was enhanced with the increase of PAN content. It was supposed that the PAN was
carbonized to carbon material with higher thermal stability.
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