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Abstract: Polymers prepared by controlled radical polymerization (CRP) can be employed
in subsequent chain-end joining reactions, yet accurately assessing the extent of coupling in
mechanistically unique paths is not straightforward. Precisely known mixtures of polystyrene
standards were prepared and analyzed by gel permeation chromatography (GPC), mimicking the
coupled product and precursor that could be present after a post-polymerization, chain-end joining
reaction. The exactly known percentages of each polymer in the mixture allowed for comparison
of the true “extent of coupling” (Xc) to that determined by a commonly used equation, which is
based on number average molecular weights (Mn) of the precursor and coupled product. The results
indicated that an improvement in accuracy could be achieved by instead using refractive index (RI)
signal height ratios under the peak molecular weight (Mp) of each component, with all calculations
being within 0.05 of the true Xc of the fabricated “product” mixture (compared to greater than 0.10
average error using the more established method) when the sample mixture had nominal molecular
weights of 2500 and 5000 Da. Moreover, when “precursor” and “coupled” pairs mixed were not
related as a simple doubling of molecular weight, the calculation method presented here remained
effective at determining the content of the mixture, especially at higher Xc values (>0.45). This second
case is important for experiments that may link polymer chains together with a spacer, such as a
radical trap, a triazole, or even larger structure such as an oligomer.

Keywords: ATRP; gel permeation chromatography; polystyrene

1. Introduction

As synthetic routes leading to complex macromolecular architectures continue to be a major area
of current research that will continue into the foreseeable future [1–4], polymer chain-end coupling
reactions have become an important post-polymerization reaction [5–12]. These can be as simple as
two polymer radical chain ends terminating by radical-radical coupling [10,12], but may also involve
the insertion of a “spacer” between the polymer chains in the form of a radical trap [5], a triazole
ring [7], an oligomeric polymer chain [13], or another functionality [14] (Scheme 1). The ability to
accurately assess the extent of coupling (Xc) is vital for the translation of a model coupling reaction
into a more complex synthetic sequence, such as using an analogous reaction in an intramolecular
cyclization reaction [15].
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that easily allows the experimenter to determine the success of a coupling reaction after obtaining 
the number averaged molecular weights (Mn) of both the precursor and coupled product. The 
assumption is that the coupled product does not have any new functionality that affects its 
hydrodynamic volume, which may not always be the case. 

 
Scheme 1. General reaction for linking polymer chains together, which may include the 
incorporation of a “spacer” between the chains due to the use of a coupling agent. Red and blue lines 
represent generic polymer chains that may or may not be compositionally equivalent. 

In this contribution, we introduce an analytical method (Equation (2)) to find Xc that instead 
uses RI peak height ratios of coupled products compared to unreacted precursors. These results are 
compared to both the true “Xc” values of the solutions, and the value obtained from Equation (1). 
The method introduced in this contribution, Equation (2), seeks to eliminate the problem faced when 
involving the Mn value of the original precursor in the Xc equation, because the precursor’s size is 
not an appropriate comparison due to new mid-chain functionality in the coupled product. Also, 
there is often no way for the experimenter to know the true value of the completely coupled dimer 
due to the nature of the spacer, preventing the modification of Equation 1 to better reflect the true Xc. 
To assess the accuracy of different equations, we use precisely known mixtures of polystyrene and 
compare the outcome of the analyses to the true “Xc” of the prepared mixtures. 

Xc = RI peak intensity(RI	peak	intensity( + RI peak intensity(  (2)

2. Materials and Methods 

2.1. Materials 

Copper(I) bromide (CuBr, 98%, Aldrich, St. Louis, MO, USA) and copper metal (Cu0, fine 
powder, Baker & Adamson Easton, PA, USA were used as received. Tetrahydrofuran (THF, 
inhibitor free ≥99.9%, Aldrich) was obtained from the Aldrich Pure-PacTM System. Styrene (S, ≥99%, 
Aldrich) was purified through pre-packed column inhibitor removers (Aldrich). The following were 
used as received and stored in the refrigerator: 1-bromoethylbenzene (BEB, 97%), and 
N,N,N′,N″,N″-pentamethyldiethylenetriamine (PMDETA, 99%, Aldrich). The 
N-tert-Butyl-α-phenylnitrone (tBuPN, Aldrich) was used as received and stored in the freezer. 

2.2. Procedure for the Synthesis of Monobrominated Polystyrene Using Atom Transfer Radical Polymerization 
(ATRP) 

Styrene (4.0 mL, 34.9 mmol), CuBr (100 mg, 0.698 mmol), and (1-bromoethyl)benzene (BEB, 95 
μL, 0.698 mmols) were added into a custom-made Schlenk flask, capped with a rubber septum, that 
was attached to the Schlenk line. The contents of the flask were exposed to three freeze–pump–
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Scheme 1. General reaction for linking polymer chains together, which may include the incorporation
of a “spacer” between the chains due to the use of a coupling agent. Red and blue lines represent
generic polymer chains that may or may not be compositionally equivalent.

Synthetic polymer chemists most commonly rely on GPC-RI data to quickly and accurately
characterize their polymer products, be it the initial product of the polymerization [16–18] or the
results of a post-polymerization reaction [19,20]. Determining Xc in a chain-end joining reaction has
been most commonly done using the following equation [9]:

Xc = 2
(

1− Mn(precursor)
Mn(product)

)
(1)

that easily allows the experimenter to determine the success of a coupling reaction after obtaining the
number averaged molecular weights (Mn) of both the precursor and coupled product. The assumption
is that the coupled product does not have any new functionality that affects its hydrodynamic volume,
which may not always be the case.

In this contribution, we introduce an analytical method (Equation (2)) to find Xc that instead
uses RI peak height ratios of coupled products compared to unreacted precursors. These results are
compared to both the true “Xc” values of the solutions, and the value obtained from Equation (1).
The method introduced in this contribution, Equation (2), seeks to eliminate the problem faced when
involving the Mn value of the original precursor in the Xc equation, because the precursor’s size is not
an appropriate comparison due to new mid-chain functionality in the coupled product. Also, there is
often no way for the experimenter to know the true value of the completely coupled dimer due to the
nature of the spacer, preventing the modification of Equation 1 to better reflect the true Xc. To assess
the accuracy of different equations, we use precisely known mixtures of polystyrene and compare the
outcome of the analyses to the true “Xc” of the prepared mixtures.

Xc =

(
RI peak intensity(product)

RI peak intensity(product) + RI peak intensity(precursor)

)
(2)

2. Materials and Methods

2.1. Materials

Copper(I) bromide (CuBr, 98%, Aldrich, St. Louis, MO, USA) and copper metal (Cu0, fine
powder, Baker & Adamson Easton, PA, USA were used as received. Tetrahydrofuran (THF,
inhibitor free ≥99.9%, Aldrich) was obtained from the Aldrich Pure-PacTM System. Styrene
(S, ≥99%, Aldrich) was purified through pre-packed column inhibitor removers (Aldrich).
The following were used as received and stored in the refrigerator: 1-bromoethylbenzene
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(BEB, 97%), and N,N,N′,N”,N”-pentamethyldiethylenetriamine (PMDETA, 99%, Aldrich).
The N-tert-Butyl-α-phenylnitrone (tBuPN, Aldrich) was used as received and stored in the freezer.

2.2. Procedure for the Synthesis of Monobrominated Polystyrene Using Atom Transfer Radical
Polymerization (ATRP)

Styrene (4.0 mL, 34.9 mmol), CuBr (100 mg, 0.698 mmol), and (1-bromoethyl)benzene (BEB, 95 µL,
0.698 mmols) were added into a custom-made Schlenk flask, capped with a rubber septum, that was
attached to the Schlenk line. The contents of the flask were exposed to three freeze–pump–thawing
cycles before being placed on heat plate with custom fit block heaters and equipped with a digital
contact thermoregulator (Chemglass CG-1994-V015, Vineland, NJ, USA) set to 80 ◦C and left to stir
for 5 min. PMDETA (146 µL, 0.698 mmol) was then added to the reaction flask via syringe to begin
polymerization. The polymerization is stopped after 120 min by exposing the content of the flask to
the atmosphere and placing the flask in an ice bath. The reaction mixture is filtered into a GPC vial,
diluted with THF, and analyzed.

2.3. Typical Procedure for ATRC of PSBr

A representative ATRC reaction was performed as follows: molar ratio of
[PSBr]:[CuBr]:[Cu0]:[PMDETA] = 1:5:5:10, monobrominated polystyrene (PSBr, 195 mg, 0.075 mmol,
2600 g/mol), CuBr (53.8 mg, 0.375 mmol), Cu0 (16 mg, 0.375 mmol), and THF (5 mL) were added
into a custom-made Schlenk line round-bottom flask. Concentrations of PSBr were consistently kept
at 15 mM. The reaction flask, sealed with a rubber septum, was attached to the Schlenk line. The
flask was exposed to three freeze–pump–thawing cycles before being placed onto a heat plate set to
60 ◦C. After 5 min of heating and stirring, PMDETA (157 µL, 0.75 mmol) was added into the reaction
chamber via syringe. The RTA-ATRC reaction is stopped after 60 min by exposing the content of the
flask to the atmosphere and placing the flask in an ice bath. The reaction mixture is filtered into a GPC
vial, diluted with THF, and analyzed.

2.4. Typical Procedure for RTA-ATRC of PSBr

A representative RTA-ATRC reaction was performed as follows: molar ratio of
[PSBr]:[CuBr]:[Cu0]:[PMDETA] = 1:2.5:2.5:5, monobrominated polystyrene (PSBr, 195 mg, 0.075 mmol,
2600 g/mol), CuBr (26.9 mg, 0.1875 mmol), Cu0 (8.2 mg, 0.1875 mmol), N-tert-Butyl-α-phenylnitrone
(tBuPN, 13 mg, 0.075 mmol), and THF (5 mL) were added into a custom-made Schlenk line
round-bottom flask. Concentrations of PSBr were consistently kept at 15 mM. The reaction flask,
sealed with a rubber septum, was attached to the Schlenk line. The flask was exposed to three
freeze–pump–thawing cycles before being placed onto a heat plate set to 80 ◦C. After 5 min of
heating and stirring, PMDETA (78 µL, 0.375 mmol) was added into the reaction chamber via syringe.
The RTA-ATRC reaction is stopped after 20 min by exposing the content of the flask to the atmosphere
and placing the flask in an ice bath. The reaction mixture is filtered into a GPC vial, diluted with THF,
and analyzed.

2.5. Typical Procedure to Mimic Various % Coupling Reactions

The amount of PS Standards needed to mimic various percent coupling were calculated and
weighed out on to VWR Weighing Paper (Radnor, PA, USA) using a balance scale (Mettler Toledo
NewClassic MF Model ML204, Columbus, OH, USA). The measured PS standards were transferred
into 25 mL volumetric flasks and 25 mL THF was added into the flask. The solution was mixed well
by swirling and inverting the flask. Approximately 2 mL of each solution containing the PS Standards
was transferred to a GPC vial for analysis.
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2.6. Characterization

GPC analysis was done on system comprised of a Shimadzu CBM-20A communications module
(Kyoto, Japan), a Shimadzu DGU-20A degassing unit, a Shimadzu SIL-20A auto sampler, a Shimadzu
LC-20AD pump, and Wyatt T-rEX RI detector (Santa Barbara, CA, USA). The instrument was interfaced
with a PC and was operated using PSS WinGPC Unichrom software (Mainz, Germany). Separations
were performed using aPSS SDV analytical 1000 angstrom and a 100,000 angstrom column in sequence,
housed inside a Shimadzu CTO-2A column oven set to 40 ◦C. THF was used as an eluent at an
optimized flow rate of 1.00 mL/min, and a 10-point calibration was performed using Agilent EasiCal PS
standards (Santa Clara, CA, USA). The data analysis was performed using the PSS WinGPC software.

3. Results

ATRP creates polymers with halogen chain ends [21–24], ready to be employed in
post-polymerization coupling reactions such as atom transfer radical coupling (ATRC) [25]. Recently,
more environmentally benign analogs have become commonplace among synthetic polymer
chemists, such as activators regenerated by electron transfer (ARGET) [26] and electrochemical
ATRP (eATRP) [27]. Each of these methods allows the experimenter the advantage of using lower
catalyst-ligand loadings without sacrificing control over the polymerization or yield of the polymer.
A more robust variation of ATRC uses radical traps to assist in the coupling process in a kinetically and
mechanistically distinct sequence named radical trap-assisted ATRC (RTA-ATRC) [28–30]. RTA-ATRC,
for example, often uses less than half of the catalyst-ligand equivalents compared to traditional ATRC.
These post-polymerization processes are compared in Scheme 2.

Polymers 2018, 10, 80  4 of 10 

 

3. Results 

ATRP creates polymers with halogen chain ends [21–24], ready to be employed in 
post-polymerization coupling reactions such as atom transfer radical coupling (ATRC) [25]. 
Recently, more environmentally benign analogs have become commonplace among synthetic 
polymer chemists, such as activators regenerated by electron transfer (ARGET) [26] and 
electrochemical ATRP (eATRP) [27]. Each of these methods allows the experimenter the advantage 
of using lower catalyst-ligand loadings without sacrificing control over the polymerization or yield 
of the polymer. A more robust variation of ATRC uses radical traps to assist in the coupling process 
in a kinetically and mechanistically distinct sequence named radical trap-assisted ATRC 
(RTA-ATRC) [28–30]. RTA-ATRC, for example, often uses less than half of the catalyst-ligand 
equivalents compared to traditional ATRC. These post-polymerization processes are compared in 
Scheme 2. 

 
Scheme 2. Comparison of the mechanism and rate equation for ATRC (solid circle) and RTA-ATRC. 
(dashed circle). 

The alkoxyamine spacer incorporated into the polymer (top, dotted circle) means the coupled 
polymer will not be related as simply twice the size of the precursor. Although we are using 
RTA-ATRC to illustrate this dilemma, it is broadly applicable to joining polymer chains by click 
chemistry or any other method that uses a coupling partner. Brominated polystyrene (PSBr) was 
prepared by ATRP, and was subjected to partial coupling to mimic results obtained in a chain-end 
joining reaction. It should be noted that both ATRC and RTA-ATRC are capable of near quantitative 
dimerization, but for the purposes of assessing Xc we purposely wanted unreacted precursor to 
remain. As shown in Figure 1 (top), the peak molecular weight (Mp) of the ATRC product is nearly 
exactly double that of the PSBr precursor from which it was derived. However, when RTA-ATRC is 
used with N-tert-Butyl-α-phenylnitrone as the radical trap, the mid-chain alkoxyamine functionality 
contributes to the hydrodynamic volume of the coupled product and a more than doubling of the Mp 
is seen when compared to the precursor. Using Equation 1 is valid for traditional ATRC, but does 
not take into account any new size imparted into the coupled product as a result of the coupling 
mechanism. 

This submission deals specifically with polystyrene (PS) chains, as they are commonly used in 
coupling reactions and have readily available standards and calibrants for GPC analysis. By using 
monomodal standards, precisely known mixtures could be prepared to mimic various “percent 
coupling”, or Xc, scenarios, where a portion of higher molecular weight, “coupled” product is 
present in a mixture with lower molecular weight “precursor”. This can be envisioned in Scheme 1, 
where it requires 2 molar equivalents of “precursor” to produce 1 equivalent of “coupled product”. 

Pn-Br + CuI/L
KATRP CuIIBr/L + Pn

. R-NO

k1 Pn-N-O

R k2

Pn
. Pn-N-O-Pn

R

kt

Pn
.

Pn-Pn

ATRC

Rate = kt[Pn
.]2

RTA-ATRC

Rate = k1[Pn
.][R-NO]

Scheme 2. Comparison of the mechanism and rate equation for ATRC (solid circle) and RTA-ATRC.
(dashed circle).

The alkoxyamine spacer incorporated into the polymer (top, dotted circle) means the coupled
polymer will not be related as simply twice the size of the precursor. Although we are using RTA-ATRC
to illustrate this dilemma, it is broadly applicable to joining polymer chains by click chemistry or
any other method that uses a coupling partner. Brominated polystyrene (PSBr) was prepared by
ATRP, and was subjected to partial coupling to mimic results obtained in a chain-end joining reaction.
It should be noted that both ATRC and RTA-ATRC are capable of near quantitative dimerization,
but for the purposes of assessing Xc we purposely wanted unreacted precursor to remain. As shown
in Figure 1 (top), the peak molecular weight (Mp) of the ATRC product is nearly exactly double
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that of the PSBr precursor from which it was derived. However, when RTA-ATRC is used with
N-tert-Butyl-α-phenylnitrone as the radical trap, the mid-chain alkoxyamine functionality contributes
to the hydrodynamic volume of the coupled product and a more than doubling of the Mp is seen when
compared to the precursor. Using Equation (1) is valid for traditional ATRC, but does not take into
account any new size imparted into the coupled product as a result of the coupling mechanism.
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Polymers 2018, 10, 80  6 of 10 

 

 

Figure 1. (Top) GPC traces of PSBr precursor (blue) and product of an ATRC reaction (red). (Bottom) 
GPC traces of PSBr precursor (blue) and product of RTA-ATRC reaction using 
N-tert-Butyl-α-phenylnitrone as the radical trap. 

 
Figure 2. GPC traces of PS standards mixed to mimic varying extents of coupling, as listed in Table 1. 

Another pair of PS chains was mixed and the ratios were precisely determined, but in this case 
the longer chain mimicked the presence of a relatively large “spacer” in the coupled product. 
Because the “precursor” and “product” would no longer be related as a near doubling of molecular 
weights, Equation (1) would not be expected to yield numbers that matched the true Xc values. 
Conversely, Equation (2) should not be impacted by the fact that the “coupled” product is 
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Figure 1. (Top) GPC traces of PSBr precursor (blue) and product of an ATRC reaction
(red). (Bottom) GPC traces of PSBr precursor (blue) and product of RTA-ATRC reaction using
N-tert-Butyl-α-phenylnitrone as the radical trap.

This submission deals specifically with polystyrene (PS) chains, as they are commonly used in
coupling reactions and have readily available standards and calibrants for GPC analysis. By using
monomodal standards, precisely known mixtures could be prepared to mimic various “percent
coupling”, or Xc, scenarios, where a portion of higher molecular weight, “coupled” product is present
in a mixture with lower molecular weight “precursor”. This can be envisioned in Scheme 1, where
it requires 2 molar equivalents of “precursor” to produce 1 equivalent of “coupled product”. In the
scenario shown, 6 molar equivalents of precursor would partially couple to form 2 molar equivalents
of product, meaning 4 of the 6 precursor chains underwent coupling (mimicking Xc = 0.67). The true
Xc of the simulated reaction mixture containing both “precursor” and “coupled product” is shown in
Equation (3):

True Xc =

(
2(“coupled product” mmol)

(”precursor” mmol + 2(“coupled product” mmol))

)
(3)
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As shown in Table 1, several mixtures of two PS chains (related by the larger being nearly
double molecular weight) were prepared and the true “extent of coupling” (Xc) was determined by
Equation (3). The solutions were then analyzed by GPC-RI (Figure 2), and the Xc was calculated using
both Equations (1) and (2). We introduce Equation (2) in this submission as a means of computing the
extent of coupling in chain-end joining reactions, by simply comparing the relative intensities of the
Mp signals attributed to the precursor and coupled peak.

Table 1. Percent “Coupling” Calculations of Mixed PS Standards 2500:5000 a.

True Xc
b Mn

c Calculated Xc,
Previously Reported d

Error in
Equation (1) e

Calculated Xc, Method
Reported Here f

Error in
Equation (2) g

0 2293 – – – –
0.22 2649 0.27 0.05 0.28 0.01
0.46 3160 0.55 0.09 0.53 0.07
0.72 4086 0.88 0.16 0.81 0.09
0.89 4678 1.02 0.13 0.91 0.02
1.0 5227 – – – –

a Purchased as PS standards from Aldrich, with “nominal molecular weights” listed as 2500 and 5000 Da; b precisely
known value based on the amount of each polymer in the THF solution. See Equation (3) for calculation; c number
average molecular weight based on PS standards using a 10-point calibration curve; d see Equation (1); e average
error is 0.108; f see Equation (2); g average error is 0.048.
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Figure 2. GPC traces of PS standards mixed to mimic varying extents of coupling, as listed in Table 1.

Another pair of PS chains was mixed and the ratios were precisely determined, but in this case
the longer chain mimicked the presence of a relatively large “spacer” in the coupled product. Because
the “precursor” and “product” would no longer be related as a near doubling of molecular weights,
Equation (1) would not be expected to yield numbers that matched the true Xc values. Conversely,
Equation (2) should not be impacted by the fact that the “coupled” product is substantially more than
two times the molecular weight of the precursor. Listed in Table 2 are the true Xc values along with
those calculated from GPC data using Equations (1) and (2). In Figure 3, the GPC traces of the varying
fractions are shown.



Polymers 2018, 10, 80 7 of 10

Table 2. Percent “Coupling” Calculations of Mixed PS Standards 17,500:50,000 a.

True Xc
b Mn

c Calculated Xc,
Previously Reported d

Error in
Equation (1) e

Calculated Xc, Method
Reported Here f

Error in
Equation (2) g

0 15,876 – – – –
0.19 20,859 0.48 0.29 0.37 0.18
0.45 25,079 0.73 0.28 0.55 0.10
0.68 34,297 1.07 0.39 0.77 0.09
0.88 47,790 1.34 0.46 0.94 0.06
1.0 55,917 – – – –

a Purchased as PS standards from Aldrich, with “nominal molecular weights” listed as 17,500 and 50,000 Da; b

precisely known value based on the amount of each polymer in the THF solution using Equation (3); c number
average molecular weight based on PS standards using a 10-point calibration curve; d see Equation (1); e average
error is 0.355; f see Equation (2); g average error is 0.1075.Polymers 2018, 10, 80  7 of 10 
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4. Discussion

When “precursors” and “coupled product” were nearly related as a doubling in size (Table 1 and
Figure 2), both Equations (1) and (2) gave computed Xc values that were relatively accurate. Perhaps
surprisingly, Equation (2) overall yielded more accurate Xc values, on average being within 0.05 of the
true extent of coupling determined by Equation (3). Conversely, values calculated using Equation (1)
deviated from true values especially as the extent of coupling increased, and on average deviated
by greater than 0.10 of the true Xc value. This is a situation that would mimic chain-end joining by
ATRC or another means that did not introduce a “spacer” that modified the hydrodynamic radius of
the chain.

Conversely, Equations (1) and (2) yielded drastically different Xc values when the “product”
was much larger than the “precursor”. In the case of Equation (1), the average difference is greater
than 0.355 from the true Xc, while Equation (2) deviates on average by around 0.108. As expected,
Equation (1) overestimates the coupling in each case, as the Mn of the “coupled” product is higher
than twice that of the precursor. This is particularly apparent at 0.68 and 0.88 true Xc values, where
calculated values from Equation (1) are greater than are theoretically possible. At extents of coupling
that would be more applicable to true synthetic results (0.45 and higher), Equation (2) yields values
close to true Xc values (averaging a deviation of 0.083). This situation would represent chain end
joining by where the coupling agent was quite large (a diradical oligomer, for example), and using the
precursor’s Mn in the equation to determine Xc leads to greater error.

The refractive index increment (dn/dc) values of PS and other polymers show molecular weight
sensitivity [31], although these changes in RI signal may be inconsequential compared to built-in errors
in most routine GPC analyses. Plotting the RI signal vs. the concentration of the “coupled” product in
each mixture results in a near linear relationship, as can be seen in Figures 4 and 5. The concentration
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of the “coupled product” is comparatively low, as even complete “coupling” would result in a polymer
dimer in the reaction mixture that is only half as concentrated as the precursor was at reaction time = 0.
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Figure 5. RI signal of GPC-RI detector (Wyatt T-rEX) of Mp assigned to “coupled” peak of polymer
mixture (nominal molecular weights 17,500 and 50,000 Da), as a function of concentration in the mixture
injected into GPC.

5. Conclusions

To conclude, a simple equation relying only on GPC-RI data allows the synthetic polymer chemist
to quickly and easily calculate the extent of coupling (Xc) in a reaction mixture containing both coupled
product and precursor. The experimentalist does not need to know the true molecular weight of the
dimer, but only compare peak height ratios based on easily attainable RI data. The utility of this
equation is particularly apparent in situations where a mid-chain spacer is incorporated between the
chains in the coupled product, and even more so when a spacer’s apparent size on the GPC instrument
is unknown. An advantage of this equation compared to commonly used methods is that the number
average molecular weight of the initial precursor used in the coupling sequence is not considered in
determining Xc.
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