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Abstract: The common method to impregnate wood with polyethylene glycol (PEG) is to store
the samples for several weeks in aqueous PEG-solution, allowing for diffusion of PEG into the
wood. As this method is poorly suited for industrial application, an alternative approach based on
vacuum-pressure treatment is evaluated in the present study. Using European oak wood and three
variants of PEG, including silane-functionalized PEG, impregnation experiments at different PEG
concentrations were performed. Significant uptake of PEG resulted in clearly altered wood-water
relations and improved dimensional stability of oak wood. These results are discussed in terms of
stability in humid and aqueous environments, and in terms of effects of the anatomy of oak wood
on differences in dimensional stabilization observed along the radial and tangential anatomical
directions, respectively. While both of the PEG variants perform better with an anti-shrinkage
efficiency of up to 80%, the PEG-silane variant performs less effectively in this respect; however
PEG-silane is clearly predominant in case of water extraction.

Keywords: silane; polyethylene glycol (PEG); oak wood; impregnation; anti-shrinkage efficiency
(ASE); wood modification

1. Introduction

Wood as a natural material features several beneficial properties such as good mechanical
performance at comparably low weight, biodegradability, and renewability. On the downside,
lack of dimensional stability diminishes the competitiveness of wood as an engineering material
in selected application fields. This shortcoming of wood can be compensated for to a certain
extent by appropriate choice of wood species for specific applications [1]. However, wood has clear
limitations when it comes to more specialized applications and extreme environments. The dimensional
instability of wood in environments of variable humidity is a major issue in the application of wood
in critical climate conditions (e.g., window frames, exterior cladding, solid wood flooring, etc.).
The pronounced sensitivity of wood to changing water content can be reduced by wood modification.
Wood modification techniques can be grouped in active and passive approaches [2]. Active wood
modification involves the chemical alteration of wood structure, either by means of derivatization
or cross-linking, or by thermal modification. Passive wood modification features filling of cavities
and/or cell walls with modification agents without any chemical reaction with the cell wall taking
place. Passive modification usually is not that durable, and prone to leaching of the modification agent.
An extensive overview of different modification approaches is given by Hill [3].
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Emulsions of different waxes may be used to impregnate wood in order to endow it with
improved surface properties, fungal resistance, and dimensional stability. A state of the art overview
of such treatments is given by Kocaefe, et al. [4]. The treatment of wood with wax emulsions for
the improvement of dimensional stability using vacuum pressure impregnation technology was
investigated [5]. It was found that impregnation with different wax emulsions can cause an increase of
wood mass of up to 10% for spruce and up to 16% for beech. Scholz, et al. [6] investigated the ability of
impregnation of pine and beech with different waxes. Rays in pine wood seem to play an important
role in terms of pathways for the impregnation agent. Due to their hydrophobicity, waxes tend to
accumulate in cell cavities without penetrating into the cell wall itself.

Reactive impregnation agents such as melamine formaldehyde resins (MF) or phenol
formaldehyde resins (PF) provide more efficient dimensional stabilization compared to wax emulsions.
These resins are of sufficiently polar character and low molecular weight to enter the wood cell wall
by diffusion, where they form an interpenetrating network upon curing, which greatly improves
dimensional stability [7,8]. A mass increase of 25% was achieved with aqueous impregnation of
Norway spruce [9]. With MF-modified common bur-flower (Anthocephalus cadamba Miq.), a mass
increase of up to 34.1%, resulting in 68.2% reduced shrinkage upon drying was found [10]. Besides
these formaldehyde-based resins, also non-aqueous mono/oligomer systems such as styrene or
styrene-methylmetacrylate mixtures may be employed for impregnation of wood and subsequent
in situ polymerization [11]. Finally, silicon-based aqueous wood modification agents dispose of a
huge potential in wood modification due to numerous functionalization available [12–14]. Since they
are capable to enter the wood cell wall, they achieve a certain bulking effect. Depending on the
functionality, different wood properties can be obtained [15].

In contrast to waxes and some reactive modification agents, polyethylene glycol (PEG) is highly
hydrophilic and non-reactive. On the one hand, it is easily dissolved in water, but on the other hand it
is easily washed out again from impregnated wood in contact with water. The dimension-stabilizing
properties of PEG-impregnated wood are well known. Stamm and Hansen [16] started to investigate
possibilities of dimensional stabilization of wood in the 1930s. In the 1950–1970s, special focus was
put on PEG [17–22]. The common method to impregnate wood with PEG is to store the samples days,
weeks, or months, depending on the specimen dimensions, submerged in the PEG-water-solution
and enable the PEG to diffuse into the wood [19,20]. Schneider [21] did extensive research on PEG
treatment of pine and beech wood. He found good dimension stabilization of up to 90%. Higher values
were possible, but with PEG content the wood became “moist” on the surface due to adsorbed water.
Schneider [21] describes the bulking effect of PEG in beech and pine wood as a blocking effect of
PEG that diffuses into the cell wall during treatment and additionally during drying/conditioning.
Stamm [18] found increased shrinkage reduction, when the moisture content of wood prior to treatment
was equal to or more than 40%. To ensure optimal PEG diffusion, it is recommended to use green
or water-saturated wood. Additionally, after the impregnation, a homogenization step for PEG is
recommended, to enable the PEG to diffuse deeper into the cell wall [18]. These findings were
confirmed by Tanaka, et al. [23] by means of swelling investigations during conditioning phases
after impregnation. Stamm [18] investigated the suitability of different molecular weight of PEG for
efficient impregnation of spruce wood. It was found that the PEG uptake was optimal for a molecular
weight of 550–1000, while the maximum bulking was achieved using PEG 350–550, indicating that
lower molecular weight molecules seem to better penetrate the cell wall, compared to high molecular
weight PEG.

At present, PEG treatment is mainly applied in the conservation of waterlogged archaeological
wood. Since the archaeological objects are very fragile, it is aimed at replacing all the water in the cell
wall by PEG of different molecular weight. All these treatments take place at atmospheric pressure.
Prominent cases are for example the PEG-preserved “Bremen cog” [24,25] and the Swedish warship
“Vasa” [26]. Even though the method works well in general, a disadvantage was revealed recently:
due to iron catalyzed chemical wood degradation [27], the strength of the PEG-treated wooden material
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is negatively affected. Bjurhager, et al. [26] studied the mechanical properties of PEG 600 impregnated
oak wood on small specimens (3 weeks treatment). They found only a slight reduction in axial tensile
modulus and strength, but detected up to 50% lower compressive modulus and yield strength in radial
direction. The observation is explained by changed micro fibril angle, caused by the swelling of the
specimens, especially in the wood rays [28].

For highest cell wall loadings with PEG, the drying or conditioning phase after impregnation also
is of importance besides impregnation as such. Slow drying after impregnation enables continued and
deeper diffusion of PEG into the cell wall. The driving factor here is the fact that PEG concentration in
the cell cavities increases with drying, i.e., evaporation of the PEG-solvent water, which leads to a PEG
concentration gradient between cell cavity and cell wall. Tanaka, et al. [23] did intensive studies on that
topic using PEG 1500 impregnated Hinoki wood (Chamaecyparis obtuse). Notably, Jeremic, et al. [29]
show that a vacuum-driven impregnation of PEG 1000-PEG 4000 (dissolved in toluene) for only
15 min can be sufficient to achieve satisfying loadings of pine wood. Same as in earlier studies, higher
PEG uptake was found when using water-saturated or green wood, compared to treatment of dried
wood [18,21,30]. The resulting reduction in dimensional change not necessarily needs to be equal in
the radial and anatomical directions of impregnated wood. Schneider [21] found for beech and pine a
higher dimensional stabilization in radial direction compared to tangential direction.

In the present study, a new improved approach to PEG impregnation is followed by combining
the beneficial features of PEG with the advantages of silanes for wood modification. Silanes are capable
of adsorbing to the wood surface [31] or cellulosic fibers [32]. Additionally, self-condensation or
covalent attachment to lignocellulosic surfaces may take place [13], which is advantageous with regard
to minimizing leaching of impregnation reagent in aqueous environment. Impregnation experiments
are thus conducted with PEG and with silane-functionalized PEG, and the resulting wood property
improvements are comprehensively characterized.

2. Materials and Methods

2.1. Wood Material and Treatment

One hundred European oak wood specimens (Quercus spec.) were cut to dimensions of 25 × 24 ×
10 mm3 (radial × tangential × longitudinal). All specimens were dried at 103 ◦C for 48 h to determine
dry mass. The specimens were divided in 10 groups of 10 specimens each. The groups were treated
with different concentrations of PEG 400 (M ≈ 400 g/mol), PEG 1000 (M ≈ 1000 g/mol) (Carl Roth,
Karlsruhe, Germany) and a PEG which provides methoxy- and trimethoxysilane functionality (Evonik,
Essen, Germany) (Figure 1). The PEG-silane is of comparable chain length (n ≈ 7.5) and molecular
mass (M ≈ 500 g/mol) to PEG 400 (n ≈ 8.5).
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were impregnated with demineralized water only, to provide a comparable wetting and drying 
treatment and to determine eventual mass loss due to water-soluble extractives, which can be 
significant for oak wood. The impregnation was performed in a laboratory autoclave. In the first step, 
the pressure was reduced to 0.15 barabs for 30 min. In the second step, the pressure was raised up to 
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specimens were dried at 103 °C for 48 h to determine the weight percent gain WPG ((dry-masstreated − 

Figure 1. PEG 400 with n ≈ 8.5 and PEG 1000 with n ≈ 22 (a); PEG-silane with n ≈ 7.5 (b).

The specimens of each group were impregnated in a solution of 150 mL. The impregnation
agent concentrations in demineralized water were varied by 15%, 30% and 45%. The reference
specimens were impregnated with demineralized water only, to provide a comparable wetting and
drying treatment and to determine eventual mass loss due to water-soluble extractives, which can
be significant for oak wood. The impregnation was performed in a laboratory autoclave. In the
first step, the pressure was reduced to 0.15 barabs for 30 min. In the second step, the pressure was
raised up to 8 barabs for a duration of 12 h. Finally, the atmospheric pressure of 1 barabs was set
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up again. The specimens were dried at 103 ◦C for 48 h to determine the weight percent gain WPG
((dry-masstreated − dry-massuntreated)/dry-massuntreated × 100). The wood moisture content (WMC) is
calculated as follows: (massmoist − massdry)/massdry × 100.

2.2. Determination of Anti-Shrinkage Efficiency (ASE)

Bulking (or swelling) is determined between two states of moisture content
((cross-section-swellingmoist − cross-section-swellingdry)/cross-section-swellingdry × 100). To investigate
the ASE ((cross-section-swellingreference − cross-section-swellingtreated)/cross-section-swellingreference ×
100), the following series of three typical indoor climatic conditions was investigated: 30 ◦C/70%relH,
20 ◦C/90%relH and 20 ◦C/95%relH. Full water saturation was determined during impregnation.
Between the conditioning phases of 10 days, the specimens were dried at 103 ◦C for 48 h to determine
potential leaching and dimensional changes. ASE calculation refers to untreated wood as reference.
Since this reference is not the same specimen as the modified pendant, ASE is calculated via mean
values and therefor no standard deviation is given. After the ASE investigation, half the samples were
subjected to a leaching test according to EN 84 [33].

2.3. Scanning Electron Microscopy (SEM)

SEM was carried out on cross-sections of small PEG-silane impregnated specimen, using a
Quanta™ 250 FEG (FEG-ESEM) (FEI, Hillsboro, OR, USA) device. Specimen of approximately
24 × 10 mm2 (on cross-section) were prepared and 1 mm of the cross-section surface was removed.
Cross-sections were fresh cut using a razor blade and the measurements were taken under low vacuum
at 60 Paabs. Subsequently EDX (energy-dispersive X-ray spectroscopy) (Ametek materials Analytics
Division, Berwyn, PA, USA) measurements were performed on the same specimens to investigate
PEG-silane distribution.

2.4. Statistical Analysis

Statistical analysis was performed using PASW Statistics 18 software (version 18.0.0, IBM,
New York, NY, USA). Analysis of variance (one-way ANOVA) was carried out, followed by a Post-Hoc
Test according to the Scheffé procedure on a significance level of 0.05.

3. Results and Discussion

3.1. Effect of Impregnation on Specimen Mass and Water Relations

The increase in specimen mass after impregnation expressed in terms of weight percent gain
(WPG) is a widely used indicator of impregnation efficiency. The results of the WPG measurements
confirm the suitability of a short-term vacuum-pressure impregnation method for PEG and PEG-silane
in principle, especially in contrast to the classical impregnation method driven by diffusion only.
The solution uptake upon impregnation for all variants was between 94% and 104%. It clearly can be
seen that the impregnation agent concentration has a strong influence on the loading (WPG) of the
samples (Figure 2). For PEG, irrespective of the molecular weight variant used, the lower concentration
of 15% consistently resulted in WPG of 10–11%, whereas the higher concentration of 45% PEG led to
up to 42% loading. PEG-silane, in contrast, did not achieve comparably high loadings. As shown in
Figure 1, this PEG variant disposes of four methoxy functions for each molecule, which reduces overall
polarity of the macromolecule and thus may be detrimental to its uptake by the polar cell wall. Overall,
the loadings with impregnation agents are comparable to values from literature. Bjurhager et al. [26]
impregnated oak wood samples with PEG 600 using a long term unpressurised method and achieved
WPG values of up to 40%. Schneider [21] also found similar results for PEG-impregnated pine wood
with WPG of up to 55% and 50% for beech wood. However, for good ASE, a high WPG is prerequisite
but not sufficient by its own, because swelling after impregnation is a more relevant parameter.
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Figure 2. Weight percent gain (WPG) of impregnated oak wood achieved with different PEG
impregnation agents and different concentrations of impregnation agent in water. Standard deviation
given in whiskers. Different modification agent concentrations result in statistically significant
different WPG.

Wood is capable of adsorbing humidity from the atmosphere until equilibrium moisture content
is achieved. Roughly, this equilibrium moisture content may vary between 0% and 30% upon
equilibration to environments with 0%relH and 100%relH, respectively. Variable density and extractive
content of wood species may cause significant deviation from this rule of thumb. Modifications of
the wood cell wall significantly diminish the ability of wood polymers to adsorb water either due
to reduced availability of sorption sites in the case of active modification treatments, or due to steric
hindrance caused by the presence of impregnation medium in the case of passive modification. Due to
its distinct hydrophilicity PEG is different in this regard, as it contributes to the overall capacity of
wood to adsorb water from humid environment. In extreme environments of ≥90%relH, PEG is able
to adsorb up to 100% of its mass in water [17,34]. Therefore, the measured wood moisture content
of the PEG-treated oak wood samples increases beyond the corresponding wood moisture level of
the untreated reference (Figure 3). The same observation was made for PEG 1000 treated spruce [17],
beech [21] and also oak [26]. Even if the increased moisture content of PEG-impregnated wood does not
translate into increased swelling, which is limited by wood structure, water adsorbed to PEG may lead
to an unpleasantly moist feeling of the wood surface [21]. In addition to this disadvantage, PEG may
liquefy due to large amounts of water adsorbed and exude from treated wood in high-humidity
environment. For example, when conditioned at 20 ◦C/95%relH, the mass of both, PEG_400_45% and
PEG_1000_45% samples, diminished by approx. 10% due to exuding PEG.

PEG-silane, which differs in chemical structure from pure PEG, does not deviate from this pattern
of wood-water relations in the gas-phase as shown in Figure 3. In the liquid phase, PEG is even more
vulnerable to water due to its inherent water solubility (Figure 4). Corresponding to its excellent
solubility in water, leaching of PEG 400 is almost complete after 14 days immersion in water (99% mean
loss). For PEG 1000, less mass loss of 75% in mean due to leaching was observed during the same period
of time. In clear contrast, PEG-silane was significantly more stable, even though a mass reduction of
56% still represents a very significant loss in impregnation agent. It is theoretically possible that this
beneficial effect of silane functionality is due to auto-cross linking of PEG-silane, or event caused by
attachment of silane functions to wood polymers [13], but this remains subject to speculation in the
frame of the present study.
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3.2. Dimensional Stabilization

Dimensional stabilization is the main target of PEG modification. Since swelling is very small in
longitudinal wood direction, it is disregarded here. In a first step, overall effects of PEG impregnation
on dimensional stability of oak wood will be discussed in terms of transverse swelling/shrinkage,
without differentiating between the tangential and radial wood anatomical directions. Due to diffusion
of PEG into the cell wall and replacement of water, the swollen state of the wood cell wall is partly
preserved in the swollen state after drying, which is referred to as “bulking”. As shown in Figure 5,
untreated oak wood is able to swell a maximum of 21% under water saturation (wood moisture
content around 100%). After drying, untreated oak wood restores its former dimensions. When oak
is treated with PEG-water solution, a certain amount auf PEG diffuses into the cell wall and stays
there after drying-resulting in bulked dry-state of the wood. A bulking of 21% of oak wood after
drying would entirely equalize dimension change by water. The difference between the maximum
swelling minus bulking is the remaining swelling potential (Figure 5). In good agreement with the fact
that increasing concentrations of impregnation medium consistently resulted in higher PEG-loadings
in impregnated wood (Figure 2), increased bulking is observed with increasing concentrations of
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impregnation medium for all variant studied (Figure 5). Same as in terms of WPG, highest bulking
was observed for PEG 400, followed by PEG 1000, and finally PEG-silane. Jeremic, et al. [30] found
bulking values for PEG 1000 (30/70 PEG/water) impregnated pine wood of 16%, independent on the
wood moisture content before the impregnation. These values are confirmed by the present results
(Figure 5).
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Figure 5. Transversal bulking of oak wood samples with different loadings, dry after impregnation.
Maximum swelling of untreated oak wood displayed as dotted line. Standard deviation given in
whiskers. Different modification agent concentrations result in significantly different bulking values.

Bulking is a simple indicator of modification efficiency, as it gives a value for the remaining
maximum range of dimensional instability. The anti-shrink efficiency (ASE) value determined in a
series of equilibration experiments at different climates gives more insight into the effective reduction
in shrinkage after PEG impregnation. The most common approach to determining ASE found in
wood modification literature [3,12], is shrinkage to zero moisture from the fully water saturated state
(Figure 6a), which is essentially the same information as expressed by the parameter bulking shown in
Figure 5. High PEG loadings result in ASE values of up to 81%, while lower amounts still provide
ASE values of 33% and more. For PEG-silane, smaller ASE values of 22% to 45% were achieved.
While the pattern of ASE-dependence on impregnation agent loading is straightforward and clear
when determined by drying to zero moisture from the fully swollen state (Figure 6a), ASE calculated
from the dimensional changes measured during repeated equilibration experiments at varying climates
shown in Figure 6b,c expose more complex relationships.

In the first, relatively dry cycle at 30 ◦C and 70%relH, specimens with low or intermediate
PEG loading showed no significant ASE, whereas samples with high loading showed significant
stabilization (Figure 6b). With 20 ◦C and 90%relH the second conditioning phase was more humid.
In this regime, nearly all variants showed significant ASE between of 10–20% (Figure 6c). The final
conditioning phase with 20 ◦C and 95%relH was the most humid one. Here, clear and systematic
trends were observed (Figure 6d). Same as with bulking, a clear increase in ASE with increasing
loading of impregnation agent is evident. Furthermore, PEG 400 and PEG 1000 perform significantly
better that PEG-silane, again in good agreement with impregnation agent loadings. It is proposed that
due to the comparably small changes in humidity and ensuing small changes in specimen dimensions
occurring during the first two climate cycles, measurement inaccuracies may have contributed to
unclear results in Figure 6b,c. By contrast changes observed with the most pronounced humid climate
in cycle three (Figure 6d) were of sufficient magnitude in order to deliver reliable results in agreement
with the outcome of other characterization experiments.

Until now, dimensional changes were discussed only in “transverse” direction, without discerning
between the radial and the tangential wood anatomical directions. Analysis of swelling data resolved
along these two directions may help to shed more light on potential mechanisms acting during
PEG impregnation.
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Figure 6. ASE values of treated oak wood in water saturated state (a) and different climate conditions
(b–d), based on transversal swelling. The climate conditions in (b,c) correspond to approximately 11%,
16% and 20% wood equilibrium moisture content.

As shown in Figure 7, resolving swelling along anatomical directions confirms macroscopic
findings only for the radial direction, where essentially the same pattern as already reported for
bulking (Figure 5) and ASE (Figure 6) is evident. Surprisingly, there is almost no effect, let alone a
statistically significant effect, of treatment on tangential swelling. Thus, all effects of PEG impregnation
on dimensional stability of oak wood observed in the present study are essentially due to modifications
of radial swelling only, which is remarkable, even though similar trends were already reported [21].
An SEM study with PEG-silane, which has the advantage over PEG 400 and PEG 1000 of being
detectable with EDX, provides some clues with regard to the cause of this surprising finding. It was
revealed higher amounts of the treatment agent are located in early wood, compared to latewood, while
no Si was detected in wood rays (Figure 8, Table 1). Wood rays are present in significant amount of up
to 19.4% in oak wood tissue [35]. Due to its specific cell orientation, ray tissue has a stabilizing effect
on radial swelling, whereas it contributes to tangential swelling in the same manner as surrounding
fiber tissue. The fact that ray tissue is apparently unmodified, which is inferred from the fact that no Si
is detected, it fully contributes to tangential swelling even in highly impregnated wood. Furthermore,
when analyzing the different content of Si in early- and latewood (Table 1), the different densities of
these tree ring regions have to be considered. Typically, oak earlywood has a density of 600 kg·m−3,
whereas latewood density is around 800 kg·m−3 [36]. This difference in density exacerbates the
differences in Si content revealed by EDX, which are based on an area concentration. By converting
area concentration to mass concentration using the typical wood densities cited above, the at % Si in
earlywood is roughly 4.4%, whereas it is only 2.5% in latewood. It is assumed that due to the presence
of large-diameter vessels in earlywood, which provide pathways for flow of impregnation medium,
earlywood is more efficiently impregnated and thus exhibits better ASE than latewood. Along the
radial anatomical direction, earlywood and latewood layers alternate (serial configuration), and any
dimensional change may be simply understood as the sum of dimensional changes of earlywood and



Polymers 2018, 10, 81 9 of 12

latewood. Therefore, reduced earlywood shrinkage directly translates into reduced overall shrinkage
in this anatomical direction. Contrarily, along the tangential direction earlywood and latewood are
arranged in parallel configuration. In this setting latewood, which on average takes up 2/3 of an
annual ring in the samples studied, is dominating the overall shrinkage behavior due to its comparably
high width and density, which endows it with a comparably high elastic modulus.
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Table 1. Results of EDX area-measurements, as shown in Figure 8.

Region Element at %

Wood ray
C 59.46
O 40.54
Si -

Late wood
C 59.42
O 38.59
Si 1.99

Early wood
C 60.65
O 36.70
Si 2.65

4. Conclusions

The present work demonstrates the potential and limitations of PEG-impregnated oak wood for
improved dimensional stability in indoor application. The key results can be summarized as follows:

• Beside the classical long-term diffusion approach, fast vacuum-pressure impregnation is suitable
for PEG impregnation of European oak wood, as shown earlier for red pine. Significant reductions
in swelling upon moisture uptake were achieved compared to untreated specimens, even though
PEG impregnation resulted in above-reference equilibrium moisture content.

• Silane-functional PEG generally showed poorer performance compared to unmodified PEG,
with the exception of leaching, where PEG-silane proved more recalcitrant than PEG and therefore
demands deeper attention in further work to overcome unmodified PEG disadvantages.

• Dimensional stabilization was predominantly achieved in oak earlywood, which resulted in
dimensional stabilization only in radial anatomical direction, whereas the tangential dimensional
stability remained unaffected by impregnation.

• The suitability of the method for the bigger scale specimens needs to be proven in future as the
next step towards industrial application.

Acknowledgments: The authors gratefully acknowledge the financial support by the Austrian COMET program.

Author Contributions: Tillmann Meints conceived, designed, and performed the experiments. Tillmann Meints,
Christan Hansmann and Wolfgang Gindl-Altmutter analyzed the data and wrote the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Klein, A.; Bockhorn, O.; Mayer, K.; Grabner, M. Central European wood species: Characterization using old
knowledge. J. Wood Sci. 2016, 62, 194–202. [CrossRef]

2. Norimoto, M.; Gril, J. Structure and properties of chemically treated woods. In Recent Research on Wood and
Wood-Based Materials; Shiraishi, N., Kajita, H., Norimoto, M., Eds.; Elsevier: Barking, UK, 1993; pp. 135–154.

3. Hill, C.A. Wood Modification: Chemical, Thermal and Other Processes; John Wiley & Sons: Hoboken, NJ, USA,
2006; Volume 5.

4. Kocaefe, D.; Huang, X.; Kocaefe, Y. Dimensional stabilization of wood. Curr. For. Rep. 2015, 1, 151–161.
[CrossRef]
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