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Abstract: Nickel oxide (NiOx)–based perovskite solar cells (PSCs) have recently gained considerable
interest, and exhibit above 20% photovoltaic efficiency. However, the reported syntheses of NiOx

sol-gel used toxic chemicals for the catalysts during synthesis, which resulted in a high-temperature
annealing requirement to remove the organic catalysts (ligands). Herein, we report a facile “NiOx

sol-gel depending on the chain length of various solvents” method that eschews toxic catalysts,
to confirm the effect of different types of organic solvents on NiOx synthesis. The optimized conditions
of the method resulted in better morphology and an increase in the crystallinity of the perovskite layer.
Furthermore, the use of the optimized organic solvent improved the absorbance of the photoactive
layer in the PSC device. To compare the electrical properties, a PSC was prepared with a p-i-n
structure, and the optimized divalent alcohol-based NiOx as the hole transport layer. This improved
the charge transport compared with that for the typical 1,2-ethanediol (ethylene glycol) used in earlier
studies. Finally, the optimized solvent-based NiOx enhanced device performance by increasing the
short-circuit current density (Jsc), open-circuit voltage (Voc), and fill factor (FF), compared with those
of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)–based devices.

Keywords: nickel oxide sol-gel; facile organic solvent synthesis; perovskite solar cells; uniform
morphology; electrical property

1. Introduction

Over the past few years, the photovoltaic R&D community has presented a breakthrough in
the next generation of energy devices, along with numerous research achievements. This is the
perovskite solar cell (PSC), which uses a halogenated perovskite (APbX3, A = monovalent cation and
X = halide) [1]. These solar cells have a power conversion efficiency (PCE (%)) of ~22.7%; among
them, the MAPbI3 (CH3NH3PbI3)–based solar cell has been reported to exhibit an excellent light
conversion efficiency [2–7]. PSCs have two types of junctions: p-i-n [8–14] or n-i-p [15], in which the
perovskite film is sandwiched between electrons (n) and holes (p). The n-i-p structure–based PSCs
using a transparent electron transport layer (ETL) are the most common. Therefore, many studies have
reported an n-i-p–type PSC configuration exhibiting the best performance [16,17]. However, studies on
the inverted p-i-n junction, with a transparent hole transport layer (HTL), are also important. This is
because of the following reasons: (a) high charge transfer between the inorganic HTL/perovskite
interface [17–20], (b) suppression of hysteresis in the graph of JV characteristics [21,22] and (c) the cost
effectiveness of the device [23–27].
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On the other hand, the application of PSCs to determine the role of an inorganic material
HTL having inherent photoelectric characteristics and high stability is emerging as an interesting
subject [28–32]. Hence, we tried to optimize the synthesis of a spin-coated inorganic metal oxide, nickel
oxide (NiOx), as an HTL applicable to inverted PSCs. It is important to control the stability of the sol,
i.e., precipitation, in the synthesis of the sol-gel solution of the nickel precursor.

According to the literature, there are many cases in which bulky alcohols are used to prevent
the precipitation of branched nickel precursors [33]. However, in the synthesis of the sol-gel solution,
a rapid precipitation of the precursors has been observed in common alcoholic solvents such as
ethanol and isopropanol. For example, the use of 2-methoxyethanol (methyl cellosolve) causes
precipitation [32,34–36]. It has been observed that the use of the bulky 2-methoxyethanol solvent in
the sol does not improve the solution stability at room temperature. Therefore, the precipitates of the
nickel precursor could be dissolved only by increasing the temperature [37–41]. In earlier studies, toxic
chemicals (monoethanolamine or ethylenediamine, as a typical chelating agent) have also been used to
improve the solubility of the sol-gel solution. However, high-temperature annealing was inevitable, to
remove the residual organic toxic catalysts in the solution, after synthesis [42–45].

Hence, a divalent alcohol–based solvent (having one more hydroxyl group than a monohydric
alcohol–based solvent) was selected to synthesize the NiOx sol-gel without a toxic catalyst. It was
observed that the nickel precursor did not precipitate, and the stability of the solution improved [46–50].
We found that the results of this experiment were based on the evaporation rate effect of the boiling
points of the different solvents [51–59]. Finally, we optimized the facile synthesis method of NiOx

sol-gels using dihydric alcohol solvents, such as 1,2-ethanediol (ET-OH), 1,4-butanediol (B-OH) and
1,5-pentanediol (P-OH) (the detailed synthesis procedure is described in the Experimental Section).
NiOx thin films were also prepared using these sol-gels, with three organic solvents having different
bond lengths and strengths. Thus, we used the reproducible organic solvent–based synthesis of NiOx

sol-gels, and fabricated PSCs to identify the variation in the photovoltaic parameters. Unlike the
previously reported solvents, the new solvent-based NiOx was applied to an inverted PSC to clearly
distinguish the PCE (%) changes. The optimized solvent-based NiOx improved the device performance
by increasing the short-circuit current density (Jsc) and open-circuit voltage (Voc), compared with those
of poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate)(PEDOT:PSS)–based devices.

2. Materials and Methods

2.1. Material Preparation

The NiOx solution was synthesized by mixing a certain amount of Ni(NO3)2·6H2O precursor
with 1,2-Ethylenediol, 1,4-Butanediol, and 1,5-Pentanediol (All chemicals of NiOx were purchased
from Sigma Aldrich, Saint Louis, MO, USA). For the other hole transport layer (HTL), poly (3,4
ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS), AI 4083 was supplied by CLEVIOS™
(Heraeus, Suwon, Korea). For the MAPbI3 solution, MAI (CH3NH3I, Dyesol-Timo Co., Ltd., Seongnam,
Gyeonggi-do, Korea) and 99.99% lead (II) iodide (TCI Co., Ltd., Taipei, Taiwan) were dissolved and
stirred in a mixture of gamma-Butyrolactone (GBL), purchased from Sigma-Aldrich (Saint Louis, MO,
USA), and dimethyl sulfoxide (DMSO), purchased from Junsei Co., Ltd. (Tokyo, Japan). All other
chemicals were used from Sigma Aldrich.

2.2. NiOx Sol-Gel Preparation

Ni(NO3)2·6H2O precursor (Sigma-Aldrich, Saint Louis, MO, USA) was used for NiOx sol-gel
synthesis. The nickel precursor (1 M) was mixed with 10 mL of a divalent alcohol solvent of
1,2-ethylenediol (ET-OH), 1,4-butanediol (B-OH), and 1,5-pentanediol. The mixture was stirred at
75 ◦C for 2 h and then filtered through a 0.25 µm pore filter at room temperature. Three synthesized
NiOx sol-gels were slightly different in color depending on the solvent. The properties of the material
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are shown in Table S1, and the NiOx solution and substrate photographs are shown in Figure S1. Using
these materials, the device was fabricated with the composition shown in Figure 1 [60,61].
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Figure 1. (a) A schematic diagram of an inverted planar perovskite solar cell using a hole transport
layer with a NiOx thin film via solvent. (b) Band energy alignment of the device.

2.3. Thin Films and Device Fabrication

A patterned Indium tin oxide ITO substrate was first washed with solvents, DI water, acetone,
and isopropanol and subsequently treated with O2-plasma for 15 min. A NiOx film was spin-coated on
the ITO substrate, at 1500 rpm for 60 s, and immediately transferred to a 120 ◦C hot plate and annealed
in air at 300 ◦C for 1 h. After annealing, a MAPbI3 layer was deposited under an Ar environment.
The MAPbI3 deposition was optimized by dissolving PbI2 and MAI solutes at a molar ratio of 1.06:1,
a concentration of 1.20 M in Dimethylformamide (DMF):Dimethyl sulfoxide (DMSO), and a volume
ratio 7:3.

2.4. Characterization of the Devices

The performances of the PSCs were measured using the PEC-L01 solar simulator (Peccell
Technologies, Inc., Kanagawa, Japan), with an air-mass-1.5 global spectrum (AM 1.5 G) at an
intensity of 100 mW/cm2. This spectrum was calibrated using a silicon reference cell. Furthermore,
the current-density/voltage characteristics and impedance of the PSCs were analyzed using the ZIVE
SP1 electrical measurement system (WonATech Co., Seoul, Korea). The device area was confirmed
to be 0.118 cm2, based on the deposited Ag cathode of the mask pattern. The power calibration
was measured using an LS150 device (Abet Technologies, Inc., Milford, CT, USA). The incident
photon-to-current efficiency (IPCE) was determined using a MonoRa-500i monochromator (DongWoo
Optron Co. Ltd., Gwangju, Gyeonggi-do, Korea). The surface morphology of the various thin-film
layers were observed using a SIGMA-model scanning electron microscope SEM instrument (Carl
Zeiss Inc., San Diego, CA, USA), at 5 kV. The crystallinity of the perovskite layer was analyzed by
recording X-ray diffraction (XRD) spectra, using a New D8-Advance (Bruker, Seongnam, Gyeonggi-do,
Korea) X-ray diffractometer. Photoluminescence (PL) spectroscopy analysis was performed using a
micro-Raman instrument (XperRam 200, Nanobase, Guemcheon-Ku, Korea), with a 550 nm excitation
and an incident power of 0.3 mW. Furthermore, the time-resolved photoluminescence (TRPL) was
analyzed using a time-correlated single photon counting instrument, with a 454 nm excitation laser and
an incident power of 0.3 µW, 25 times the average, 500 ms of exposure time, and 100 ps of resolution.
The contact angle of water droplets on “glass/NiOx via solvent (ET-OH, B-OH, and P-OH)” were
measured with a Phoenix-150 instrument (SEO, Suwon-si, Gyeonggi-do, Korea).
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3. Results and Discussion

The two key functions of our device relate to the device fabrication process (Figure 1a,b and
Figure S1, and Experimental Section): (i) divalent organic acid–based NiOx sol-gel synthesis without
a catalyst and (ii) thin-film manufacturing process for optimizing the “NiOx via solvent/MAPbI3”
interfacial contact.

Figure 2a shows that the NiOx HTLs (precursor sol, 1 mol/L) prepared with the divalent
alcohol–based solvent led to a difference in the JV curve of the PSCs. When the photovoltaic
performance analysis (Table 1) was taken into consideration, the Voc of the devices were ~999–1069 mV
after 10 min of light-irradiation. The change in the Voc, showing the intrinsic property of the interface
quality, was not as high as the ~70 mV for the comparative group. Therefore, the difference in the Voc

was not observed to be greatly dependent on the solvent selectivity. On the other hand, a change in the
PCE (%) was confirmed by the large differences in the Jsc and fill factor (FF). When the PCE (%) was
11.22% and the FF was 62%, the optimized cell corresponded with the NiOx sol-gel synthesized via
B-OH. When NiOx via ET-OH was used, the Jsc was found to be 1.21 mA/cm2 lower than when the
B-OH solvent was used; thus, the Jsc was found to depend on the type of sol-gel solvent.

As shown in Figure 2b, the highest IPCE value in the range of 400–650 nm and the integrated Jsc

(same as Jsc,IPCE) of 16.79 mA/cm2 were confirmed for the “NiOx via B-OH”-based devices, compared
with those of the others. The films of “NiOx via solvent” had a similar curvilinear shape for the UV-Vis
absorbance spectra (Figure S2a), which signified that the absorbance of the “NiOx via B-OH/MAPbI3”
thin film was higher in the range of 400–650 nm than that of the comparative group (Figure S2b).
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Figure 2. (a) J-V characteristics of inverted PSCs (Perovskite Solar Cells) using sol-gel-based
NiOx transport layers synthesized via three solvents and using PEDOTP:PSS (poly (3,4
ethylenedioxythiophene):polystyrene sulfonate); AM 1.5G, 100 mW/cm2 under solar simulaton.
(b) IPCE (The incident photon-to-current efficiency) curves of the planar inverted PSC structure.

Table 1. Performance parameters of the planar inverted PSC devices.

HTLs/Parameter Voc Jsc Jsc_IPCE FF PCE%

NiOx via ET-OH 0.999 15.68 15.41 0.42 6.56
NiOx via B-OH 1.069 16.89 16.79 0.62 11.22
NiOx via P-OH 1.039 12.42 11.78 0.69 8.91

PEDOT:PSS 0.969 16.18 16.53 0.62 9.74

Field emission scanning electron microscope (FE-SEM) analysis was performed to investigate
the difference in morphology among the sol-gel solutions synthesized with divalent alcohol solvents
(Figure 3). In the case of “NiOx via P-OH” (Figure 3c), the NiOx sol-gel was formed to a large extent,
whereas the rest (Figure 3a,b) had a very flat and uniform substrate [62–64]. It is known that a smooth
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and uniform morphology can prevent the aggregation of precursors (accumulation of large amounts
of perovskite) [65–68]. In fact, in the case of “NiOx via B-OH” devices, it was confirmed that the
performance of the device was optimal due to the homogeneity of NiOx. This is because a thin HTL
with a uniform coverage of the substrate generally has a low series resistance and an improved shunt
resistance [69–71].

Polymers 2018, 10, x FOR PEER REVIEW  5 of 13 

 

whereas the rest (Figure 3a,b) had a very flat and uniform substrate [62–64]. It is known that a smooth 

and uniform morphology can prevent the aggregation of precursors (accumulation of large amounts 

of perovskite) [65–68]. In fact, in the case of “NiOx via B-OH” devices, it was confirmed that the 

performance of the device was optimal due to the homogeneity of NiOx. This is because a thin HTL 

with a uniform coverage of the substrate generally has a low series resistance and an improved shunt 

resistance [69–71]. 

 

Figure 3. FE-SEM of ITO/NiOx (sol-gel) via solvent: (a) ET-OH, (b) B-OH, (c) P-OH and MAPbI3 on 

ITO/NiOx (sol-gel) via solvent, (d) ET-OH, (e) B-OH, and (f) P-OH. 

As shown in Figure S4, contact angle analysis was performed to compare the NiOx interfacial 

state before the deposition of the photoactive layer. The contact angle (Figure S4b) of the “NiOx via 

B-OH” thin film (14.42°) was lower than that of the comparative group (Figure S4a,c). This confirmed 

that the state of this interface was relatively hydrophilic. This result indicates that the “NiOx via B-

OH” substrate is advantageous for interfacial adhesion when a photoactive layer (MAPbI3) is 

deposited by spin coating [72,73]. We also confirmed the successful casting of the MAPbI3 layer on 

the metal oxide, using the image of the film coverage of NiOx/MAPbI3 (Figure 3d–f). 

For the quantitative analysis of the previously analyzed nanoporous morphology trends, NiOx 

sol-gel substrates were prepared as samples and subjected to XRD analysis (Figure S3). A relatively 

low full width at half maximum FWHM of 0.248 and nanoporous crystallite size of 373.5 Å  were 

observed for NiOx via B-OH, compared with those of the comparative group (Table 2). As shown in 

Figure 4, the XRD spectra of the samples deposited with the photoactive layer showed the sharpest 

intensity, in the case of the “NiOx via B-OH” samples. This sample showed the lowest FWHM of 

0.103, and the largest crystallite size of 860.6 Å . Therefore, we found that the relatively large grain 

size of the “NiOx via B-OH” device was favorable for light absorption, in the comparative group. 

These results correlate with the higher values of the Jsc. This is because the perovskite grain acts as a 

light-absorber, and its absorption depends on the size [74–77]. 

Figure 3. FE-SEM of ITO/NiOx (sol-gel) via solvent: (a) ET-OH, (b) B-OH, (c) P-OH and MAPbI3 on
ITO/NiOx (sol-gel) via solvent, (d) ET-OH, (e) B-OH, and (f) P-OH.

As shown in Figure S4, contact angle analysis was performed to compare the NiOx interfacial
state before the deposition of the photoactive layer. The contact angle (Figure S4b) of the “NiOx via
B-OH” thin film (14.42◦) was lower than that of the comparative group (Figure S4a,c). This confirmed
that the state of this interface was relatively hydrophilic. This result indicates that the “NiOx via B-OH”
substrate is advantageous for interfacial adhesion when a photoactive layer (MAPbI3) is deposited by
spin coating [72,73]. We also confirmed the successful casting of the MAPbI3 layer on the metal oxide,
using the image of the film coverage of NiOx/MAPbI3 (Figure 3d–f).

For the quantitative analysis of the previously analyzed nanoporous morphology trends, NiOx

sol-gel substrates were prepared as samples and subjected to XRD analysis (Figure S3). A relatively
low full width at half maximum FWHM of 0.248 and nanoporous crystallite size of 373.5 Å were
observed for NiOx via B-OH, compared with those of the comparative group (Table 2). As shown in
Figure 4, the XRD spectra of the samples deposited with the photoactive layer showed the sharpest
intensity, in the case of the “NiOx via B-OH” samples. This sample showed the lowest FWHM of 0.103,
and the largest crystallite size of 860.6 Å. Therefore, we found that the relatively large grain size of the
“NiOx via B-OH” device was favorable for light absorption, in the comparative group. These results
correlate with the higher values of the Jsc. This is because the perovskite grain acts as a light-absorber,
and its absorption depends on the size [74–77].
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Figure 4. XRD patterns of MAPbI3 on ITO/NiOx substrate via solvent (ET-OH, B-OH, and P-OH).

Table 2. Crystallite size with FWHM (Full Width at Half Maximum) on ITO/NiOx via solvents and
ITO/NiOx via solvents/MAPbI3 substrate.

Sample Condition FWHM C. Size (Å)

ITO/NiOx via ET-OH 0.285 324.8
ITO/NiOx via B-OH 0.248 373.5
ITO/NiOx via P-OH 0.258 358.8

NiOx via ET-OH/MAPbI3 0.252 353.6
NiOx via B-OH/MAPbI3 0.103 860.6
NiOx via P-OH/MAPbI3 0.167 533.6

In addition, electrical property analysis was performed to compare the exciton dissociation
(or charge separation) differences. PL analysis was performed with different compositions of the
“ITO/NiOx via solvent (ET-OH, B-OH, and P-OH)/MAPbI3” samples (Figure 5). We found that the
normalized PL intensity was the lowest in the “NiOx via B-OH” samples. This suggests that the exciton
dissociation (or charge separation) tendency of this material is superior [78–81]. It was also found that
the PCE (%) values of the devices were consistent with this tendency (Table 1).

Furthermore, in order to compare the electrical properties of the two solvents (ET-OH and B-OH),
which resulted in a homogeneous and smooth morphology of the NiOx thin films, we conducted TRPL
analysis of these films, and impedance analysis, through the fabrication of PSCs (Figure 6). The results
(Figure 6, Table 3) of the NiOx via solvent (ET-OH and B-OH) show that the τ1, with a charge carrier
quenching tendency, was shorter in the B-OH–applied sample, by 1.75 ns. On the other hand, the τ2

was longer in the ET-OH–applied sample, by 11.5 ns, with a charge-recombination tendency [82–84].
In conclusion, we found a relatively better charge transfer (or charge separation) tendency in the B-OH
materials than that of the ET-OH materials, which were commonly used in earlier studies [60,61],
because the average τavg. value was shorter in the B-OH samples by 8.83 ns [85–87].
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The dark DC bias is applied to obtain the most efficient charge extraction results with the smallest
charge transport resistance in a NiOx via B-OH based device.

Table 3. Parameters of the TRPL (Time-Resolved Photo Luminescence) spectra and impedance.
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As shown in Figure 6b and Table 3, the impedance results were analyzed using a PSC. This was
carried out with reference to the circuit diagram in an earlier study [88]. The series resistances (Rs,
charge transport resistance) were 7.45 × 101 Ω (Rs1) and 2.43 × 101 Ω (Rs2), which were lower in the
“NiOx via B-OH” devices than those in the “NiOx via ET-OH” devices. Therefore, this is consistent with
the device performance results, which show an improved Jsc and PCE (%), as shown in Table 1 [89–91].

Figure S5a,b shows a stable device operation over 1200 h and relatively high durability was
confirmed in NiOx via B-OH based cell. Additionally, statistical analysis of device performance
showed that the average PCE (%) was superior to that of the comparative group. (Table S2). Thus,
it was confirmed that solvent selectivity is important in NiOx sol-gel synthesis, based on the device
performance data. The device also showed a PCE (%) difference of 1.48% compared with that for
PEDOT:PSS (Table 1), indicating that it can be used as a material comparable to PEDOT:PSS.

4. Conclusions

Catalyst (stabilizer)-free and reproducible NiOx sol-gels were synthesized by selecting three
organic solvents with different chain lengths of dihydric alcohols (hydroxyl groups, -diols).
A transparent ITO/NiOx substrate was applied as an HTL, using the NiOx sol-gels to fabricate
inverted PSCs. The interfacial contact of NiOx/MAPbI3 and the electrical characterization results
showed significantly improved properties in NiOx via B-OH, compared with those of the comparative
group. Therefore, this study shows a new effect of NiOx thin film depending on the chain length of
various solvents for efficient hole charge transfer on PSCs without catalyst. Furthermore, this study
has shown that the optimized NiOx material can be used as an HTL in place of acidic PEDOT:PSS,
which is expected to be a promising stepping stone in the study of metal oxide interlayers.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4360/10/11/1227/s1,
Figure S1: photographs of NiOx via solvents: (a) ET-OH, (b) B-OH, and (c) P-OH sol-gel solutions and ITO/NiOx
via solvents, (d) ET-OH, (e) B-OH, and (f) P-OH substrates, Figure S2: absorbance spectra of (a) ITO/NiOx via
solvents (ET-OH, B-OH, and P-OH) and (b) glass/NiOx via solvents (ET-OH, B-OH, and P-OH)/MAPbI3 based
on air reference, Figure S3: XRD patterns of glass/ITO/NiOx via solvents (ET-OH, B-OH, and P-OH), Figure S4:
the contact angle images of water droplet (H2O) on different surfaces: (a) glass /NiOx via ET-OH, (b) glass/NiOx
via B-OH, and (c) glass /NiOx via P-OH, Figure S5: (a) histogram of PCE (%) device performance for 20 perovskite
solar cells fabricated under NiOx via solvent control, (b) Normalized PCE (%) of a perovskite solar cell containing
HTLs of NiOx via ET-OH (black) and B-OH (red) measured under ambient environmental conditions and standard
AM 1.5 solar illumination, Table S1: basic properties of the three solvents used in NiOx sol-gel synthesis, Table S2:
PCE (%) statistical data of perovskite solar cells based on NiOx via solvent.
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