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Abstract: Sensitive sequencing of biopolymers by nanopore-based translocation techniques requires
an extension of the time spent by the molecule in the pore. We develop an electrostatic theory
of polymer translocation to show that the translocation time can be extended via the dielectric
trapping of the polymer. In dilute salt conditions, the dielectric contrast between the low permittivity
membrane and large permittivity solvent gives rise to attractive interactions between the cis and trans
portions of the polymer. This self-attraction acts as a dielectric trap that can enhance the translocation
time by orders of magnitude. We also find that electrostatic interactions result in the piecewise
scaling of the translocation time τ with the polymer length L. In the short polymer regime L . 10
nm where the external drift force dominates electrostatic polymer interactions, the translocation is
characterized by the drift behavior τ ∼ L2. In the intermediate length regime 10 nm . L . κ−1

b
where κb is the Debye–Hückel screening parameter, the dielectric trap takes over the drift force. As a
result, increasing polymer length leads to quasi-exponential growth of the translocation time. Finally,
in the regime of long polymers L & κ−1

b where salt screening leads to the saturation of the dielectric
trap, the translocation time grows linearly as τ ∼ L. This strong departure from the drift behavior
highlights the essential role played by electrostatic interactions in polymer translocation.

Keywords: polymer translocation; dielectric membranes; electrostatic interactions; charge screening

1. Introduction

The continuous improvement of our control over nanoscale physics allows an increasingly
broader range of nanotechnological applications for bioanalytical purposes. Along these lines,
the electrophoretic transport of biopolymers through nanopores can provide a surprisingly simple
and fast approach for biopolymer sequencing [1–7]. This sequencing technique consists of mapping
the nucleic acid structure of the translocating polymer from the ionic current signal caused by the
molecule. At present, the translocation times provided by experiments are not sufficiently long for
sensitive reading of this ionic current signal [6]. Thus, the technical challenge consists of reducing the
polymer translocation speed by orders of magnitude from the current experimental values. Over the
past two decades, this objective has motivated intensive research work with the aim to characterize the
effect of various system characteristics on the polymer translocation dynamics.

Polymer translocation is driven by the entangled effects of electrostatic polymer–membrane
interactions, the electrohydrodynamic forces associated with the electrophoretic and electroosmotic
drags, and entropic barriers originating from conformational polymer fluctuations and hard-core
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polymer–membrane interactions. Due to the resulting complexity of the translocation process,
polymer translocation models have initially separately considered the contribution from
electrohydrodynamic and entropic effects. Within Langevin dynamics, theoretical studies of polymer
translocation first focused on the role played by entropy [8–12] (see also Refs. [13,14] for an extended
review of the literature). The contribution from electrostatics and hydrodynamics on the polymer
translocation dynamics has been investigated by mean-field (MF) electrostatic theories [15–18].
Within a consistent electrohydrodynamic formulation, we have recently extended these translocation
models by including beyond-MF charge correlations and direct electrostatic polymer–membrane
interactions [19–21].

In the theoretical modeling of polymer translocation, the current technical challenge consists
of incorporating on an equal footing conformational polymer fluctuations and electrostatic effects.
The achievement of this difficult task would allow for unifying the entropic coarse-grained models
and electrohydrodynamic theories mentioned above. At this point, it should be noted that such a
unification necessitates the inclusion of polymer–membrane interactions outside the pore, while the
translocation models of Refs. [19–21] developed for short polymers and long pores included exclusively
the electrostatic polymer–membrane interactions inside the pore medium. In this work, we make the
first attempt to overcome this limitation and develop a non-equilibrium theory of polymer translocation
explicitly including the interactions between a charged dielectric membrane and an anionic polymer
of arbitrary length. Within this theory, we characterize the effect of salt and membrane charge
configurations, and the polymer length on the translocation dynamics of the molecule.

In Section 2, we introduce first the geometry and charge composition of the translocation model.
Then, we derive the electrostatically augmented Fokker–Planck (FP) equation characterizing the
translocation dynamics, and obtain the capture velocity and translocation time. Section 3.2 considers
the effect of surface polarization forces on polymer translocation through neutral membranes. Therein,
we identify a dielectric trapping mechanism enabling the extension of the translocation time by orders
of magnitude. In Section 3.3, we investigate the effect of the fixed membrane charges on the dielectric
trapping and reveal an electrostatic trapping mechanism occuring at positively charged membranes in
contact with physiological salt concentrations. We also scrutinize in detail the effect of dielectric and
electrostatic interactions on the scaling of the polymer translocation time with the polymer length.
Our results are summarized in the Discussion part where the limitations of our model and future
extensions are discussed.

2. Materials and Methods

2.1. Charge Composition of the System

The charge composition of the system is depicted in Figure 1. The membrane of thickness d,
surface charge σm of arbitrary sign, and dielectric permittivity εm are immersed in the monovalent
electrolyte NaCl of concentration ρb and dielectric permittivity εw = 80. We note in passing that, in
our article, the dielectric permittivities are expressed in units of the vacuum permittivity ε0. Moreover,
the membrane contains a pore oriented along the z-axis. The externally applied voltage between the cis
and trans sides of the membrane induces a uniform electric field in the pore. This field exerts a constant
force f0 on the polymer portion enclosed by the nanopore. We note that the detailed formulation of
the pore electrohydrodynamics would be necessary to relate quantitatively the force f0 to the external
electric field, the polymer charge, the ion density, and the electroosmotic flow. As this task is beyond
the scope of the present work, the pore electrohydrodynamics will be coarse-grained and the drift
effect on the polymer translocation will be described solely in terms of the driving force f0.

The polymer is modeled as a charged line of total length L, mass M, and the bare linear charge
density of dsDNA molecules −λcq with λc = 2.0/(3.4 Å) and the electron charge q = 1.6× 10−19 C.
Electrostatic polymer–membrane interactions induce an additional electrostatic force on the polymer
charges. Appendix D explains the derivation of the corresponding electrostatic potential from the
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Debye–Hückel (DH) level electrostatic polymer grand potential. The latter is obtained by expanding
the grand potential of the whole system at the quadratic order in the polymer charge [22]. In order to
improve this approximation, we will make use of the variational charge renormalization technique [23]
and evaluate the electrostatic polymer–membrane interactions in terms of the effective polymer charge
density λ̃c defined as

λ̃c = nλc. (1)

The effective charge density (1) corresponds to the bare charge density λc dressed by the
counterion cloud around the polyelectrolyte. In Equation (1), n is the charge renormalization factor
whose variational evaluation is explained in Appendix A. We finally note that, in the limit of vanishing
salt ρb → 0, the charge renormalization factor tends to its Manning limit n = 1/(`Bλc) [23] and the
effective polymer charge (1) becomes

λ̃c =
1
`B

, (2)

where we used the Bjerrum length `B = q2/(4πεwkBT) ≈ 7 Å, with the Boltzmann constant kB and
the ambient temperature T = 300 K.
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Figure 1. (color online) Schematic representation of the membrane of dielectric permittivity εm,
thickness d, and negative or positive surface charge density σm. The membrane is immersed in the
NaCl electrolyte with bulk density ρb and dielectric permittivity εw = 80. The polymer translocating
through the pore has total length L� d. The length of the polymer portions on the cis to the trans sides
is L− s and s, respectively.

2.2. Modified Fokker–Planck Equation

The reaction coordinate of the translocation is the length s of the polymer portion on the trans
side. The polymer portion on the cis side has length L − s (see Figure 1). Thus, in our model,
the contribution from the pore length to the translocation dynamics is neglected and the right end
of the polymer penetrating the membrane is assumed to reach immediately the trans side. This is a
reasonable approximation for the present case of thin membranes and long polymers L� d. This said,
in the calculation of electrostatic polymer–membrane interactions, the finite thickness of the dielectric
membrane will be fully taken into account.

The translocation dynamics is characterized by the Langevin equation

γM
ds
dt

= −ηp
ds
dt

+ f (s) + ξ(t), (3)
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where γ is the hydrodynamic friction coefficient. The first term on the r.h.s. of Equation (3) is the
pore friction force and ηp the pore friction coefficient. The second term is the total external force
f (s) = −V′p(s) acting on the polymer, with the polymer potential Vp(s) including the effect of the
externally applied electric force f0 and electrostatic polymer–membrane interactions. Finally, the third
term of Equation (3) corresponds to the Brownian force ξ(t). In the bulk electrolyte, the diffusion
coefficient of a cylindrical molecule is given by [24]

Db =
kBT

3πηL
ln
(

2L
ea

)
, (4)

with the water viscosity η = 8.91× 10−4 Pa s, Euler’s number e ≈ 2.718, and the DNA radius a = 1 nm.
Thus, the corresponding hydrodynamic friction coefficient for the cylindrical molecule follows from
Einstein’s relation MDbγ = kBT as

γ =
3πη

λm ln(2L/ea)
, (5)

where λm = M/L is the linear polymer mass density.
In Appendix B, we show that the effective FP equation associated with the Langevin Equation (3)

is given by
∂tc(s, t) = Dp∂2

s c(s, t) + βDp∂s

[
U′p(s)c(s, t)

]
, (6)

where c(s, t) is the polymer number density. In the dilute polymer regime where polymer–polymer
interactions can be neglected, the function c(s, t) also corresponds to the polymer probability density.
In Equation (6), the effective pore diffusion coefficient is given by

Dp =
γkBT
Mγ2

p
, (7)

with the net friction coefficient
γp = γ +

ηp

M
. (8)

Finally, the effective polymer potential is

Up(s) =
γp

γ
Vp(s). (9)

2.3. Capture Velocity vc and Translocation Time τ

We compute here the polymer translocation time τ corresponding to the time between the
penetration of the polymer from the cis side and the exit of the molecule from the trans side, and the
capture velocity vc characterizing the penetration speed of the molecule into the pore. To this end,
we express Equation (6) as an effective diffusion equation

∂c(s, t)
∂t

= −∂J(s, t)
∂s

, (10)

with the polymer flux
J(s, t) = −Dp∂sc(s, t)− βDpU′p(s)c(s, t), (11)

where the first and second terms on the r.h.s. correspond to the diffusive and convective flux
components, respectively. We consider now the steady-state regime of the system characterized
by a constant polymer flux J(s, t) = Jst and density c(s, t) = cst(s). We recast Equation (11) in the form

Jst = −Dpe−βUp(s)∂s

[
cst(s)eβUp(s)

]
. (12)
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Next, we integrate Equation (12) by imposing an absorbing boundary condition (BC) cst(L) = 0
at the pore exit. The absorbing BC assumes that, due to the deep voltage-induced electric potential
on the trans side, the polymer that completes its translocation is removed from the system at s = L.
One obtains

cst(s)eβUp(s) =
Jst

Dp

ˆ L

s
ds′eβUp(s′). (13)

Setting s = 0 in Equation (13), one gets the characteristic polymer capture velocity corresponding
to the inward polymer flux per reservoir concentration vc = Jst/cst(0) as

vc =
Dp´ L

0 ds eβ[Up(s)−Up(0)]
. (14)

We note that Equation (14) corresponds to the characteristic speed at which the polymer reaches
the minimum of the total electrostatic potential Vp(zp). In general, vc differs from the average
translocation velocity. The capture and translocation velocities coincide only in the specific case
of drift-driven translocation considered in Section 3.1.

In order to derive the translocation time, we first note that the polymer population in the pore
follows from the integral of Equation (13) in the form

Np =

ˆ L

0
ds cst(s) =

Jst

Dp

ˆ L

0
ds e−βUp(s)

ˆ L

s
ds′ eβUp(s′). (15)

The translocation time corresponds to the inverse translocation rate. The latter is defined as the
polymer flux per total polymer number, i.e., τ−1 = Jst/Np. This gives the polymer translocation time
in the form

τ =
1

Dp

ˆ L

0
dse−βUp(s)

ˆ L

s
ds′eβUp(s′). (16)

In Appendix C, we show that Equation (16) can be also derived from the Laplace transform of the
FP Equation (6) as the mean first passage time of the polymer from s = 0 to s = L.

2.4. Electrostatic Polymer Potential Vp(s)

The electrostatic potential experienced by the polymer reads

Vp(s) = − f0s + ∆Ωp(s). (17)

The first term on the r.h.s. of Equation (17) is the drift potential associated with the external
force f0. The second term including the polymer grand potential ∆Ωp(s) accounts for electrostatic
polymer–membrane interactions. In Appendix D, we show that this grand potential is given by

∆Ωp(s) = Ωpm(s) + ∆Ωintra(s) + ∆Ωinter(s). (18)

The first term on the r.h.s. of Equation (18) corresponds to the direct interaction energy between
the polymer and membrane charges,

βΩpm(s) = − 2λ̃c

µκ2
b

[
2− e−κb(L−s) − e−κbs

]
sign(σm), (19)
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with the Gouy–Chapman length µ = 1/(2π`B|σm|) and DH screening parameter κb =
√

8π`Bρb.
Then, the second term of Equation (18) corresponding to the sum of the individual self interaction
energies of the polymer portions on the cis and trans sides reads

β∆Ωintra(s) =
`Bλ̃2

c
2

ˆ ∞

0

dkk
p3

b

∆
(

1− e−2kd
)

1− ∆2e−2kd

{[
1− e−pbs]2 + [1− e−pb(L−s)

]2
}

, (20)

where we defined the screening function pb =
√

κ2
b + k2 and the dielectric jump function

∆ = (εw pb − εmk)/(εw pb+εmk). Finally, the interaction energy between the trans and cis portions of
the polymer is

β∆Ωinter(s) = `Bλ̃2
c

ˆ ∞

0

dkk
p3

b

{(
1− ∆2) e(pb−k)d

1− ∆2e−2kd − 1

}
e−pbd [1− e−pbs] [1− e−pb(L−s)

]
. (21)

3. Results and Discussion

3.1. Drift-Driven Regime

The drift-driven regime corresponds to the case of high salt density or strong external force
f0 where polymer membrane interactions can be neglected, i.e., Vp(s) ≈ − f0s. In the drift limit,
the effective polymer potential (9) takes the downhill linear form βUp(s) = −λ0s where we
introduced the characteristic inverse length λ0 = β f0γp/γ. The capture velocity (14) and translocation
time (16) become

vc =
Dpλ0

1− e−λ0L , (22)

τ =
1

Dpλ2
0

[
λ0L− 1 + e−λ0L

]
. (23)

For strong electric forces with β f0L� 1, Equations (22) and (23) take the standard drift form

vc ≈ vdr =
f0

ηp + λmγL
, (24)

τ ≈ τdr =
ηpL + λmγL2

f0
, (25)

satisfying the drift-driven transport equation τ ≈ L/vc. Considering that the logarithmic term in
Equation (4) is of order unity, and introducing the characteristic length Lc = ηp/(3πη), Equation (25)
indicates that, for short polymers L � Lc, the translocation time exhibits a linear dependence on
the polymer length, i.e., τ ≈ (ηp/ f0)L. For long polymers L � Lc, the translocation time grows
quadratically with the polymer length as τ ≈ (λmγ/ f0)L2. We note that these scaling laws also follow
from the rigid polymer limit of the tension propagation theory [11].

We verified that the translocation dynamics is qualitatively affected by the pore friction only in the
drift-driven regime considered above. Thus, in order to simplify the analysis of the model, from now
on, we switch off the pore friction and set ηp = 0. This yields, in Equations (8) and (9), γp = γ.
Consequently, the effective polymer potential in Equations (14) and (16) becomes Up(s) = Vp(s) or

Up(s) = − f0s + Ωpm(s) + ∆Ωintra(s) + ∆Ωinter(s). (26)
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3.2. Neutral Membranes: Dielectric Trapping

We investigate here the electrostatics of polymer translocation through neutral membranes.
In silicon nitride membranes, the neutral surface condition is reached by setting the acidity of
the solution to the isoelectric point value pH ≈ 5 [25]. In this limit where σm = 0 and µ−1 = 0,
the polymer–membrane coupling energy in the polymer potential (26) vanishes, i.e., Ωpm(s) = 0.

3.2.1. Dielectric Trapping of the Polymer in Dilute Salt

To scrutinize the effect of polarization forces on the capture and translocation dynamics,
we consider the simplest situation where the polymer is dressed by its counterions, but there is
no additional salt in the solvent, i.e., ρb = 0. This corresponds to the limit κb → 0 where the polymer
self-energy components (20) and (21) become

β∆Ωintra(s) =
∆0

2`B

ˆ ∞

0

dk
k2

1− e−2kd

1− ∆2
0e−2kd

{[
1− e−ks

]2
+
[
1− e−k(L−s)

]2
}

, (27)

β∆Ωinter(s) = −
∆2

0
`B

ˆ ∞

0

dk
k2

1− e−2kd

1− ∆2
0e−2kd e−kd

[
1− e−ks

] [
1− e−k(L−s)

]
, (28)

with the dielectric parameter ∆0 = (εw − εm)/(εw + εm). According to Equations (26)–(28), in the
limit of vanishing dielectric discontinuity εm → εw where ∆0 = 0, polymer–membrane interactions
disappear and one recovers the drift behavior of Equations (24) and (25).

In Figure 2a,b, we display the polymer capture velocity vc and translocation time τ against the
dimensionless external force f̄0 = β`B f0 at various membrane permittivities εm ≤ εw. One sees
that, in the weak external force regime f̄0 . 1, polarization effects arising from the low membrane
permittivity result in the deviation of vc and τ from the linear response behavior of Equations (24)
and (25). More precisely, the external force dependence of the translocation time switches from linear
τ ∼ f−1

0 for large forces f̄0 & 1 to exponential ln τ ∼ − f0 for weak forces f̄0 . 0.2 (see also the inset of
Figure 2b). The exponential decay of τ with f0 is the sign of the barrier-driven translocation that we
scrutinize below. Figure 2a,b also show that, at fixed force f0, the dielectric discontinuity increases
both the capture velocity vc and the translocation time τ from their drift values, i.e., εm ↓ vc ↑ τ ↑.
The mutual enhancement of vc and τ is an important observation for nanopore-based sequencing
techniques whose efficiency depends on fast polymer capture and extended ionic current signal.

The mechanism behind the enhanced capture speed and translocation time is illustrated in
Figure 3a,b. The plots display the electrostatic self-energy profiles, and the renormalized polymer
potential Up(s)−Up(0) that includes the electric force f0 and determines the capture velocity (14)
and translocation time (16). First, we note that the self-energy component ∆Ωintra(s) is concave and
repulsive (dotted curves in Figure 3a). Thus, the individual image–charge interactions of the cis and
trans portions of the polymer act as an electrostatic barrier limiting the polymer capture by the pore.
Then, one sees that the energy component ∆Ωinter(s) is convex and negative (dashed curves). Hence,
the dielectric coupling between the cis and trans portions gives rise to an attractive force that favors the
capture of the molecule.
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Figure 2. (color online) (a) polymer capture velocity (14) and (b) translocation time (16) versus the
dimensionless external force f̄0 = β`B f0 in the dilute salt regime κb = 0 and at various membrane
permittivity values εm given in the legend of (a). The black curve in (b) corresponds to the drift limit
Equation (25) of the translocation time. The polymer length and membrane thickness are L = 50 nm and
d = 2 nm. The pore friction is switched off, i.e., ηp = 0. The inset in (b) displays in a semilogarithmic
plot the exponential regime of the translocation time for εm = 2.
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Figure 3. (color online) (a) profiles of the polymer self-energy components Equations (27)
(dotted curves) and (28) (dashed curves), and the total self-energy in Equation (18) (solid curves);
(b) effective polymer potential Equation (26) renormalized by its value at s = 0. In (a) and (b),
the membrane permittivities are εm = 80 (black), 8 (navy), and 2 (red). The external force is f̄0 = 0.2.
The other parameters are the same as in Figure 2.

In the present dilute salt conditions, the trans-cis coupling takes over the repulsive image–charge
interactions. This gives rise to a purely convex and attractive total interaction potential ∆Ωp(s) whose
slope is enhanced with the magnitude of the dielectric discontinuity, i.e., εm ↓ |∆Ω′p(s)| ↑ (compare
the solid curves in Figure 3a). Figure 3b shows that, as a result of this additional electrostatic force,
the polymer potential develops an attractive well whose depth increases with the strength of the
dielectric discontinuity, εm ↓

[
Up(s)−Up(0)

]
↓. This dielectrically induced potential well speeds up

the polymer capture but also traps the polymer at its minimum, resulting in the mutual enhancement
of the polymer capture speed and translocation time in Figure 2a,b.
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In order to localize the position of the dielectric trap, we pass to the asymptotic insulator
limit εm = 0 where the grand potential components (27) and (28) can be evaluated analytically as
β∆Ωintra(s) = ln(2)L/`B and

β∆Ωinter(s) = −
L
`B

{
ln
[

L + d
L + d− s

]
+

s
L

ln
[

L + d− s
d + s

]
+

d
L

ln
[

d(d + L)
(d + s)(d + L− s)

]}
(29)

within this approximation, the solution of the equation U′p(s∗) = 0 shows that the position of the trap
rises linearly with the force f0 and the polymer length L as

s∗ ≈
1
2

[
L +

(
d +

L
2

)
f̄0

]
. (30)

Equation (30) can be useful to adjust the location of the dielectric trap in translocation experiments.

3.2.2. Effect of Polymer Length and Finite Salt Concentration

We scrutinize here the alteration of the polymer translocation time and capture speed by the
polymer length and salt concentration. Figure 4a shows that, at a given salt concentration, the length
dependence of the translocation time is characterized by three regimes. At short polymer lengths
L < L− where L− ≈ 10 nm corresponds to the upper boundary of the drift-driven translocation
regime, polymer–membrane interactions and the self-energy ∆Ωp(s) are weak, and the translocation
is characterized by drift transport, i.e., τ ≈ τdr. Consequently, the translocation time of short polymers
rises quadratically with the molecular length, i.e.,

τ ∝ L2 for L < L−. (31)
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Figure 4. (color online) (a) translocation time of Equation (16) versus the polymer length at the
membrane permittivity εm = 2 and various salt density values. The solid black curve corresponds
to the drift limit Equation (25) of the translocation time. The inset displays the translocation time at
ρb = 5× 10−5 M in a linear scale; (b) renormalized polymer self-energy profile at the salt density
ρb = 10−4 M and various polymer lengths corresponding to the dots of the same color in (a).
The external force and membrane thickness are f̄0 = 0.2 and d = 2 nm. In (a), the fast increase
of the translocation time ends at the upper polymer length L = L+ = κ−1

b with the numerical value
L+ = 97, 44, 31, and 20 nm, for ρb = 10−5, 5× 10−5, 10−4, and 5× 10−4 M.

The departure from drift transport occurs at intermediate lengths L > L−. In this regime,
the magnitude of the attractive trans-cis coupling becomes significant and the increase of the polymer
length strongly enhances the depth of the electrostatic potential trap (see Figure 4b). Figure 4a shows
that this results in the amplification of the translocation time with the polymer length by orders of
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magnitude. We found that this trend is the reminiscent of an exponential growth ln τ ∝ L reached in
the asymptotic insulator limit εm = 0 (data not shown).

The quick rise of the translocation time with the polymer length continues up to the characteristic
length L ≈ L+ = κ−1

b whose numerical value is given in the caption of Figure 4. L+ corresponds
to the critical polymer length beyond which electrostatic polymer–membrane interactions saturate.
More precisely, due to salt screening, the trans-cis portions of the polymer separated by a distance
larger than L+ interact weakly. As a result, the depth of the dielectric trap is mostly invariant by the
extension of the polymer length beyond L+ (see Figure 4b). Thus, for L & L+, the value of the double
integral in Equation (16) is not significantly affected by the length L, i.e., τ ∝ D−1

p ∝ L. This results in
the linear rise of the translocation time with the polymer length (see also the inset of Figure 4a), i.e.,

τ ∝ L for L > L+. (32)

We note that the scaling discussed above qualitatively agrees with experiments on α-Hemolysin
pores exhibiting a similar piecewise length dependence of the translocation time (see, e.g., Figure 9
of Ref. [26]). Finally, Figure 4 shows that, due to the screening of dielectric polymer–membrane
interactions, added salt reduces the translocation time, i.e., ρb ↑ τ ↓. Beyond the characteristic salt
concentration ρb ≈ 10−4 M where the length L+ approaches L−, the translocation time tends to its
drift limit at all polymer lengths.

3.3. Charged Membranes

We investigate here the alteration of the features discussed in Section 3.2 by a finite membrane
charge. For a positive membrane charge σm ≥ 0 corresponding to acidity values pH . 5 [25],
the direct polymer–membrane coupling energy (19) results in an attractive force favoring the polymer
capture. In order to characterize the effect of this additional force on the dielectric trapping mechanism,
we first focus on the dilute salt regime and set ρb = 10−4 M. Figure 5a–c display the capture velocity,
translocation time, and renormalized polymer potential at various weak membrane charge densities
including the case of neutral membranes (navy curves).

One first notes that, upon the increase of the cationic membrane charge, the onset of
the polymer–membrane attraction significantly deepens the trapping potential Up(s) − Up(0).
This enhances the translocation time of long polymers by orders of magnitude, i.e., σm ↑ τ ↑ for
L & 30 nm. However, one also sees that, at the beginning of the translocation corresponding to
the polymer capture regime s . 0.2 L, the slope of the polymer potential is weakly affected by the
increment of the membrane charge density. As a result, the dielectrically enhanced capture velocity vc

remains practically unaffected by a weak membrane charge. Finally, Figure 5b shows that the linear
scaling of the translocation time with the polymer length remains unchanged by the surface charge,
i.e., τ ∝ L for L & L+ (see also the inset). One however notes that the finite membrane charge shifts
the regime of linearly rising translocation time to larger polymer lengths, i.e., σm ↑ L+ ↑.

We consider now the stronger salt regime where the dielectric trapping effect disappears.
To simplify the numerical computation of the capture velocity Equation (14) and translocation time
Equation (16), we neglect the dielectric interaction terms of Equation (26) that become perturbatively
small. Within this approximation, the polymer potential becomes Up(s) ≈ − f0s + Ωpm(s).

Figure 6a–c show that, in the regime of moderate salt concentration and cationic membrane charge
(purple and red curves), the direct polymer–membrane charge attraction can solely induce a deep
enough electrostatic trap to enhance both the capture velocity and the translocation time by orders of
magnitude, i.e., σm ↑ vc ↑ τ ↑. In terms of the dimensionless constant c = βµκb f0/(4λ̃c), the relation
U′p(s∗) = 0 yields the location of the electrostatic trap in the form

s∗

L
= 1 +

1
κbL

ln
(

c +
√

c2 + e−κbL
)

. (33)



Polymers 2018, 10, 1242 11 of 20

Equation (33) can enable to control the position of the polymer trap by changing the relative
weight of the drift force f0 and the electrostatic polymer–membrane attraction via the adjustment of
various system parameters. Indeed, in the regime βµκb f0/(4λ̃c)� 1 corresponding to weak salt or
external force f0, and high membrane charge σm and/or polymer charge λ̃c, Equation (33) indicates the
trapping of the polymer at s∗ ≈ L/2. Moving to the opposite regime βµκb f0/(4λ̃c)� 1 of strong salt
or external force, low membrane or polymer charge strength, and long polymers κbL & 1, the trapping
point in Equation (33) is shifted towards the polymer exit s∗ = L according to the relation

s∗

L
≈ 1− 1

κbL
ln
(

2λ̃c

βµκb f0

)
. (34)

Figure 6b also shows that, at strong enough membrane charges (red curve), the trapping-induced
enhancement of the translocation time is followed at large lengths by the linear scaling behavior
τ ∝ L equally observed for neutral and weakly charged membranes (see the inset of Figure 6c).
At intermediate charges, the system tends to the drift behavior τ → τdr before the linear scaling regime
is reached (purple curve in Figure 6b). We also note that, in the short length regime of Figure 6b,
the weak curvature of the drift translocation time τdr stems from the logarithmic correction factor in
the polymer diffusion coefficient of Equation (4).
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Figure 5. (color online) (a) polymer capture velocity Equation (14) and (b) translocation time
Equation (16) against the polymer length L. The solid black curve in (b) corresponds to the drift limit
Equation (25) of the translocation time; (c) effective polymer potential Equation (26) at L = 100 nm.
The membrane charge density corresponding to each curve is given in the legend of (c). The inset in (b)
displays the purple curve in a linear scale. Salt concentration is ρb = 10−4 M. The other parameters are
the same as in Figure 4.
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Figure 6. (Color online) (a) Polymer capture velocity Equation (14) and (b) translocation time
Equation (16) against the polymer length L. The black curve in (b) corresponds to the drift limit
Equation (25) of the translocation time. (c) Effective polymer potential (26) at L = 100 nm. The inset in
(c) displays the red curve of (b) in a linear scale. The membrane charge density corresponding to each
curve is given in the legend of (c). Salt concentration is ρb = 0.1 M. The other parameters are the same
as in Figure 4.

We finally investigate the effect of anionic membrane charges reached in the acidity regime
pH & 5. Interestingly, Figure 6b indicates that, in strong salt conditions where the polymer–membrane
charge coupling dominates the dielectrically induced polymer self-interactions, the enhancement
of the translocation time in Equation (16) does not depend on the sign of the membrane charge,
i.e., τ(σm) = τ(−σm). However, one also notes that, in anionic membranes, the like-charge
polymer–membrane repulsion gives rise to an electrostatic barrier at the pore entrance (see Figure 6c).
Figure 6a shows that this barrier diminishes the polymer capture rate by several orders of magnitude,
i.e., |σm| ↑ Up(s) − Up(0) ↑ vc ↓ for σm < 0. Thus, in anionic membranes, the enhancement
of the translocation time stems from the suppression of polymer capture by the electrostatic
polymer–membrane repulsion. The existence of a similar barrier induced by electrostatic DNA-pore
repulsion has been previously identified by a different polymer translocation model developed for
long nanopores and short polymers [20].

4. Discussion

The accurate characterization of voltage-driven polymer translocation requires modeling of this
process by including the electrostatic details of the polymer–membrane complex and the surrounding
electrolyte solution. Motivated by this need, we have developed here an electrostatic transport model
to investigate the effect of surface polarization forces, added salt, and membrane charge on the capture
and translocation of stiff polymers with arbitrary length. Our results are summarized below.

We first considered the case of neutral membranes and dilute salt regime where the polyelectrolyte
is dressed by its counterions, but there is no additional salt in the system. In this regime, we identified
a dielectrically induced polymer trapping mechanism. Namely, the dielectric contrast between the
low permittivity membrane and large permittivity solvent leads to attractive interactions between
the cis and trans portions of the polymer. The attraction gives rise to a dielectric trap located at
s = s∗ = [L + (d + L/2) f̄0]/2. The trap speeds up the polymer capture occurring at s < s∗ but slows
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down the escape of the polymer at s > s∗, amplifying the polymer capture velocity by several factors
and the total translocation time by orders of magnitude.

We also observed that, in neutral membranes, added salt of concentration ρb & 10−4 M suppresses
the dielectric trapping of the polymer. However, at arbitrary salt densities, positive membrane
surface charges emerging at low solution pH restore the polymer trapping via the electrostatic
polymer–membrane attraction. This electrostatic trap can enhance the polymer capture speed and
translocation time as efficiently as its dielectric counterpart. It was also shown that the location of the
trap in Equation (33) can be adjusted by modifying the experimentally accessible model parameters
such as the salt and membrane charge density. Thus, the electrostatic trapping can equally well
provide an efficient way to extend the duration of the ionic current blockade required for the sensitive
sequencing of the translocating biopolymer.

Finally, we investigated the effect of polymer trapping on the scaling of the translocation time
with the polymer length. At short lengths L . 10 nm where the interactions between the cis and
trans sides of the polymer are dominated by the drift force f0, the translocation is characterized by
the drift behavior of Equation (25). In the intermediate polymer length regime 10 nm . L . κ−1

b
where the attractive trans-cis coupling takes over the drift force, the resulting dielectric trap leads to
a quasi-exponential inflation of the translocation time with the length of the molecule. Beyond the
characteristic polymer length L ≈ κ−1

b where ionic screening comes into play, the depth of the dielectric
trap becomes saturated. As a result, the translocation time of long polymers rises linearly with the
molecular length, i.e., τ ∝ L. We finally showed that, in positively charged membranes, the electrostatic
trap results in a similar piecewise length dependence of the translocation time. It is also important
to note that such a piecewise trend has been previously observed in translocation experiments with
α−Hemolysin pores [26].

The present formalism developed for long polymers and thin membranes is complementary to
our previous translocation model of Ref. [20] introduced for short polymers translocating through long
nanopores. These two formalisms can be unified in the future by taking into account both the detailed
electrohydrodynamics of the nanopore and electrostatic polymer–membrane interactions outside the
pore. This extension would also enable considering the influence of nonlinear electrostatic correlation
effects such as polymer and pore charge inversion on the translocation dynamics [19].

Before concluding, we would like to comment about the stiff polymer approximation of the
model. Considering the DNA persistence length lp ∼ 50 nm at the salt density ρb = 0.1 M, the entropic
polymer fluctuations neglected in our model should become relevant for polymers of length L & 50 nm.
Thus, in the corresponding long polymer regime, the resulting entropic cost for polymer capture is
expected to enhance the polymer translocation times and reduce the capture velocities from the
predictions in Figure 6a,b. It should be, however, noted that as the remaining results reported in
Figures 2–5 were obtained in the dilute electrolyte regime ρb ≤ 5× 10−4 M where DNA is stiffer than
at the physiological salt density ρb = 0.1 M, our main conclusions should be qualitatively unaffected
by the rigid rod approximation. A quantitatively accurate evaluation of the error caused by the stiff
polymer approximation requires the direct inclusion of entropic polymer fluctuations into our model.
This formidable task is beyond the scope of the present article. The consideration of this extension in a
future work may also allow for incorporating into our electrostatic formalism the tension propagation
mechanism relevant for long polymers [10,14].
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Appendix A. Variational Evaluation of the Dressed Polymer Charge

We summarize here the variational charge renormalization procedure that allows for evaluating the
effective polymer charge density λ̃c. The latter is defined as λ̃c = nλc, where the charge renormalization
factor n accounting for the counterion dressing of the bare charge λc follows from the numerical
solution of the variational equation [23]

2(1− n)`Bλcψp(a) + κ2
b

ˆ ∞

a
drr

{
nψ2

p(r)− ψp(r) sinh
[
nψp(r)

]}
= 0. (A1)

In Equation (A1), the radius of the cylindrical polymer is a = 1 nm, and the electrostatic potential
induced by the bare polymer charge reads

ψp(r) =
2`Bλc

κba
K0(κbr)
K1(κba)

. (A2)

In Equation (A2), we used the DH screening parameter κb =
√

8π`Bρb and the modified
Bessel functions Kn(x) [27]. We also note that, in the Manning limit of vanishing salt κb → 0 where
Equation (A1) yields n = 1/(`Bλc), the net polymer charge becomes λ̃c = 1/`B.

Appendix B. Derivation of the FP Equation (6)

In this appendix, we derive the FP Equation (6) associated with the Langevin Equation (3). First,
we cast this equation in the form

γpM
ds
dt

= f (s) + ξ(t), (A3)

with the net friction coefficient
γp = γ +

ηp

M
, (A4)

and the Gaussian white noise satisfying the relations

〈ξ(t)〉 = 0; (A5)〈
ξ(t)ξ(t′)

〉
= 2MγkBTδ(t− t′). (A6)

In Equations (A5) and (A6), the bracket 〈·〉 indicates the average over the Brownian noise.
Integrating Equation (A3) over the infinitesimal time interval δt, one gets

δs(t) =
1

Mγp
f (s)δt +

1
Mγp

ˆ t+δt

t
dt′ξ(t′). (A7)

Taking the noise average of Equation (A7) and its square, and keeping only the terms linear in δt,
one obtains

〈δs(t)〉 =
1

Mγp
f (s)δt, (A8)〈

δs2(t)
〉

=
2γkBTδt

Mγ2
p

. (A9)

We now derive the stochastic equation generating the averages (A8) and (A9). Following the
approach of Ref. [28], we start with the Chapman–Kolmogorov equation for the polymer translocation
between the initial position s0 = s(t0) and final position s = s(t + δt),

c(s, t + δt; s0, t0) =

ˆ L

0
ds′c(s, t + δt; s′, t)c(s′, t; s0, t0). (A10)
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To progress further, we express the noise-averaged definition of the probability density

c(s, t + δt; s′, t) =
〈
δ(s− s′ − δs)

〉
, (A11)

where the term δs on the r.h.s. corresponds to the random displacement over the infinitesimal time
interval δt. Next, we Taylor-expand the corresponding term at order O

(
δs2) to obtain

c(s, t + δt; s′, t) =
{

1 + 〈δs〉 ∂s′ +
1
2

〈
δs2
〉

∂2
s′

}
δ(s− s′). (A12)

Inserting Equation (A12) into Equation (A10), carrying out integrations by parts, and using the
relations (A8) and (A9), one obtains

c(s, t + δt; s0, t0) =

{
1− δt

Mγp
∂s f (s) + δtDp∂2

s

}
c(s, t; s0, t0), (A13)

where we introduced the effective diffusion coefficient

Dp =
γkBT
Mγ2

p
. (A14)

Taylor-expanding the l.h.s. of Equation (A12), one gets

c(s, t + δt; s0, t0) = {1 + δt∂t} c(s, t; s0, t0). (A15)

Equating the relations (A12) and (A15) and simplifying the result, one finally obtains the modified
FP equation

∂tc(s, t) = Dp∂2
s c(s, t) + βDp∂s

[
U′p(s)c(s, t)

]
(A16)

including the effective polymer potential

Up(s) =
γp

γ
Vp(s). (A17)

Appendix C. Calculation of the Translocation Time

Here, based on the FP Equation (A16), we derive the polymer translocation time (15) as the mean
first passage time of the polymer from the cis to the trans side. Our derivation will follow the approach
of Ref. [29] that will be extended to the presence of a steady-state solution to the FP equation. The BCs
associated with this equation are the initial condition at the pore mouth and an absorbing boundary at
the pore exit,

c(s, t = 0) = δ(s), (A18)

c(s = L, t) = 0. (A19)

The probability of polymer survival in the pore is

S(t) =
ˆ L

0
ds c(s, t). (A20)

The translocation probability can be thus expressed as Ptr(t) = 1− S(t) and the mean-first passage
time distribution is therefore ψ(t) = P′tr(t) = −S′(t), or

ψ(t) = −
ˆ L

0
ds ∂tc(s, t). (A21)



Polymers 2018, 10, 1242 16 of 20

Thus, the translocation time corresponding to the mean-first passage time reads

τ ≡
ˆ ∞

0
dt ψ(t)t = −

ˆ L

0
ds
ˆ ∞

0
dt ∂tc(s, t)t. (A22)

We define now the transient part of the polymer density function

u(s, t) = c(s, t)− cst(s), (A23)

with the steady-state polymer probability satisfying the equation ∂2
s cst(s) + β∂s

[
U′p(s)cst(s)

]
= 0.

Thus, the transient solution (A23) equally satisfies the FP Equation (A16),

∂tu(s, t) = Dp∂2
s u(s, t) + βDp∂s

[
U′p(s)u(s, t)

]
. (A24)

Next, we introduce the Laplace transform of Equation (A23),

Y(s, q) =
ˆ ∞

0
dte−qtu(s, t). (A25)

After an integration by part, the translocation time (A22) becomes

τ =

ˆ L

0
ds
ˆ ∞

0
dt u(s, t) =

ˆ L

0
ds Y0(s), (A26)

where we defined Y0(s) = Y(s, q = 0).
According to Equation (A24), given the initial condition (A18), the Laplace transform Y0(s) solves

the differential equation

Dp∂2
s Y0(s) + βDp∂s

[
U′p(s)Y0(s)

]
= −δ(s)− cst(s). (A27)

Integrating Equation (A27) around the point s = 0 and taking into account the vanishing polymer
probability for z < 0 outside the pore, one gets

Y′0(0
+) + βU′p(0

+)Y0(0+) = −
1

Dp
. (A28)

Accounting now for the absorbing BC (A19), the homogeneous solution to Equation (A27) follows
as

Y0(s) = b e−βUp(s)
´ L

s ds′eβUp(s′)

´ L
0 ds′eβUp(s′)

, (A29)

where b is an integration constant. Injecting the solution (A29) into Equation (A28), one finds
b =
´ L

0 ds′eβUp(s′)/Dp and

Y0(s) =
1

Dp
e−βUp(s)

ˆ L

s
ds′eβUp(s′). (A30)

Finally, the substitution of Equation (A30) into Equation (A26) yields the translocation time (15)
of the main text.

Appendix D. Derivation of the Polymer Interaction Potential ∆Ωp(s)

In this appendix, we explain the calculation of the polymer–membrane interaction potential
∆Ωp(s) in Equation (17) from the total polymer grand potential

Ωp(s) = Ωpm(s) + Ωs(s). (A31)
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In Equation (A31), the term Ωpm(s) is the interaction energy between the polymer and membrane
charges. The second component Ωs(s) corresponds to the polymer self-energy accounting for the
polarization forces induced by the dielectric contrast between the membrane and the solvent. Below,
we review briefly the computation of these two potential components previously derived in Ref. [22].
The electrostatic potential ∆Ωp(s) will be obtained from the grand potential (A31) at the end of
Appendix D.2.

Appendix D.1. Polymer–Membrane Coupling Energy Ωpm(s)

In Equation (A31), the grand potential component taking into account the polymer–membrane
charge coupling is

βΩpm(s) =
ˆ

drσp(r)φm(r), (A32)

where we introduced the polymer charge density function

σp(r) = −λ̃cδ(r‖) [θ(−z)θ(z + l) + θ(z− d)θ(d + s− z)] . (A33)

The first and second terms inside the bracket of Equation (A33) correspond to the cis and trans
portions of the polymer with the respective lengths l = L− s and s. Then, in Equation (A32), the
average electrostatic potential φm(r) = φm(z) induced by the membrane charges satisfies the linear PB
equation [

∂zε(z)∂z − κ2(z)
]

φm(z) = −4π`Bσm [δ(z) + δ(z− d)] . (A34)

In Equation (A34), the dielectric permittivity and ionic screening functions read

ε(z) = εw [θ(−z) + θ(z− d)] + εmθ(z)θ(d− z), (A35)

κ2(z) = κ2
b [θ(−z) + θ(z− d)] . (A36)

Solving Equation (A34) with the continuity condition φm(z−) = φm(z+), and the jump condition
ε(z+)φ′(z+) − ε(z−)φ′(z−) = 4π`Bεwσm at the charged boundaries located at z = 0 and z = d,
one obtains

φm(z) =
2

µκb

{
eκbzθ(−z) + θ(z)θ(d− z) + e−κb(z−d)θ(z− d)

}
sign(σm), (A37)

with the Gouy–Chapman length µ = 1/(2π`B|σm|). Substituting Equations (A33) and (A37) into
Equation (A32), the polymer–membrane charge coupling potential finally becomes

βΩpm(s) = − 2λ̃c

µκ2
b

[
1− e−κb(L−s) + 1− e−κbs

]
sign(σm). (A38)

Appendix D.2. Polymer Self-Energy ∆Ωs(s) and Total Electrostatic Polymer Potential ∆Ωp(s)

The polymer self-energy component of Equation (A31) is given by

βΩs(s) =
1
2

ˆ
drdr′σp(r)v(r, r′)σp(r′), (A39)

where the electrostatic kernel solves the DH equation

[
∇ · ε(z)∇− ε(z)κ2(z)

]
v(r, r′) = − e2

kBT
δ(r− r′). (A40)



Polymers 2018, 10, 1242 18 of 20

Exploiting the planar symmetry and Fourier-expanding the kernel as

v(r, r′) =
ˆ

d2k
4π2 eik·(r‖−r′‖)ṽ(z, z′), (A41)

the kernel Equation (A40) takes the one-dimensional form

[
∂zε(z)∂z − p2(z)

]
ṽ(z, z′) = − e2

kBT
δ(z− z′), (A42)

where p(z) =
√

κ2(z) + k2. Defining now the bulk screening parameter pb =
√

κ2
b + k2,

the homogeneous solution of the linear differential Equation (A42) can be expressed as

ṽ(z, z′) = b1epbzθ(z′ − z) +
[
b2epbz + b3e−pbz] θ(z− z′)θ(−z) (A43)

+
[
b4ekz + b5e−kz

]
θ(z)θ(d− z) + b6e−pbzθ(z− d),

for the charge source located at z′ < 0, and

ṽ(z, z′) = c1epbzθ(z′ − z) +
[
c2epbz + c3e−pbz] θ(z− z′)θ(−z) (A44)

+
[
c4ekz + c5e−kz

]
θ(z)θ(d− z) + c6e−pbzθ(z− d),

for z′ > 0. In Equations (A43) and (A44), the coefficients bi and ci are integration constants.
These constants are to be determined by imposing the continuity of the kernel ṽ(z, z′) and the
displacement field ε(z)∂zṽ(z, z′) at z = 0 and z = d, and by accounting for the additional relations
ṽ(z′−, z′) = ṽ(z′+, z′) and ∂zṽ(z, z′)|z=z′+ − ∂zṽ(z, z′)|z=z′− = −4π`B at the location of the source ion.
After some long algebra, the Fourier-transformed kernel takes the form

ṽ(z, z′) = ṽb(z− z′) + δṽ(z, z′). (A45)

In Equation (A45), the first term is the Fourier transformed bulk DH kernel
ṽb(z− z′) = (2π`B/pb)e−pb|z−z′ |. The second term corresponds to the dielectric part of the
Green’s function originating from the presence of the membrane. This dielectric component reads

δṽ(z, z′) =
2π`B

pb

∆
(

1− e−2kd
)

1− ∆2e−2kd epb(z+z′), (A46)

for z ≤ 0 and z′ ≤ 0,

δṽ(z, z′) =
2π`B

pb

∆
(

1− e−2kd
)

1− ∆2e−2kd epb(2d−z−z′), (A47)

for z ≥ d and z′ ≥ d, and

δṽ(z, z′) =
2π`B

pb

(1− ∆2)e(pb−k)d + ∆2e−2kd − 1
1− ∆2e−2kd e−pb|z−z′ |, (A48)

for z′ ≤ 0 and z ≥ d, or z′ ≥ d and z ≤ 0. In Equations (A46)–(A48), we defined the dielectric
jump function

∆ =
εw pb − εmk
εw pb + εmk

. (A49)

We finally note that, in Equations (A42)–(A49), the Fourier-transformed Green’s function ṽ(z, z′),
the screening functions p(z) and pb, and the dielectric jump function ∆ depend explicitly on the
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two-dimensional wave vector k. In order to simplify the notation, the k−dependence of these functions
will be omitted.

The net interaction potential ∆Ωp(s) between the polymer and the charged dielectric membrane
corresponds to the grand potential (A31) minus its bulk value. In the bulk reservoir where there is
no charged interface, i.e., σm = 0, the polymer–membrane charge coupling energy (A38) naturally
vanishes. Consequently, the interaction potential becomes

∆Ωp(s) = Ωpm(s) + ∆Ωs(s), (A50)

where the polymer self-energy renormalized by its bulk value is

β∆Ωs(s) =
1
2

ˆ
drdr′σp(r)

[
v(r, r′)− vb(r− r′)

]
σp(r′). (A51)

Using Equations (A45)–(A48) in Equation (A51), after lengthy algebra, the self-energy
Equation (A51) becomes

∆Ωs(s) = ∆Ωintra(s) + ∆Ωinter(s), (A52)

with the individual self-energy of the polymer portions on the cis and trans sides of the membrane

β∆Ωintra(s) =
`Bλ̃2

c
2

ˆ ∞

0

dkk
p3

b

∆
(

1− e−2kd
)

1− ∆2e−2kd

{[
1− e−pbs]2 + [1− e−pb(L−s)

]2
}

, (A53)

and the energy of interaction between the cis and trans portions of the polymer

β∆Ωinter(s) = `Bλ̃2
c

ˆ ∞

0

dkk
p3

b

{(
1− ∆2) e(pb−k)d

1− ∆2e−2kd − 1

}
e−pbd [1− e−pbs] [1− e−pb(L−s)

]
. (A54)

The net interaction potential (A50) can be finally expressed in terms of the energy components in
Equations (A38), (A53) and (A54) as

∆Ωp(s) = Ωpm(s) + ∆Ωintra(s) + ∆Ωinter(s). (A55)
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