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Abstract: A modified polyphosphazene was synthesized using a mixed substitution at phosphorus
consisting of 2-(2-methoxyethoxy)ethoxy side groups and anionic trifluoroborate groups. The primary
goal was to increase the low lithium ion conductivities of the conventional lithium salt containing
poly[2-(2-methoxyethoxy)ethoxy-phosphazene] (MEEP) by the immobilized anionic groups. As in
previous studies, the mechanical stability was stabilized by UV induced radiation cross linking.
By variation of the molar ratio between different side groups, mechanical and electrochemical
properties are controllable. The polymer demonstrated large electrochemical stability windows
ranging between 0 and 4.5 V versus the Li/Li+ reference. Total and lithium conductivities
of 3.6 × 10−4 S·cm−1 and 1.8 × 10−5 S·cm−1 at 60 ◦C were revealed for the modified MEEP.
When observed in special visualization cells, dendrite formation onset time and short-circuit time
were determined as 21 h and 90 h, respectively, under constant current polarization (16 h and 65 h
for MEEP, both with 15 wt % LiBOB), which hints to a more stable Li/polymer interface compared
to normal MEEP. The enhanced dendrite suppression ability can be explained by the formation of a
more conductive solid electrolyte interphase (SEI) and the existence of F-contained SEI components
(such as LiF). With the addition of ethylene carbonate–dimethyl carbonate (EC/DMC) to form
MEE-co-OBF3P gel polymer, both total and lithium conductivity were enhanced remarkably, and the
lithium transference numbers reached reasonable values (σtotal = 1.05 mS·cm−1, σLi

+ = 0.22 mS·cm−1,
tLi+ = 0.18 at 60 ◦C).
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1. Introduction

Polymer electrolytes (SPEs) offer improved safety and reliability as compared to electrolytes based
on liquid solvents only [1–7]. An additional advantage might be an enhanced stability towards lithium
dendrite formation in contact with lithium metal anodes as was reported by several authors [8–12].
However, the achievable steady-state lithium ion current densities suffer from the very low lithium
ion conductivities as well as the low transference numbers, T+, which typically range between 0.1 and
0.25 [13–15].

Therefore, polymer electrolytes are usually transformed to polymer gels by gelification with
polar aprotic liquids, which largely enhance the ionic mobility [16–19]. An additional improvement
is expected by the use of polymers with immobilized anions (= polyanions) whose charge is
compensated by mobile lithium ions. This strategy should lead to single lithium ion transport
and a transference number equal to one. There have been several studies reporting experiences on

Polymers 2018, 10, 1350; doi:10.3390/polym10121350 www.mdpi.com/journal/polymers

http://www.mdpi.com/journal/polymers
http://www.mdpi.com
https://orcid.org/0000-0002-3095-9760
https://orcid.org/0000-0002-6049-9953
http://dx.doi.org/10.3390/polym10121350
http://www.mdpi.com/journal/polymers
http://www.mdpi.com/2073-4360/10/12/1350?type=check_update&version=2


Polymers 2018, 10, 1350 2 of 14

this concept regarding different polymers [20–25]. Allcock et al. was already able to synthesize a
polyphosphazene based single ion conductor with arylsulfonimide side groups covalently linked to
the polymer backbone. The lithium ion concentration depended on the net percentage of lithiated
sulfonamide substituents, but as most often found by these and other authors before, the mobility of
ions remained small, reaching 2.45 × 10−6 S cm−1 at ambient temperatures and 4.99 × 10−5 S cm−1 at
80 ◦C [26]. Such values do not yet meet the requirements of practical batteries. Fiedler et al. synthesized
the polyphosphazene based polymer electrolytes with cyclic ether side groups, showing an extremely
high lithium transference numbers of 0.6, but rather low lithium conductivities of 2.8 × 10−6 S cm−1 at
60 ◦C for poly [(1,3-dioxane-5-oxy) (1,3-dioxolane-4-methoxy)-phosphazene] [27].

Recently, we introduced the concept of polymers with immobilized anionic trifluoroborate groups.
These are easy to prepare and tend to favor a good dissociation of the charge compensating lithium
ions [28]. It is to be expected that the glass transition temperature will increase with the concentration
of anionic substituents which, however, cannot be increased to 100% of the phosphorous sites as an
increase soon will lead to much less segmental mobility of the polymer and accordingly to a slowing
down of the cation mobility. The latter may be partially stopped by adding a liquid solvent to form
a polymer gel. However, a compromise is an appropriate ratio of donor substituents with ether
oxygens (usual lithium ion solvating groups in ether-based salt-in-polymer electrolytes) and additional
more rigid anionic groups (each combined with a free lithium ion). The ratio can be optimized to
achieve good ion mobility and lithium ion concentration and hence a favorable partial conductivity of
lithium ions.

This work demonstrates the electrochemical properties of a mixed substituted polyphosphazene,
which can be used as polymer electrolyte in combination with lithium metal anodes. The parent
poly[bis(2-(2-methoxyethoxy)ethoxy)-polyphosphazene] (MEEP) with dissolved salt is already well
known as a good polymer electrolyte [29–31]. The idea was to replace a moderate part of 5% to 10% of
the polyether side chains at the phosphorous by fixed anionic –OBF3

− groups which should retain the
good mechanical and electrochemical properties of MEEP.

2. Materials and Methods

2.1. Starting Materials

Toluene (99.7%, VWR, Darmstadt, Germany), tetrahydrofurane (99.5%, VWR), sulfuryl chloride
(SO2Cl2, 98%, Aldrich, Munich, Germany), n-pentane (98%, Baker, Gross-Gerau, Germany),
phosphorous trichloride (PCl3, 99%, Merck KGaA, Darmstadt, Germany), and 2-(2-Methoxyethoxy)
ethanol (C5H12O3 99%, Aldrich) were freshly distilled beforehand. Sodium hydride (60% dispersion
in mineral oil, Aldrich), sodium hydroxide (98%, Aldrich), n-butyl lithium solution (1.6 M in hexane,
Aldrich), lithium bis(trimethylsilyl)amide (LiN(Si(CH3)3)2, 97%, Aldrich), boron trifluoride diethyl
etherate (BF3·O(C2H5)2, Aldrich), and phosphorous pentachloride (PCl5, Aldrich) were kept in an
argon filled glove box. The dialysis tubes (1.2–1.4× 10−4 g mol−1, Reichelt Chemietechnik, Heidelberg,
Germany), Celite545® (Merck KGaA), and the molecular sieve 4 Å (VWR) used for polymer purification
were cleaned and dried prior to use (140 ◦C for 48 h). All synthesis steps were carried out using
standard vacuum line Schlenk techniques (under inert gas).

2.2. Synthesis of Precursor Polymer

The precursor polymer, [NPCl2]n (1), was synthesized based on a synthesis route published by
Wang et al. [32,33] and a cationic living polymerization reaction (first published by Allcock et al. [34]) with
minor modifications [35]. The intermediate poly[bis 2-(2-methoxyethoxy)ethoxy-co-hydroxophosphazene]
(2) was obtained by nucleophilic substitution of chlorine with a corresponding ratio of sodium
alcoholate and sodium hydroxide according to Figure 1. The functionalization of polyphosphazenes
with oligoether side chains was already published earlier [14].



Polymers 2018, 10, 1350 3 of 14
Polymers 2018, 10, 1350 3 of 14 

 

 
Figure 1. Synthesis of poly[bis 2-(2-methoxyethoxy)ethoxy-co-hydroxophosphazene] (2). 

The final product, poly[bis 2-(2-methoxyethoxy)ethoxy-co-oxytrifluoroborate lithium 
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purified and dried poly[bis 2-(2-methoxyethoxy)ethoxy-co-hydroxophosphazene] (2) was dissolved 
in dry tetrahydrofurane and cooled to −40 °C in an ice/CaCl2 bath. 20 mL of 1.6 M n-butyl lithium (in 
hexane) solution was added dropwise to the polymer solution. The reaction solution was stirred for 
1 h at room temperature. After the polymer was dissolved completely, the solution was cooled once 
again to 40 °C and 5 mL of boron trifluoride diethyl etherate was added dropwise afterwards. The 
reaction mixture was then stirred for 24 h. The final product poly[bis 2(2-methoxyethoxy)ethoxy-co-
oxytrifluoroborate lithium phosphazene] (3;4) with a specific substitution ratio (5 mol % in polymer 
3, and 10 mol % in polymer 4) was obtained after being dried under vacuum at 60 °C. 

In the following, we use the abbreviations MEE-co-OBF3Li(5)P and MEE-co-OBF3Li(10)P for two 
series of mixed conducting polyphosphazene samples with two different concentrations 5 % and 
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2.3. Characterization of the Final Polymers 

1H, 11B, 31P, and 13C NMR spectra were acquired for examination of the product (Bruker 
AVANCE (III) 400 UltraShield® spectrometer, 400.03 MHz, Rheinstetten, Germany). NMR data were 
analyzed using Mestrelab Research S.L. MestReNova v10.0.0-14381. 

The polymer was analyzed via gel permeation chromatograph (GPC) (Polymer Standards 
Service GmbH, Mainz, Germany) to obtain the molecular weight and distribution. The detector was 
calibrated in advance based on polystyrene standards (Ready-Cal standard, Polymer Standards 
Service GmbH, Mainz, Germany). The obtained GPC data were processed using PSS WINGPC (built 
5403) software (Polymer Standards Service GmbH, SR1). 

Investigation of thermal stability was done using DSC (NETZSCH DSC 204, Selb, Germany), 
data analysis was performed with NETZSCH software (v6.1.0). 5–10 mg of the as-synthesized 
polymer was sealed into an aluminum can and measured from −150 to 250 °C with a heating rate of 
10 °C/min. The heating cycle was repeated for another two times and the last cycle was used for 
interpretations. 

The total ionic conductivity was measured via AC impedance spectroscopy (frequency response 
analyzer E 4980 A, Agilent Technologies, Waldbronn, Germany) in a frequency range from 20 Hz to 
2 MHz. A peak-to-peak voltage amplitude of 40 mV was used. The polymer membranes were 

Figure 1. Synthesis of poly[bis 2-(2-methoxyethoxy)ethoxy-co-hydroxophosphazene] (2).

The final product, poly[bis 2-(2-methoxyethoxy)ethoxy-co-oxytrifluoroborate lithium phosphazene] (3;4),
was obtained via the synthetic route described in Figure 2. The previously purified and dried poly[bis
2-(2-methoxyethoxy)ethoxy-co-hydroxophosphazene] (2) was dissolved in dry tetrahydrofurane and
cooled to −40 ◦C in an ice/CaCl2 bath. 20 mL of 1.6 M n-butyl lithium (in hexane) solution was added
dropwise to the polymer solution. The reaction solution was stirred for 1 h at room temperature.
After the polymer was dissolved completely, the solution was cooled once again to 40 ◦C and 5 mL
of boron trifluoride diethyl etherate was added dropwise afterwards. The reaction mixture was then
stirred for 24 h. The final product poly[bis 2(2-methoxyethoxy)ethoxy-co-oxytrifluoroborate lithium
phosphazene] (3;4) with a specific substitution ratio (5 mol % in polymer 3, and 10 mol % in polymer 4)
was obtained after being dried under vacuum at 60 ◦C.
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Figure 2. Last step of the synthesis of poly[bis 2(2-methoxyethoxy)ethoxy-co-oxytrifluoroborat lithium
phosphazene].

In the following, we use the abbreviations MEE-co-OBF3Li(5)P and MEE-co-OBF3Li(10)P for
two series of mixed conducting polyphosphazene samples with two different concentrations 5%
and 10% of the anionic oxytrifluoroborate groups referred to the total number of substituents.
The oxygentrifluoroborate groups were neutralized by an additional number of lithium cations.

2.3. Characterization of the Final Polymers

1H, 11B, 31P, and 13C NMR spectra were acquired for examination of the product (Bruker AVANCE
(III) 400 UltraShield® spectrometer, 400.03 MHz, Rheinstetten, Germany). NMR data were analyzed
using Mestrelab Research S.L. MestReNova v10.0.0-14381.

The polymer was analyzed via gel permeation chromatograph (GPC) (Polymer Standards Service
GmbH, Mainz, Germany) to obtain the molecular weight and distribution. The detector was calibrated
in advance based on polystyrene standards (Ready-Cal standard, Polymer Standards Service GmbH,
Mainz, Germany). The obtained GPC data were processed using PSS WINGPC (built 5403) software
(Polymer Standards Service GmbH, SR1).

Investigation of thermal stability was done using DSC (NETZSCH DSC 204, Selb, Germany), data
analysis was performed with NETZSCH software (v6.1.0). 5–10 mg of the as-synthesized polymer was
sealed into an aluminum can and measured from −150 to 250 ◦C with a heating rate of 10 ◦C/min.
The heating cycle was repeated for another two times and the last cycle was used for interpretations.

The total ionic conductivity was measured via AC impedance spectroscopy (frequency response
analyzer E 4980 A, Agilent Technologies, Waldbronn, Germany) in a frequency range from 20 Hz
to 2 MHz. A peak-to-peak voltage amplitude of 40 mV was used. The polymer membranes were
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sandwiched between two stainless steel electrodes (1 cm2). The measurement data were recorded in a
temperature range from −20 to 90 ◦C, controlled by a Julabo FP45 thermostat.

Electrochemical stability windows were measured by cyclic voltammetry in three-electrode
Swagelok® cells at 60 ◦C with a scan rate of 1 mV·s−1 (Autolab PGSTAT302N, Metrohm, Filderstadt,
Germany). The as-prepared salt-in-polymer membranes (thickness 200 µm) were cut into circular
discs (area = 0.785 cm2). Lithium foil was employed as both the reference electrode (area = 0.393 cm2)
and the counter electrode (area = 0.785 cm2). The cathodic electrode potential ranges (2.5 down to
−0.5 V, against Li/Li+) were measured with a Cu working electrode (area = 0.785 cm2) while the
anodic electrode potential ranges (2.5 to 7 V) were monitored with a Pt working electrode (0.785 cm2).

The lithium ion transference numbers of the as-prepared polymer electrolytes were determined
via a method as described by Hiller et al. using two-electrode Swagelok® cells [36].

Impedance spectra for polymer electrolytes in symmetric cells with two lithium metal electrodes
were measured using a combination of the Solartron SI 1287 potentiostat with a Solartron SI 1260
impedance analyzer in the frequency range of 1 mHz to 1 MHz with a peak-to-peak amplitude of
10 mV.

2.4. Preparation of Solid Polymer Electrolyte Membranes

The as-synthesized polymers (3,4) were dried under vacuum at 60 ◦C for 1 week before use.
Subsequently, around 1 g of the dried polymer was dissolved in freshly distilled THF. 10 wt % of
benzophenone and 15 wt % of lithium salt were added to the solution afterwards. The solution was
stirred until benzophenone and the lithium salt were dissolved completely. Then, the vessel was
transferred to an oven and dried under vacuum at 60 ◦C for 24 h until THF was removed completely.
To prepare thin membranes of the salt-in-polymer electrolyte, a suitable amount of the dried mixture
was sandwiched between two Mylar®-foils and pressed to a required thickness (200–300 µm). Finally,
salt-in-polymer membranes were obtained after cross-linking by applying UV-irradiation for 12 min.
A series of polymer electrolyte membranes were obtained in the same way with different lithium salts
(5/10 mol % -OBF3Li substituted polymers with 15 wt % LiBOB, LiTFSI, and LiFSI).

2.5. Preparation of Gel Polymer Electrolyte Membranes

The as-synthesized polymers were mixed thoroughly with a calculated amount of lithium salt,
ethylene carbonate–dimethyl carbonate (EC/DMC, 1:1), and benzophenone (Table S1). Subsequently,
the mixture was sandwiched between two Mylar®-foils and pressed to a required thickness.
The intended gel polymer electrolyte membranes (polymer 5) were obtained after cross-linking by
applying UV-irradiation for 12 min, with intermediate cooling after each minute (by dry ice). Based on
our previous experience, MEEP/LiBOB gel polymer demonstrated better cyclability and possessed
a more stable Li/MEEP interface as compared to gels with other lithium salts. It is evident that the
bis-oxalatoborate anions support the formation of a stable and dense SEI [31,37]. Therefore, only LiBOB
was used for the preparation of gel polymer electrolytes in this work.

2.6. Cell Set Up

A transparent cell was combined with an optical microscope to monitor the formation and
evolution of the lithium dendrites on the lithium/polymer electrolyte interface. The cell configuration
is shown in Figure S1, where two narrow lithium metal strips attached to the aluminum conductor
were placed on opposite areas of the composite polymer electrolyte membrane, the latter with a
thickness of around ~200 µm [37]. All these assembled cell components were then put between two
glass plates with a thickness of 1 mm, and further covered by PEEK to keep any gas atmosphere away
from the lithium. All measurements were carried out in a dry room.
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3. Results and Discussion

3.1. Polymer Characterization

For the as-prepared polymer, an average molecular weight of 1.5 × 105 Da and a polydispersity
index (PDI) of 1.32 were determined by the GPC measurement. Two peaks appeared in the
31P-NMR spectra (Figure S2) of polymer (4), corresponding to di-(2-2-methoxyethoxy)ethoxy)
substituted phosphorous (−7.35 ppm) and mono-(2-(2-methoxyethoxy)ethoxy)/mono-(lithium
trifluoro borate)oxy substituted phosphorous (−13.53 ppm), respectively (corresponding 1H NMR
spectra shown in Figure S3). The OBF3-Li substitution ratio is quantified to be 12%, by simply
comparing the areas of integrated peaks at −7.35 and −13.53 ppm. 19F-NMR spectra of both polymer
(4) and LiTFSI with a molar ratio of 1:1 are shown in Figure S4, the areas of these two observed peaks
in the spectra were also used to confirm the complete reaction, indicating that the OBF3-Li substitution
ratio is around 8%. By 19F-NMR spectroscopy, the –OBF3 functional group was identified with a peak
at −155.8 ppm. These values are typical for F-atoms in R–O–BF3 species [38]. For 11B-NMR spectra
(Figure S5), one peak was shown at −1.00 ppm.

3.2. Thermal Properties

Figure 3 shows the DSC heating curves of three different cross-linked polymers. It indicates that
the introduction of anionic species leads to stronger ionic intermolecular interactions and decreases
the segmentally movement of oligoether sidechains, since both polymer 3 and 4 exhibit higher Tg

values as compared to MEEP, especially for polymer 4 with a higher substitution ratio. Nevertheless,
all polymers shown here are thermally stable up to at least 150 ◦C.Polymers 2018, 10, 1350 6 of 14 
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3.3. Ionic Conductivity and Electrochemical Stability

Table 1 summarizes the ionic conductivities of selected polymers at certain temperatures. The ionic
conductivities of the pure polymers 3 and 4 without additionally dissolved lithium salts are 3.2 × 10−6

and 2.5× 10−6 S·cm−1, respectively, at 25 ◦C, which are well comparable to other modified MEEP based
polymers reported in the literature (2.5 × 10−6 S·cm−1 as reported by Allcock; 5 × 10−9 S·cm−1 as
reported by Fiedler, both at 25 ◦C) [26,27,39]. LiTFSI, LiFSI, and LiBOB were added to the as-prepared
polymers to produce salt-in-polymer electrolyte membranes. As shown in Figure 4, polymer 4 with
LiTFSI exhibits the highest ionic conductivity in the low temperature range (4.9× 10−5 S·cm−1 at 30 ◦C).
While at high temperature ranges, polymer with LiFSI shows a better σtotal of 5.0× 10−4 S·cm−1 at 80 ◦C.
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After adding EC/DMC to the dry polymer, the total conductivity is enhanced by almost one order
of magnitude. The total conductivity of polymer 5 with LiBOB reaches 2.5 × 10−3 S·cm−1 at 80 ◦C.

Table 1. Summarize of main properties of as-prepared polymers in this paper.

σtot /
[mS·cm−1]

25 ◦C

σtot /
[mS·cm−1]

60 ◦C

σLi
+ / 10−3

[mS·cm−1]
60 ◦C

T+ 60◦C Tg n(LiSalt):n(OEO) n(Litot):n(OEO) [P=N]:O

(3)
MEE-co-OBF3(5)LiP −72.6

+LiBOB 0.038 0.138 5.52 0.04 −49.7 1:26 1:21 1:5.7
+LiFSI 0.017 0.113 5.65 0.05 −49.9 1:25 1:21 1:5.7

+LiTFSI 0.037 0.171 5.13 0.03 −57.4 1:39 1:29 1:5.7
(4)

MEE-co-OBF3(10)LiP −65.0

+ LiBOB 0.052 0.356 17.80 0.05 −53.7 1:26 1:18 1:5.7
(5) EC/DMC+

MEE-co-OBF3(10)LiP
+ LiBOB 0.15 1.05 220 0.18 - 1:26 1:18 1:5.7
MEEP −81.2

+LiBOB 0.023 0.553 22.10 0.04 −45.9 1:27 1:27 1:6
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The contribution of lithium ions to the total conductivity, i.e. the partial lithium ion conductivity
corresponds to the product of the total conductivity and the lithium transference number:

σLi+ = T+·σtotal (1)

Figure 5a shows the Arrhenius-type plots of the temperature dependent total conductivity,
σtotal, and the partial lithium conductivity, σLi

+, of polymers 3,4, and 5 each containing 15 wt %
dissolved LiBOB, while Figure 5b plots the corresponding lithium ion transference numbers, T+.
With a higher substitution ratio, polymer 4 shows better total and lithium conductivity compared to
polymer 3 at almost all measured temperatures (except σLi

+ at 40 ◦C). However, for both polymer
electrolytes 3 and 4, the obtained lithium transference numbers show similar values lower than 0.1,
which are lower than PEO (typically around 0.15) [15]. Desirably, the introduction of the OBF3-Li
group would contribute to more mobile lithium ions, thus leading to a higher concentration of the
free charge carrier and increasing lithium conductivity. However, the determined lithium transference
number is only slightly better than MEEP salt-in-polymers at lower temperatures [14].
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The low lithium transference number is due to an enhanced coordination of the lithium cations by
the oligoethylene oxide segments of the side chain and by the lone electron pair of the basic nitrogen
atoms of the backbone [14,40]. This so-called “pocket effect” inhibits the mobility of lithium cations
(see Figure 6) and could only be circumvented by a much larger concentration of (OBF3)− substituents
along the polymer backbone. Lee et al. also discussed the strong interaction between the cations
and the polymer as limiting the cation contribution to the overall conductivity [41]. Furthermore,
as is demonstrated in Table 1, only a small molar increase of the total lithium ion concentration is
achieved by the additional lithium counterions of the anionic groups. Therefore, further increasing
the amount of substituted group or lithium salt concentration becomes necessary. Nevertheless,
the salt in MEE-co-OBF3LiP membranes show good ionic conductivity at elevated temperatures ~90 ◦C
with no indication of degradation, which indicates that such polymer electrolyte membranes have
better thermal stability as compared to conventional LiPF6 based organic electrolytes, especially when
operating at temperatures higher than 60 ◦C [42].Polymers 2018, 10, 1350 8 of 14 
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the anionic substituents and the basic nitrogen atoms in the backbone.

The addition of EC/DMC results in partial lithium ions being coordinated and transported by the
carbonates in the liquid electrolyte phase [31], thus increasing the lithium transference number. The T+

value for EC/DMC+MEE-co-OBF3Li(10)P/LiBOB reaches 0.24 (70 ◦C, gel polymer), which is better than
the dry salt in PEO electrolytes [15]. Hence, along with the much better total conductivity, the lithium
ion conductivity of MEE-co-OBF3Li(10)P/LiBOB gel polymer is enhanced to 3.6 × 10−4 S·cm−1 at 70 ◦C.



Polymers 2018, 10, 1350 8 of 14

To analyze the practicability of the as-prepared polymers in combination with the lithium
metal anode, lithium plating/stripping experiments for polymer 4 and 5 with different salts
were performed. As is demonstrated in Figure S6, both the dry and gel polymers exhibit a relatively
stable overpotential versus time profile and show no sign of severe electrolyte degradation.

Figure 7 shows the cyclic voltammogram of several anodic and cathodic cycles of polymer 4 with
15 wt % LiBOB salt at 60 ◦C. An anodic oxidation is evident by an increase of current density beginning
at 4.5 V for the electrolyte MEE-co-OBF3Li(10)P/LiBOB, which agrees with the usually reported anodic
stability referred to Li+/Li for PEO based electrolytes [43,44] and is caused by irreversible oxidation
within the polyether chains [14,45]. The reversible lithium plating/stripping process becomes visible in
the corresponding cathodic scan (around 0 V). Maximum current densities of −0.80 mA·cm−2 during
lithium deposition and 0.64 mA·cm−2 during dissolution yield a coulombic efficiency of 80%. The loss
of lithium indicates the formation of a SEI.
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3.4. Analysis of Conditions for Li Dendrite Formation at the Li/MEE-co-OBF3LiP (+LiBOB) Interface

To further investigate the effect of the introduced –OBF3Li group on the interfacial stability,
comparative studies of modified and unmodified MEEP were carried out in lithium symmetric
cells with regard to reversibility and stability of lithium deposition under dc current flow. Figure 8
demonstrates the polarization curves for MEEP and MEE-co-OBF3Li(10)P (both with 15 wt % LiBOB)
in the visualization cell at a constant current density of 0.1 mA/cm2. A slightly lower overpotential
is observed for MEE-co-OBF3Li(10)P, which suggests a lower cell impedance. A clear short-circuit is
observed after a time of 65 h for the unmodified MEEP (I), corresponding to an abrupt voltage drop
due to short circuit. This interpretation is confirmed by our microscope observation in Figure 9Ic,
which marks the appearance of non-removable short-circuits by lithium dendrites. In addition, dendrite
formation onset time (t0) is determined as 16 h from Figure 9Ib. Similarly, the dendrite formation onset
time and short-circuit time are determined as 21 and 90 h, respectively, for MEE-co-OBF3P/LiBOB;
both appear to be longer as compared to MEEP/LiBOB dry polymer.

To explain this interesting difference between unmodified MEEP and BF3-modified MEEP,
impedance spectra are shown in Figures 10 and 11 for MEEP and MEE-co-OBF3P, respectively, each with
15 wt % LiBOB measured in the symmetric cells under open circuit potential condition.

The impedance spectra were analyzed employing ZView with the equivalent circuit displayed in
Figure 10. In accordance to other polymer electrolytes in the literature [37,46,47], the high frequency
intercept with the Z’ axis in the left can be assigned to the polymer electrolyte bulk resistance (Rel),
yielding its bulk conductivity. The diameter of the large distorted semicircle can be ascribed to the
interfacial resistance (Rint), which can be interpreted as two partly overlapping semicircles. The latter
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may be represented by a series of two different impedance contributions each consisting of a resistance
element in parallel to a constant phase element. As is shown in Figure 10, these two overlapping
semicircles with similar capacities can be attributed to the passivation film resistance from the solid
electrolyte interface (Rf) and the charge transfer resistance resulting from the transfer and deposition
of lithium ions at the lithium metal interface (RCT). The inclined tail of the spectrum (on the low
frequency end on the right) contains the impedance due to ambipolar salt diffusion during formation
of concentration gradients at very small frequencies, i.e. ω→0.
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Figure 10. Impedance spectra of Li|MEEP/LiBOB|Li at 60 ◦C after 1, 6, and 12 h under OCP. The table
lists the corresponding Rel, Rf, and RCT at different stages. Rel is the electrolyte bulk resistance and Rint

is the interface resistance, which consists of Rf and RCT.
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For both polymer electrolytes, the bulk resistances stay almost constant during the whole
resting period. Rel for MEEP/LiBOB is slightly lower compared to MEE-co-OBF3LiP/LiBOB, due to
the slightly better total ionic conductivity of MEEP/LiBOB. On the other hand, the interface resistance
dominates the cell impedance for both polymers and keeps increasing with the storage time in the
measured cell, which reflects a continuous growth of the SEI at the interface, since the RCT varies only
slightly for both polymers. Comparison of these two figures also hints to a more conductive SEI at
the Li/MEE-co-OBF3LiP interface. After 12 h of storage under the OCP condition (which is also the
rest-time for cells before polarization), Rf for MEE-co-OBF3LiP/LiBOB reaches 203 Ω cm2, which is
almost 40% lower than MEEP/LiBOB (316 Ω cm2). An enhanced interfacial transport of Li+ (lower Rint)
will postpone the time point when the cation concentration drops to zero at the anode and increase the
onset time of dendrite formation according to Sand’s model [37,46,48,49]. In addition, previous works
in the literature have already shown that a faster lithium ion migration in the SEI (lower Rf) would
stabilize lithium electrodeposition [47,50,51]. This then gives an explanation for the better dendrite
suppression effect of MEE-co-OBF3P/LiBOB as compared to MEEP/LiBOB. Moreover, the introduced
–OBF3 group may act as a fluoride ion source similar to the PF6

- anion in classic liquid lithium ion
battery electrolytes as suggested by Grünebaum et al. [28]. This could result in the formation of a SEI
component containing solid LiF, which was known to be able to suppress dendrite growth due to
the higher surface energy and lower surface diffusion barrier for adatoms (faster diffusion along the
surface) [52].

4. Conclusions

In this work, we present a new type of polyphosphazene based polymer electrolyte. The introduction
of boron trifluoride as the anionic species to the polyphosphazene backbone was successful.
The solid polymer electrolyte membranes exhibit maximum σtotal and σLi

+ of 3.6 × 10−4 S·cm−1 and
1.8 × 10−5 S·cm−1, respectively, at 60 ◦C, which are better than the recently reported polyphosphazene
based polymer electrolytes in the literature [26,27], and comparable to other salt in polymer electrolytes,
like PEO:LiTFSI [36,39]. With the addition of EC/DMC, MEE-co-OBF3P gel polymer shows enhanced
total and lithium conductivity, accompanied with a much higher lithium transference number
(σLi

+ = 0.36 mS·cm−1, T+ = 0.24 at 70 ◦C), which makes MEE-co-OBF3P gel polymer a promising
electrolyte for further study.

Though a similar lithium transference number was observed as compared to MEEP/LiBOB
dry polymer, MEE-co-OBF3P/LiBOB exhibits enhanced dendrite suppression ability due to the
formation of more conductive SEI and the existence of F-contained SEI components (such as LiF).

Few approaches are available to further enhance the lithium conductivity of the modified MEEP,
such as introducing a higher amount of substituted anion group (–OBF3Li) or lithium salts into the
polymer structure to enable the lithium ion hopping mechanism, and introducing Mg2+ to preferentially
coordinate with ethylene oxide sidechains, which increases the amount of mobile Li+ ions.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4360/10/12/
1350/s1, Figure S1, Configuration of visualization cell, reprinted from He et al. [37], Figure S2, 31P NMR
(376 MHz, d8-THF, 300 K) of MEE-co-OBF3LiP, (polymer 4), Figure S3, 1H NMR (376 MHz, d8-THF, 300 K)
of MEE-co-OBF3Li, Figure S4, 19F NMR (376 MHz, d8-THF, 300 K) of MEE-co-OBF3LiP (polymer 4 with same
molar LiTFSI as comparison), Figure S5, 11B NMR (400 MHz, CDCl3, 300 K) of MEE-co-OBF3LiP, Figure S6,
Plating/stripping experiments of (a) Li|MEE-co-OBF3LiP/LiBOB|Li (b) Li|MEE-co-OBF3LiP/ LiFSI|Li (c)
Li|MEE-co-OBF3LiP/ LiTFSI|Li at 0.01 mA cm−2 and (d) Li|MEE-co-OBF3LiP/LiBOB|Li , (e) gel polymer
Li|EC/DMC+MEE-co-OBF3LiP/LiBOB|Li, at 0.1 mA cm−2. 15 wt % corresponding salts were used in all
polymer electrolytes, Table S1, Composition of the prepared gel polymer electrolytes based on MEE-co-OBF3LiP.
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