Boron Trifluoride Anionic Side Groups in Polyphosphazene Based Polymer Electrolyte with Enhanced Interfacial Stability in Lithium Batteries

Sebastian Schmohl⁺, Xuan He^{+,*} and Hans-Dieter Wiemhöfer

Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 28/30, 48149 Münster, Germany

- ** This work was financially supported by the NRW Graduate School of Chemistry
- + These authors contributed equally to this work
- * Correspondence: x_he0002@uni-muenster.de

Supplementry information:

Figure S1: Configuration of visualization cell, reprinted from He et al[1].

Figure S2:³¹P NMR (376 MHz, d⁸-THF, 300 K) of MEE-co-OBF₃LiP, (polymer 4)

Figure S3:1H NMR (376 MHz, d8-THF, 300 K) of MEE-co-OBF₃LiP

Figure S4:¹⁹F NMR (376 MHz, d⁸-THF, 300 K) of MEE-co-OBF₃LiP (polymer 4 with same molar LiTFSI as comparison).

Figure S5: ¹¹B NMR (400 MHz, CDCl₃, 300 K) of MEE-co-OBF₃LiP.

Figure S6: Plating/stripping experiments of (a) Li | MEE-co-OBF₃LiP/LiBOB | Li (b) Li | MEE-co-OBF₃LiP/LiFSI | Li (c) Li | MEE-co-OBF₃LiP/LiFSI | Li at 0.01 mA cm⁻² and (d) Li | MEE-co-OBF₃LiP/LiBOB | Li , (e) gel polymer Li | EC/DMC+MEE-co-OBF₃LiP/LiBOB | Li, at 0.1 mA cm⁻². 15 wt% corresponding salts were used in all polymer electrolytes.

Table S1: Composition of the prepared gel polymer electrolytes based on MEE- co-OBF₃LiP

	MEE-co- OBF3LiP	LiBOB	EC:DMC (1:1)	σtotal (30°C) / mS·cm ⁻¹
wt%	59.5	9.1	31.4	0.21

1. He, X.; Schmohl, S.; Wiemhöfer, H.-D. Direct observation and suppression effect of lithium dendrite growth for polyphosphazene based polymer electrolytes in lithium metal cells. *ChemElectroChem* **2018**, *Accepted*, doi:10.1002/celc.201801383R2.