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Abstract: We numerically study surface models defined on hexagonal disks with a free boundary.
2D surface models for planar surfaces have recently attracted interest due to the engineering
applications of functional materials such as graphene and its composite with polymers. These 2D
composite meta-materials are strongly influenced by external stimuli such as thermal fluctuations if
they are sufficiently thin. For this reason, it is very interesting to study the shape stability/instability
of thin 2D materials against thermal fluctuations. In this paper, we study three types of surface
models including Landau-Ginzburg (LG) and Helfirch-Polyakov models defined on triangulated
hexagonal disks using the parallel tempering Monte Carlo simulation technique. We find that the
planar surfaces undergo a first-order transition between the smooth and crumpled phases in the LG
model and continuous transitions in the other two models. The first-order transition is relatively
weak compared to the transition on spherical surfaces already reported. The continuous nature of the
transition is consistent with the reported results, although the transitions are stronger than that of the
reported ones.

Keywords: crumpling transition; graphene; graphene-based polymers; crumples; parallel tempering;
Monte Carlo; statistical mechanics

1. Introduction

The two-dimensional surface model proposed by Helfrich is a model for biological membranes
composed of lipid molecules, and it shares almost the same mathematical structure with the Polyakov’s
rigid string model for elementary particles in subatomic scales [1,2]. In those models, the extrinsic
curvature or bending energy plays an essential role in maintaining the smooth shape of surfaces,
and because of its mathematical transparency, many studies have been conducted on the phase structure
of the model between the smooth and crumpled phases [3–9]. The discrete surface models defined on
triangulated lattices have also been extensively studied by Monte Carlo (MC) simulations [10–19].

However, the order of the crumpling transition is still controversial. Since the discrete model depends
on the discretization of continuous Hamiltonian, we have a variety of discrete models [20,21]. Indeed,
the curvature energy itself has a lot of variation such as extrinsic and intrinsic curvatures. For almost
all of these discrete models, MC studies predict that the models undergo a first-order crumpling
transition if the lattice is of spherical topology and allowed to self-intersect (⇔ self-intersecting) [20].
Here, we should note that only self-intersecting and fixed-connectivity lattice models are studied in
this paper, and self-avoiding models and fluid surface models are not considered [15,16]. Intrinsic
curvature models also have a first-order crumpling transition even on a disk surface [21], and the
intrinsic curvature models are also out of consideration in this paper. The first-order crumpling
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transition is supported by theoretical studies on the basis of non-perturbative renormalization group
techniques [8,9]. In contrast, it is reported that the order of transition is of second-order on the
free boundary lattices [22,23]. Therefore, this continuous transition combining the above-mentioned
first-order one indicates that the order of transition depends on the surface topology; either spheres or
free boundary planar disks.

In this paper, we study three different surface models by the parallel tempering MC (PTMC)
technique to check whether or not the transition is of second-order on triangulated disks with a
free boundary. The PTMC technique was developed to simulate the spin glass models at very low
temperature, where the standard Metropolis MC technique is not effective [24,25]. It is also reported
that this PTMC technique can be applied to phenomena which undergo first-order transitions [26,27].
Therefore, we expect that the PTMC technique can also be used to study the phase structure of the
surface models in this paper even if these models have first-order transitions [28].

We should here comment on the reason why the crumpling transition is of interest. Indeed,
graphite oxide sheets in solvents have a crumpled state [29,30]. Crumpled states can also be observed
in graphenes [31,32]. The surface condition of graphenes is altered by corrugations, and therefore
ripples, wrinkles and crumples emerge [33,34]. These surface states modify or enhance the material
properties such as mechanical, electrical and optical ones [35]. The crumpled graphene, for example,
is expected to have enhanced chemical activities and energy storage capacities [36]. In addition to
pure graphenes, polymer-graphene nano-composite or graphene-based polymers (or polymer-based
graphenes) also has the crumpled states [37–40]. For the application of crumpled states of these
graphene-based materials, it is interesting to study their stability against thermal fluctuation or some
other stimuli in environmental conditions [41]. Therefore, the crumpled state is worthwhile studying
in terms of phase transition.

This paper is organized as follows: In Section 2, the three different models and the PTMC
technique are described in detail. Readers who are familiar with or not interested in these topics can
skip Section 2 and go to Section 3, where the simulation results including snapshots of surfaces are
presented. In Section 4, we summarize the results and comment on the future study.

2. Models and Monte Carlo Technique

2.1. Triangulated Disk

Discrete surface models are defined on such a triangulated disk shown in Figure 1. The lattice is
characterized by the numbers (N, NE, NT), which are the total number of vertices, the total number of
edges, and the total number of triangles. Using the number L of division of the hexagon edge, we have
the expressions for these numbers such that (N, NE, NT)=(3L2+3L+1, 9L2+3L, 6L2). The lattice shown
in Figure 1 is obtained by L=5, and hence (N, NE, NT)=(91, 240, 150). We chose a sufficiently small
L to visualize the lattice structure. The lattices used in the simulations are larger than the lattice in
Figure 1. The lattice spacing a for the edge length can be used as the length scale [42]. However,
the simulation data are not directly compared to the experimental ones in this paper, and for this
reason we fix a to a=1 for simplicity.

2.2. Landau-Ginzburg surface Model

The so-called Landau-Ginzburg surface model is first introduced and studied by Paczuski,
Kardar and Nelson in [43], and this model is also numerically studied in [44]. Let r(∈ <3) be the
surface position. The continuous Hamiltonian is given by

SLG(r) =
t
2

∫
d2x (∂ar)2 +

κ
2

∫
d2x

(
∂2r

)2
+ u

∫
d2x (∂ar · ∂br)2 + v

∫
d2x (∂ar · ∂ar)2 , (1)

where ∂ar= ∂r/∂xa, (a= 1, 2) is a tangential vector along the local coordinate axis xa on the surface
and plays a role of the order parameter. The real numbers t,κ, u, v are the coefficients of the energy
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terms, which are square and quadratic with respect to ∂ar. The second term is defined by the square of
second-order differentials (∂2r)2.

Figure 1. A hexagonal lattice discretized by regular triangles. The total number of vertices N including
those on the boundary is given by N = 91. This number is calculated by the formula N = 3L2 + 3L + 1,
where L (=5) is the number of division of the edge of the original hexagon. This type of hexagonal
lattice is used to define discrete Hamiltonians of the surface models studied in this paper.

The continuous energy SLG(r) in Equation (1) can be written more explicitly such that

SLG = tS1 + κS2 + uS3 + vS4,

S1 =
1
2

∫
d2x

[
(∂1r)2 + (∂2r)2

]
,

S2 =
1
2

∫
d2x

(
∂2

1r + ∂2
2r

)2
=

1
2

∫
d2x

(
∂2

1r · ∂2
1r + ∂2

2r · ∂2
2r + 2∂2

1r · ∂2
2r

)
,

S3 =

∫
d2x

[
(∂1r · ∂1r)2 + (∂2r · ∂2r)2 + 2 (∂1r · ∂2r)2

]
,

S4 =

∫
d2x

[
(∂1r · ∂1r)2 + (∂2r · ∂2r)2 + 2 (∂1r)2 (∂2r)2

]
.

(2)

The detailed information on the role of each term is written in Ref. [44], and we briefly describe
the outline of each term. The first term S1 is given by the integration of length squares of the tangential
vectors, and it simply plays a role of the tensile energy. The second term S2 plays a role of the bending
energy and the in-plane shear energy, and the third term S3 contains both the tensile and the shear
energy components. The final term S4 is a quadratic tensile energy term.

The discrete Hamiltonian is as follows [44]:

SLG = tS1 + κS2 + uS3 + vS4,

S1 =
2
3

∑
i j

(
ri − r j

)2
=

2
3

∑
i

e2
i ,

S2 =
1
3

∑
i j

(
ei − e j

)2
+

1
3

∑
(i j),(kl)

(
ei − e j

)
· (ek − el) ,

S3 =
2
3

∑
∆

[(
e2

1

)2
+

(
e2

2

)2
+

(
e2

3

)2
+ (e1 · e2)

2 + (e2 · e3)
2 + (e3 · e1)

2
]

,

S4 =
2
3

∑
∆

[(
e2

1

)2
+

(
e2

2

)2
+

(
e2

3

)2
+

(
e2

1

) (
e2

2

)
+

(
e2

2

) (
e2

3

)
+

(
e2

3

) (
e2

1

)]
, (LG).

(3)
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We briefly summarize how to obtain the discrete Hamiltonian in Equation (3) from the continuous
one in Equation (2). First of all, we note that the local coordinate origin of the triangle 123 in Figure 2a
is at the vertex 1, and hence the differentials ∂1r and ∂2r in S1 of Equation (2) are replaced by

∂1r→ e1 = r2 − r1, ∂2r→ e2 = r3 − r1. (4)

Recalling that there are two other local coordinate origins on the triangle 123, and including all
possible terms for the differentials ∂1r and ∂2r and with the factor 1/3, we have

S1 =
1
3

∑
∆

(
e2

1 + e2
2 + e2

3

)
, (5)

where e3(= r3 − r2) is not written in Figure 2a. The integration
∫

d2x is replaced by the sum over
triangles ∆ such that

∫
d2x→

∑
∆. By replacing the summation convention from the sum over triangles∑

∆ to the sum over bonds
∑

i, we have S1 in Equation (3). We should note that this energy S1 is also
defined on the triangles of the boundary.

(a)                      (b)                                

�⃗�
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2

3�

3
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Figure 2. (a) A local coordinate on a triangle 123 and the edge vectors e1 and e2 along the coordinates
axes x1 and x2. A local coordinate for the discretization of the second-order differential ∂2r in S2 of LG
model on (b) a vertex of coordination number q=6 (hexagonal).

The second order derivative such as ∂2
1r in S2 is replaced by ∂2

1r → e j − ei using the vectors
e j and ei on the hexagon in Figure 2b, because e j and ei are considered as the discretization of
∂1r along the coordinate axis 2′12 corresponding to the local coordinate axis x1 at the vertex 1.
Another diagonal line 3′13 on this hexagon is considered as the x2 axis, and thereby the square of
Laplacian (∂2r)2=(∂2

1r+ ∂2
2r)2 is replaced by (e j−ei)

2+(el−ek)
2+2(e j−ei) · (el−ek) using the vectors ei,

e j,ek and el in Figure 2b. Thus, we have S2 in Equation (3) as a discrete bending energy corresponding
to the continuous one (1/2)

∫
dx2(∂2r)2 in Equation (3). The reason for the factor 1/3 in the discrete

expression is that every vertex inside the boundary is assumed to be the center of hexagon, and
therefore the summation is triply duplicated. Strictly speaking, the duplication at the vertices close
to the boundary is not triple, however, the coefficient is not so important and is simply fixed to 1/3,
which is the same as in the spherical model [44]. In the discrete S2,

∑
i j denotes the sum over the three

different diagonal lines, and
∑

(i j),(kl) denotes the sum over the corresponding local coordinates on
the hexagon.

Please note that on the hexagonal lattice, such as shown in Figure 1, the coordination number
at the vertices inside the boundary is given by q= 6, where the coordination number qi is the total
number of bonds emanating from the vertex i. This is in sharp contrast to spherical lattices, which must
include the vertices with q , 6. Therefore, the vertex with q = 6 in Figure 2b is sufficient for the
discretization of (∂2r)2 for all internal vertices. On the boundary vertices, the definition of energy S2 is
slightly different from that on the internal vertices. On the vertices with q=4, the square of Laplacian
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(∂2r)2 =(∂2
1r + ∂2

2r)2 is simply replaced by (e j−ei)
2 instead of (e j−ei)

2+(el−ek)
2+2(e j−ei) · (el−ek).

Moreover, the bending energy S2 is not defined on the vertices with q=3 on the boundary (see Figure 1).
In the continuous S3 and S4 of Equation (2), the derivatives ∂1r and ∂2r are replaced by e1 and e2

in Equation (4) on the triangle in Figure 2a. The discretization technique is exactly the same as the one
assumed in S1, and hence we have the discrete energies S3 and S4 in Equation (3).

The partition function Z is given by the multiple integrations of the vertex positions such that

Z =

∫
′∏

i

dri exp (−SLG) , (6)

where the prime in
∫
′∏

i dri denotes that the center of the mass of surface is fixed at the origin of<3.
From the scale invariance of Z, we have

〈S′1〉/N = 3/2, S′1 = tS1 + κS2 + 2uS3 + 2vS4, (7)

where 〈Q〉 is defined by 〈Q〉=
∫
′∏

i dri Q exp (−SLG) /Z [7,44]. This relation in Equation (7) can be
used to check whether the simulation is correctly performed or not.

2.3. Canonical Model

We start with the continuous form of Hamiltonian S(r, g) of the canonical model, which is defined
by a mapping r from a two-dimensional surface M to the three-dimensional Euclidean space <3,
such that

r : M 3 (x1, x2) 7−→ r(x1, x2) = (X, Y, Z) ∈ <3. (8)

The variable r, which is originally used to denote the surface position in <3, is now used for
the symbol of the mapping. Another variable denoted by g in S(r, g) is the metric function gab on
M, where gab is a 2× 2 matrix. The metric gab originally is not a variable but is determined by a local
coordinate, which is fixed arbitrarily by hand from the reparametrization invariance. This invariance
is a symmetry of the model under 2D coordinate transformations on the surface r(M) in<3. Thus,
the model is slightly extended from the original one in the sense that gab is a variable that should be
physically determined. As a consequence, we have the possibility to obtain surfaces which cannot be in
<

3 in the extended model, whether this is meaningful or not. For example, let us consider the metric

gab =

(
`2

12 `12`13 cos Φ
−`12`13 cos Φ `2

13

)
(9)

on a surface discretized by piece-wise linear triangles such as in Figure 3a, where cos Φ is not always
identical to cosφ= ~̀12 · ~̀13/`12`13 between the edge vectors ~̀12 and ~̀13 [45]. If Φ=φ for all triangles,
then this metric is identical with the discrete induced metric gab=ea · eb. However, if the angles {Φ} do
not satisfy the triangle equality, i.e., the sum of three internal angles is not always equal to π, then the
surface with such metric in Equation (9) generally cannot be realized in<3.

The continuous Hamiltonian is given by

S(r, g) = γ

∫
M

√
g d2x gab∂ar · ∂br +

κ
2

∫
M

√
g d2x gab∂an · ∂bn, (γ = 1) (10)

where the surface tension coefficient γ is always fixed to γ=1. The symbol gab denotes the inverse of gab,
and g is its determinant. We should note that gab assumed in the expression of S(r, g) in Equation (10)
is a variable that should be determined just like the mapping r as mentioned above [46]. Note also that
this Hamiltonian is a two-dimensional extension of the polymer model of Doi-Edwards [47].
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Here, we should note that the real surface r(M) in <3 corresponding to the material under
consideration is described by the induced metric gab = ∂ar · ∂br. This allows us to consider that the
surface with a given metric gab is different from the real surface, pointing to the possibility for the
surface to correspond to this gab. Therefore, from this set of surfaces, a physically meaningful surface
should be uniquely determined by the modeling. For this reason, we introduce a two-dimensional
surface M in addition to the real surface with ∂ar · ∂br, both of which should be physically determined.
This is another extension of the surface model, and this is the meaning of the mapping described in
Equation (8). Please note that the surface M is not necessarily a manifold [45,48,49].

(a)              (b) 

�⃗� = ℓ��

3

1 2

�⃗� = ℓ�


��

��

�


��

2

3

1

Figure 3. Lattice structure for discretization of the canonical surface model. (a) A local coordinate on
the triangle 123 with the edge vectors ~̀12 and ~̀13, and (b) the triangle 123 and its three nearest-neighbor
triangles, where the normal vector n0 interacts with ni(i=1, 2, 3). The local coordinate in (a) is exactly
the same as that in Figure 2a.

The problem is then how to determine gab for M. One possible and simple technique is to fix
gab to the Euclidean metric such that gab=δab. In this case, M is a simple two-dimensional Euclidean
space and plays no role in describing the model, however, we use M to express the domain in the
two-dimensional integrations in S(r). Thus, the only variable to be determined is r, and S(r) is now
given by

S(r) = γ

∫
M

d2x ∂ar · ∂ar +
κ
2

∫
M

d2x ∂an · ∂an, (γ = 1). (11)

One simple reason for why we assume the Euclidean metric δab for gab is as follows: The
Hamiltonian in Equation (10) is invariant under an arbitrary conformal transformation gab → g′ab =

f (x)gab with a positive function f (x) on M. This invariance is described by S(r, g) = S(r, g′) and
implies that the metric gab can be chosen relatively freely, and therefore it is fixed to the simplest one
such that gab=δab.

The discrete Hamiltonians are obtained from the continuous one in Equation (11) by the replacement
of the differentials in Equation (4). Here, we use the symbols ~̀12=e1 and ~̀13=e2 for the edge vectors
(Figure 3a), and `i j= |~̀i j|= |r j−ri| for the edge (or bond) length. Thus, we obtain

S(r) = S1 + κS2,

S1 =
∑
(i, j)

(
ri − r j

)2
=

∑
(i, j)

`2
i j, S2 =

∑
(i, j)

(
1− ni · n j

)
, (cano), (12)

where the factor 4/3 is eliminated from both S1 and S2 for simplicity. This S1 is exactly the same as S1

of the LG model in Equation (3) up to the numerical factor. The symbol
∑

(i j) in S1 denotes the sum
over all bonds (i j) connecting the vertices i and j. In contrast, (i j) in the sum

∑
(i j) of S2 denotes the

triangles sharing a common bond (Figure 3b), and the unit normal vector ni is defined on the triangle i.
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The partition function of the canonical model is exactly the same as Z in Equation (6) for the LG model
except the Hamiltonian in the Boltzmann factor.

2.4. Modified Canonical Model

The third model, which we call “modified canonical model”, is obtained from the same continuous
Hamiltonian in Equation (11) assumed for the canonical model. The only difference is a discretization
of the bending energy S2, where the unit normal vector n(i) at the vertex i (Figure 4a) is used as well as
the normal vector ni on the triangle i (Figure 3b). The discrete Hamiltonian is given by [20]

S(r) = S1 + κS2,

S1 =
∑
(i, j)

`2
i j, S2 =

N∑
i=1

∑
j(i)

[
1− n(i) · n j(i)

]
, (modi), (13)

where n j(i) in S2 is the unit normal vector of the triangle j(i) connected to the vertex i. The normal
vector n(i) at the vertex i is defined by (Figure 4a)

n(i) = Ni/|Ni|, Ni =
∑
j(i)

n j(i)A j(i), (14)

where A j(i) is the area of the triangle j(i). Please note that the interaction range of the normal vectors ni
is slightly larger than that of the canonical model (Figure 4b). In fact, only two nearest neighbor vectors
ni and n j are directly coupled in S2 in Equation (12) of the canonical model, and as a consequence only
three nearest neighbor vectors ni(i = 1, 2, 3) are coupled to n0 (see Figure 3b). In contrast, as shown in
Figure 4b, the non-nearest neighbor ni and n j, of which the triangles i and j do not directly contact
each other, are coupled to n0 in S2 in Equation (13) of the modified model.

(a)                                           (b)                                                            

�(�)

�

tangential plane

at the vertex i

��

Figure 4. Lattice structure for discretization of the modified canonical surface model. (a) The tangential
plane at the vertex i and its normal vector n(i), and (b) a triangle and its neighboring triangles, where
the normal vector n0 interacts with those of the neighboring triangles. The range of interaction is
slightly larger than that shown in Figure 3b.

2.5. Parallel Tempering Monte Carlo Technique

The so-called parallel tempering Monte Carlo (PTMC) technique developed for the spin glass
model at low temperatures is successfully applied to the first-order crumpling transition of the canonical
model on spherical lattices [28]. In this subsection, the outline of the PTMC technique applied to the
tethered surface model is briefly presented.

Let (r,κ) represent a system of configuration r(= {r1, r2, · · · , rN}) with a given κ, which is
assumed to be changed. In the case of the LG model, the parameter κ is also changed while the
other three parameters (t, u, v) are fixed in the simulations in this paper. In this PTMC, NR replicas
{(r1,κ1), (r2,κ2), · · · , (rNR ,κNR)} are simulated in parallel by the standard Metropolis MC (MMC)
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simulation technique [50,51], and the systems are exchanged after sufficiently long MMC runs. Because
of this exchange, the total number of different combinations {(r1,κ1), (r2,κ2), · · · , (rNR ,κNR)} is NR!.

The NR replicas are updated as follows:

(P1) Perform long MMC simulations for NR replicas
(P2) Exchange all nearest neighbor systems (r,κ) and (r′,κ′) with the probability

W(r,κ|r′,κ′) = Min [1, exp(−∆)] , ∆ = (κ′ − κ) [S2(r) − S2(r′)] (15)

(P3) Repeat P1 and P2

We should note that the process P1 can be performed in parallel as mentioned above. In the
exchange process P2, only bending energy S2 is used, and no information on the other energy S1 is
used in the canonical and modified canonical models. This is also true for the LG model, and no
information on the energies S1, S3 and S4 is left out in the exchange process.

Figure 5a,b intuitively show the difference of MMC and PTMC simulations for four replica systems.
The numbers 1, 2, 3, 4 denote the bending rigidities such as κ1, · · · ,κ4, and the color blocks denote
the configurations r1, · · · , r4. The combination of (ri,κ j) is exchanged as the iterations evolve in the
PTMC simulation.

(a)                                                     (b)                                                            

1

3

2

4

iterations

MMC PTMC

2

1

3

4

iterations

Figure 5. Illustration of how the replica systems evolve in (a) MMC and (b) PTMC simulations.
In (a) MMC simulations, each system evolves independent of the other systems, while in (b) PTMC
simulations, the systems are exchanged.

Here, we briefly show that all micro states {r,κ} satisfy the canonical Boltzmann distribution as a
result of PTMC simulations. Let P({r,κ}) be a probability distribution for all the states {r,κ} such that

P({r,κ}) =
NR∏

m=1

Peq(rm,κm), Peq(r,κ) = Z−1 exp [−S(r,κ)] , S(r,κ) = S̄(r) + κS2(r), (16)

where S̄(r) is independent of κ and given by S̄(r) = tS1(r) + uS3(r) + vS4(r) for the LG model and
S̄(r) = S1(r) for the other two models. The Peq(r,κ) in Equation (16) is the Boltzmann distribution
function of the state (r,κ). If the PTMC exchange satisfies the detailed balance condition described by

P(..., ; r,κ; ...; r′,κ′; ...)W(r,κ|r′,κ′) = P(..., ; r′,κ; ...; r,κ′; ...)W(r′,κ|r,κ′), (17)

then we understand from the well-known uniqueness theorem that this P is the uniquely determined
probability [28]. Please note that the right-hand side of Equation (17) is obtained from the left-hand
side by exchanging r and r′. Thus, we should prove that P({r,κ}) in Equation (16) satisfies the condition
in Equation (17). This can be accomplished in two steps. The first step is to see that Equation (17) for
P({r,κ}) in Equation (16) is equivalent with the relation

W(r,κ|r′,κ′)
W(r′,κ|r,κ′)

= exp (−∆) (18)
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under the condition given by Equation (15). The second step is to see that the relation in Equation (18)
is correct. This second step is almost trivial from the definitions of W(r,κ|r′,κ′) and ∆ in Equation (15).
The first step is also straightforward to prove.

The assumed parameters for the simulations including the total number of MC sweeps (MCS) are
listed in Table 1, where 1 MCS consists of the processes P1 and P2 of PTMC. In Table 1, the symbol N is
the total number of vertices, #total (MCS) and #therm (MCS) are the total number of MCS and the
total number of thermalization MCS, and nP1 denotes the number of iterations performed in P1 per 1
MC sweep. This nP1 is fixed to nP1 =10 (or nP1 =20), and this implies that the total number of MMC
(including thermalization) iterations for each replica is 10 (or 20) times larger than the #total (MCS).
The NR is the total number of replicas, and κ1 and κNR (κ1<κNR ) are the bending rigidity of the replica
1 and NR, ∆κ(= (κNR − κ1)/NR) is the difference of κ between two neighboring replicas, which will be
exchanged in the process P2. The total number of iterations #total for the large lattices in the latter two
models is not so large compared to those for smaller lattice in the LG model.

Table 1. The parameters assumed for the simulations; nP1 denotes the total number of MMC iterations
performed in the P1 process per 1 MCS for each replica, κ1 and κNR (κ1<κNR ) are the bending rigidity of
the replica 1 and NR, and ∆κ(= (κNR − κ1)/NR) is the difference of κ between two neighboring replicas.

Model N #Total (MCS) #Therm (MCS) nP1 NR κ1 κNR ∆κ

LG 7351 2.5× 108 2.5× 107 10 24 0.1835 0.187 1.46× 10−4

LG 5677 2.5× 108 2.5× 107 10 24 0.1842 0.1878 1.5× 10−4

LG 4219 9× 107 3× 107 10 24 0.183 0.194 4.58× 10−4

LG 2611 1× 107 2× 106 10 24 0.18 0.2 8.33× 10−4

cano 44,287 3.8× 107 1.8× 107 20 24 0.766 0.782 2.5× 10−4

cano 30,907 8× 107 3× 107 20 24 0.764 0.787 9.58× 10−4

cano 20,917 1× 108 1.5× 107 20 24 0.762 0.792 1.25× 10−3

cano 12,097 7.5× 107 7.5× 106 10 24 0.77 0.804 1.42× 10−3

modi 20,917 6.4× 107 1× 107 20 24 0.451 0.467 6.67× 10−4

modi 12,097 1.9× 108 2.5× 107 10 24 0.448 0.47 9.167× 10−4

modi 7351 5× 108 5× 107 10 16 0.444 0.476 2× 10−2

modi 4219 5× 108 1.5× 107 10 16 0.44 0.49 6.96× 10−2

3. Simulation Results

3.1. Snapshots

Firstly, in the presentation section, we show snapshots, which are obtained as one of the
configurations from the replicas i=1 and i=NR in each model. In the upper (lower) low in Figure 6,
the snapshots are obtained from the replica i=NR (i=1) of the (a) LG, (b) canonical, and (c) modified
canonical models. The size of lattices are the largest for these snapshots, and hence from Table 1 all NR

are given by NR =24. From Table 1, we find that the values of κ corresponding to these replicas are
given as follows: (a) κ=0.1835 (upper), κ=0.187 (lower), (b) κ=0.766 (upper), κ=0.782 (lower), and
(c) κ=0.451 (upper), κ=0.467 (lower). In the LG model simulations, the parameters (t, u, v) are fixed to

(t, u, v) = (−6, 0.2, 0.2), (LG). (19)

We find that the surfaces in the upper low are globally bending but almost flat while those in the
lower low shrink to a small ball. From this observation, we understand that the surfaces in the upper
and lower lows are in the flat and crumpled phases, respectively, in all of the models.
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(a)                    (b) (c)

Figure 6. Snapshots of surfaces obtained in the replica i(∈ {1, · · · , NR}) such that i=NR(=24) in the
upper low and i= 1 in the lower low, which correspond to the flat phase and the crumpled phase,
respectively, in each model. The models and lattice size N are (a) the LG model, N = 7351, (b) the
canonical model, N = 44,287, and (c) the modified canonical model, N = 20,917.

3.2. Bending Energy and Mean Square Gyration

The bending energy of the LG model is calculated only on the internal vertices, because the
definition of S2 on the boundary vertices is slightly different from that on the internal vertices as
described in Section 2.2. In Figure 7a–i, we plot the bending energy S2/NB of the LG model and the
other models, the specific heat

CS2 =
κ2

N

〈
(S2 − 〈S2〉)

2
〉

, (20)

and the peak Cmax
S2

of the specific heat. We should note that NB is the total number of internal bonds
NB = 3(N − 6L) for the LG model, where N − 6L is the total number of internal vertices and hence
3(N − 6L) is the total number of the diagonal lines such as 2′12 in Figure 2b. The reason why this NB is
used for S2 in the LG model is because the first term of S2 in Equation (3) is defined on such diagonal
lines, and the second term is also defined on a pair of diagonal lines 2′12 and 3′13 in Figure 2b, and there
are three different such diagonal lines on each internal vertex. For the other two models, NB(=NE−6L)
is the total number of internal bonds, on which the bending energy S2 is defined, where NE is the total
number of edges NE given in Section 2.1. Please note that CS2 in Equation (24) for the LG model is
defined also by using N. The curves of CS2 in Figure 7h for the modified model are fluctuating, and
this fluctuation may be due to the fact that the total number of iterations is not sufficient for this model
as mentioned above, though reasonable peak values Cmax

S2
are obtained.
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Figure 7. The bending energy per bond S1/NB, the specific heat CS2 , and the log-log plot of the
peak value Cmax

S2
vs. N for (a–c) the LG model, (d–f) the canonical model, and (g–i) the modified

canonical model.

From the LG model data plotted in Figure 7a–c, we see that the S2/NB abruptly changes against
κ, and correspondingly the CS2 has the anomalous peak showing the existence of the crumpling
transition. As mentioned above, the parameters (t, u, v) are fixed to the values in Equation (19) and
remain unchanged. The peak heights Cmax

S2
vs. N are plotted in log-log scale in Figure 7c, where N is

used. The data obtained by the other models are also plotted in Figure 7d–i. Fitting the largest three
data of Cmax

S2
to the scaling relation

Cmax
S2
∼ Nσ, (21)

we have

σ = 1.96± 0.07 (LG), σ = 0.72± 0.01 (cano), σ = 0.79± 0.05 (modi). (22)

We find from these results that the transition of the LG model is of the first order while in the
other two models the transition is of second-order, because σ≥1 in the LG model and σ<1 in the other
models. We note that σ should be σ=1 for the first order transitions, because Cmax

S2
is expected to scale

as L2(=N), where L is the linear size of the lattice [52]. However, the present result is almost twice of
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this expectation and indicates that the dimension D of lattice is effectively D=4. One possible reason
is that the surface is self-intersecting, and hence, the total number or density of possible configurations
is larger than that in the case of D=2. The first result in Equation (22) of the LG model is qualitatively
comparable to σ= 1.58 ± 0.08 of the canonical model on spherical lattice in Ref. [28], because both
results indicate that the transition is of first-order. In contrast, the latter two results in Equation (22)
of the other models indicate a second-order transition, and hence these two are completely different
from the result in Ref. [28]. We consider that this difference simply stems from the difference in the
lattice topology or structure; sphere and disk, which are surfaces without a boundary and with a free
boundary, or are compact and non-compact.

We calculate the coefficient σ in Equation (21) for the LG model using the specific heat CS2 of the
bending energy S2 in Equation (12), and we have σ=1.96± 0.07, which is almost identical to the first
result σ = 1.97± 0.07 in Equation (22). This indicates that the results σ = 1.96± 0.07 in Equation (22)
for the LG model is reliable, although this result is obtained from the bending energy on the internal
vertices only.

The problem here is ascertaining why the result of LG model in Equation (22) is different from
the others. Firstly, we should be reminded that it is predicted that the LG model has a continuous
crumpling or wrinkling transition from the mean filed analysis [11]. However, as mentioned in Ref. [28],
the basic assumption for the mean field analysis that the surface fluctuation is relatively small is not
always true even for the models. This is considered to be why the result of the LG model deviates from
the mean field prediction and has the first-order transition even on the lattice with a free boundary.
Next, we have to consider where the difference comes from in the order of transitions between the
LG model and the other two models. One possible origin is the shear stress or resistance to shear
deformation expected in the LG model; it is not expected in the other models. The bending energy S2

assumed in the LG models is identical to S2 in the other models up to a numerical factor, and this S2

has no shear resistance to in-plane deformation of triangles; it has only a resistance to the bending or
out-of-plane deformation. Thus, the only source for the shear resistance is the Gaussian bond potential
S1 in the two models, while in the LG model, S3 and S4 as well as S1 have resistance to shear stresses.
Here, we should note that all models are fixed-connectivity or tethered models, and the shear resistance
is not negligible compared to the fluid surface models on dynamically triangulated lattices. In the
tethered models, any deformations of triangles except simple expansion/shrinkage accompany a shear
resistance, because all triangles tend to become regular in the equilibrium configurations. Please note
that the simple expansion and shrinkage of triangles are suppressed because the mean bond length
remains constant due to the scale invariant-property of the partition function.

The mean square radius of gyration R2
g defined by

R2
g =

1
N

∑
i

(ri − r̄)2 , r̄ =
1
N

∑
i

ri, (23)

its variance

CRg =
1
N

〈(
R2

g − 〈R
2
g〉

)2
〉

, (24)

and the peak values Cmax
Rg

are plotted in Figure 8a–i. The fluctuations of the data CRg in Figure 8h

are relatively large due to the same reason for CS2 mentioned above. We also find that R2
g rapidly

changes, where CRg has a peak Cmax
Rg

. The peak position on the κ axis for Cmax
Rg

of the LG model is
almost identical with the position for Cmax

S2
, while those for Cmax

Rg
and Cmax

S2
in the other models are

considerably different from each other. This difference is not observed in the canonical model on
spherical lattice in Ref. [28], where a first-order transition is expected and where the transition point is
very clear and detected uniquely even by numerical simulations. In contrast, continuous transitions
are relatively unclear in general, and hence the transition points of the latter two models are relatively
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hard to observe. Moreover, the total number of iterations for these are not always sufficiently large as
mentioned above. These are possible reasons for the deviation of the transition points observed in
Cmax

Rg
and Cmax

S2
.
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Figure 8. The mean square gyration R2
g, its variance CRg , and the log-log plot of the peak value Cmax

Rg
vs.

N for (a–c) the LG model, (d–f) the canonical model, and (g–i) the modified canonical model.

The peak values Cmax
Rg

are expected to scale according to

Cmax
Rg
∼ Nµ. (25)

By fitting the largest three data of Cmax
Rg

in Figure 8c,f,i to this relation, we have

µ = 1.73± 0.08 (LG), µ = 0.93± 0.12 (cano), µ = 0.89± 0.08 (modi). (26)

These results also support the proposition that the LG model has a first-order transition and
the other models a second-order transition, though the coefficient of the canonical model is close to
µ= 1 and the transition is close to a first-order one. The reason why µ in Equation (26) of the LG
model is µ>1 may be the fact that the surface is not self-avoiding [28]. We should note that the order
of transition depends on its definition. If we call a transition first-order only if the coefficient µ for
the variance CS∗ of Hamiltonian S∗ is µ= 1, then the canonical and modified models clearly have a
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second-order transition from the results σ in Equation (22). In general, the coefficient σ for the bending
energy S2 is more important than µ as a coefficient for the determination of the order of transition.
Thus, it is reasonable to consider that the crumpling transitions of the canonical and modified canonical
models are continuous transitions.

3.3. Binder Quantity and Fractal Dimension

Firstly. in this subsection, we calculate the Binder quantity BS2 defined by [53,54]

BS2 = 1−

〈
(S2 − 〈S2〉)

4
〉

3
〈
(S2 − 〈S2〉)

2
〉2 (27)

for the LG model (Figure 9a). It is expected that BS2 has a peak Bmax
S2

and Bmax
S2
→2/3 at the first-order

transition point. To see whether this expectation is satisfied or not, Bmax
S2

vs. 1/N are plotted in

Figure 9b, where the Binder quantity Bmax
Rg

for R2
g is also plotted. The solid lines are also drawn by

Mathematica command “Interpolation” for the data of Bmax
S2

and Bmax
Rg

. The value Bmax
S2

(N→∞) on

the vertical axis expected from the extrapolations is almost identical with 2/3, while Bmax
Rg

(N→∞)

is slightly smaller than 2/3. This deviation of Bmax
Rg

(N→∞) seems due to the size effect, because

the lattice size is not so large compared to those used in Ref. [28], where Bmax
S2

(N→ ∞) ' 0.7 and
Bmax

Rg
(N→∞) ' 0.69 are observed.
A first-order transition is also reflected in the Binder cumulant VS2 , which is defined by [53,54]

VS2 = 1−
〈
S4

2

〉
/
(
3〈S2

2〉
2
)
. (28)

The Binder cumulant VRg for R2
g is also defined analogously to Equation (28). These quantities are

expected to have the minimum Vmin
S2

and Vmin
Rg

at the first-order transition point, and this expectation

is confirmed in Figure 9c, where only Vmin
S2

is plotted. It is also found that the position of Vmin
S2

on

the κ axis is almost the same as that of Cmax
S2

in Figure 7b. This also implies that Vmin
S2

reflects the
first-order transition.

In the other two models, the quantities BS2 and VS2 (and those for R2
g) are unclear compared to the

case of LG model. One of the reasons for this is the continuous nature of the transition; the convergent
speed of the simulation is very slow close to the transition point.

Next, we calculate the fractal dimension D f , which is defined by

R2
g ∼ N2/D f . (29)

To calculate this quantity at the transition point, we plot R2
g vs. N in Figure 9d–f in the log-log

scale, where R2
g are obtained at the peak position of CRg in Figure 8b,e,h. By fitting the plotted data to

Equation (29), we obtain

D f = 2.34± 1.01 (LG), D f = 2.54± 0.29 (cano), D f = 2.36± 0.60 (modi). (30)

Since the errors of R2
g are large in the first and third models (see Figure 9d,f), the errors in D f are

also relatively large. The values of D f within these errors are comparable to D f = 2.50 ± 0.30 at the
first-order transition point of the canonical model on the spherical lattice in Ref. [28].

To check the simulations are performed correctly, we can use the relations

S′1/N = 3/2 (LG),

S1/N = 3/2 (cano, modi),
(31)
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where S′1 of the first one is given in Equation (7), and S′1= tS1+κS2+2uS3+2vS4. The second equality
is also obtained by using almost the same technique for the first one. The symbol 〈·〉 is omitted for
these S′1 and S1 for simplicity. The results plotted in Figure 9g–i are consistent with these predictions
in Equation (31).
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Figure 9. (a) The Binder quantity BS2 , (b) the peak values Bmax
S2

and Bmax
Rg

vs 1/N with solid lines
drawn by Mathematica command “Interpolation”, and (c) the Binder cumulant VS2 for the LG model.
The log-log plot of R2

g vs. N of (d) the LG model, (e) the canonical model, and (f) the modified
canonical model. S′ of (g) the LG model, and S1/N of (h) the canonical model and (i) the modified
canonical model.

4. Summary and Conclusions

In this paper, we study the crumpling transition of a planar surface with a free boundary by
parallel tempering Monte Carlo (PTMC) simulations using three different tethered lattice models;
the Landau-Ginzburg (LG) model, the canonical (cano) model, and the modified canonical (modi)
model, defined on triangulated fixed-connectivity lattices of disk topology. The order of the transition
is first order in the LG model, while it is of second order in the other models. This second-order nature
of the transition is consistent with the result reported in [22,23].

The models studied in this paper are not self-avoiding, however, the transition between the
crumpled and smooth phases indicates that these states are stable against thermal fluctuations. This can
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give insights into studies on real materials such as graphene, where the crumpled states are expected
to have many technological applications.

In the presence of impurity, a new phase is expected to appear, and the surface critical exponents
are also expected to change from those of the model without impurity [55]. Thus, it is of great interest
to study the planar surface model with impurities.
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38. Díez-Pascual, A.M.; Sánchez, J.A.L.; Capilla, R.P.; Díaz, P.G. Recent Developments in Graphene/Polymer
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