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Abstract: The syntheses and characterizations of three new ligands containing two 4,2′:6′,4′′-tpy
or two 3,2′:6′,3′′-tpy metal-binding domains are reported. The ligands possess different alkyloxy
functionalities attached to the central phenylene spacer: n-pentyloxy in 3, 4-phenyl-n-butoxy
in 4, benzyloxy in 5. Crystal growth under ambient conditions has led to the formation of
{[Co(NCS)2(3)]·0.8C6H4Cl2}n and {[Co(NCS)2(4)]·1.6H2O·1.2C6H4Cl2}n, with structures confirmed by
single crystal X-ray diffraction. Both the cobalt(II) center and ligand 3 or 4 act as 4-connecting nodes
and both {[Co(NCS)2(3)]·0.8C6H4Cl2}n and {[Co(NCS)2(4)]·1.6H2O·1.2C6H4Cl2}n possess a 3D cds
net despite the fact that 3 and 4 contain two 4,2′:6′,4′′-tpy and two 3,2′:6′,3′′-tpy units, respectively.
Taken in conjunction with previously reported data, the results indicate that the role of the alkyloxy
substituent is more significant than the choice of 4,2′:6′,4′′- or 3,2′:6′,3′′-tpy isomer in determining
the assembly of a particular 3D net. The combination of Co(NCS)2 with 5 resulted in the formation
of the discrete molecular complex [Co(NCS)2(MeOH)2(5)2]·2CHCl3·2MeOH in which 5 acts as a
monodentate ligand. The pendant phenyls and both coordinated and non-coordinated 4,2′:6′,4′′-tpy
units are involved in efficient π-stacking interactions.

Keywords: tetratopic ligands; 4,2′:6′,4′′-terpyridine; 3,2′:6′,3′′-terpyridine; metal-organic framework;
cobalt(II) thiocyanate

1. Introduction

Polymeric materials are essential to mankind, both as the crucial biomolecules enabling life
processes and as the materials at the core of our socioeconomic structures. Metallopolymers are an
important subset of polymers, in which the incorporation of metal centers allows the blending of
new properties which are not readily accessed through polymeric structures based only on C, H,
N, O, S and P atoms. An important class of metallopolymers are the coordination polymers and
networks, in which the metal centers are incorporated through coordination rather than covalent
bonds. Specifically, coordination polymers and networks are infinite assemblies in which the metal
centers are connected by coordinated organic molecules. The coordination number and coordination
geometry of the metal centers provide an exquisite control over the dimensionality as well as
the topographical and topological features of the coordination assemblies. Ligands with pyridine
nitrogen donors comprise some of the most commonly utilized linkers, for example [1–7], with
4,4′-bipyridine (4,4′-bpy, Scheme 1) used extensively as a rigid organic linker in coordination assemblies.
An [M(pytpy)2]n+ (pytpy = 4′-(4-pyridyl)-2,2′:6′,2′′-terpyridine) is an expanded 4,4′-bpy since both can
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bind two metal ions and possess similar vectorial properties (Scheme 1) [8]. Newkome and coworkers
have demonstrated the assembly of metallocages based upon [M(tpy)2]n+ building blocks with other
vectorial properties [9]. By changing from the 2,2′:6′,2′′-isomer of terpyridine to either 3,2′:6′,3′′-
or 4,2′:6′,4′′-terpyridine (3,2′:6′,3′′- or 4,2′:6′,4′′-tpy, Scheme 2) it should be possible to modify the
consequences of the coordination interactions on the network assembly in a controlled and predictable
manner. The ligands 3,2′:6′,3′′- or 4,2′:6′,4′′-tpy both bind metal ions only through the four outer
N-donors and there is no literature precedent for metal-coordination through the central pyridine
ring. We and others have made widespread use of 4,2′:6′,4′′-tpy ligands, typically functionalized in
the 4′-position for the assembly of 1D-coordination polymers and 2D-networks [10–12]. Examples
of 3D-architectures incorporating 4,2′:6′,4′′-tpy ligands are rare [13] and only a very few examples
of 2D- and 3D-assemblies directed by 3,2′:6′,3′′-tpy ligands have been reported [14–20]. The most
significant difference between a 4,2′:6′,4′′-tpy and 3,2′:6′,3′′-tpy is the effect that inter-ring C–C bond
rotation has on the mutual directionality of the outer nitrogen donors. For 4,2′:6′,4′′-tpy, there
is no change in the vectorial orientation of the nitrogen donors, while for 3,2′:6′,3′′-tpy there is
significant variation with the interannular bond rotation [11]. This in turn increases the structural
diversity to be expected with 3,2′:6′,3′′-tpy, at the expense of the predictability of the self-assembly
algorithm. In Scheme 2, the 3,2′:6′,3′′-tpy unit is drawn in an orientation preorganized for the
formation of metallomacrocycles, as observed with 1-(3,2′:6′,3′ ′-terpyridin-4′-yl)ferrocene [21] and
5-(3,2′:6′,3′ ′-terpyridin-4′-yl)-N,N-diphenylthiophen- 2-amine [22].
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Scheme 2. Structures of 4,2′:6′,4′′- and 3,2′:6′,3′′-tpy of general ligand types 1 (with 4,2′:6′,4′′-tpy units)
and 2 (with 3,2′:6′,3′′-tpy units), and structures of ligands 1a–1d and 2a. The green arrows show the
vectoral orientation of the lone pairs involved in formation of the coordination network.

Covalent linkage of two 4,2′:6′,4′′- or 3,2′:6′,3′′-tpy domains combines two ditopic metal-binding
domains into a tetratopic ligand as exemplified with the general ligands 1 and 2 in Scheme 2. We have
developed a suite of such ligands, typically with 1,4-phenylene spacers functionalized with alkyloxy
groups to increase solubility in organic solvents [23]. The nature of the OR group is critical in
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determining the outcome of the self-assembly. For example, the reaction of 1a or 1b (Scheme 2) with
zinc(II) halides leads to (4,4) nets in which 1a or 1b is the 4-connecting node. However, in the case of 1a,
simple 2D-sheets are observed, whereas the presence of the longer n-octyl groups in 1b leads to 2D→2D
parallel interpenetration with the alkyloxy chains in extended conformations and directed within
each corrugated sheet [23,24]. We have also demonstrated that introducing a pendant aryl group can
facilitate face-to-face π-interactions within the solid-state assembly. In the case of [Zn2Br4(1c).H2O]n

(see Scheme 2 for 1c), 2-fold interpenetrating nbo nets are observed with inter-net π-stacking resulting
in tightly associated interpenetrated nets and, as a consequence, large void spaces in the lattice [25].

In this paper, we describe reactions of ligands 3–5 (Scheme 3) with Co(NCS)2. Upon interacting
with pyridine donors, Co(NCS)2 typically generates octahedral cobalt(II) centers with trans-thiocyanato
ligands and four pyridine nitrogen donors defining the equatorial plane. It is therefore expected to
act as a 4-connecting node giving access to a range of different networks [26,27]. We have shown that
the reaction of Co(NCS)2 with 1d (Scheme 2) leads to a 3D cds net in which both metal and ligand are
4-connecting nodes [28]. Increasing the length of the alkyloxy chain to R = n-octyl and replacing the
4,2′:6′,4′′- by a 3,2′:6′,3′′-tpy (2a, Scheme 2) switches the 3D assembly from a cds to an lvt net [20]. In the
present work, 3 was selected in order to investigate the effect of lengthening the alkyloxy chain from
three to five carbon atoms—would the cds net be retained? Ligand 4 is comparable with 2a in terms
of the 3,2′:6′,3′′-tpy donor set but introduces terminal phenyl domains in the alkyloxy substituents.
Both 3 and 5 possess 4,2′:6′,4′′-tpy units, but the inclusion of the pendant phenyls in 5 was expected to
affect the assembly by enabling arene–arene π-interactions.
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2. Materials and Methods

2.1. General

1H and 13C NMR spectra were recorded on a Bruker DRX-500 NMR spectrometer (Bruker BioSpin
AG, Fällanden, Switzerland) with chemical shifts referenced to residual solvent peaks (TMS = δ 0 ppm).
Electrospray ionization (ESI) mass spectra were measured on a Shimazu LCMS 2020 instrument
(Shimadzu Schweiz GmbH, Roemerstr., Switzerland) and high resolution ESI (HR-ESI) mass spectra
on a Bruker maXis 4G QTOF instrument (Bruker BioSpin AG, Fällanden, Switzerland); samples were
introduced as MeCN solutions containing 0.1% formic acid or 0.1% trifluoroacetic acid (TFA) for
electrospray mass spectrometry (ESI MS) and high-resolution ESI MS, respectively. Commercially
available precursors were purchased from Fluorochem (Hadfield, UK), Sigma-Aldrich (Buchs SG,
Switzerland), TCI (Eschborn, Germany) or Acros (Chemie Brunschwig AG, Basel, Switzerland) and
used without further purification. Compound 4b was prepared following the literature and NMR
spectroscopic data were in accord with those reported [29].

2.2. Compound 3a

Compound 3a was prepared by adapting a literature method [29]. 2,5-Dibromohydroquinone
(2.0 g, 7.47 mmol), 1-bromopentane (2.36 mL, 2.88 g, 18.7 mmol) and anhydrous K2CO3 (3.1 g, 22.4 mmol)
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were dissolved in dry DMF (100 mL) and the mixture was heated at 100 ◦C for ca. 15 h. The reaction
mixture was cooled to room temperature, added to a beaker containing 100 mL of ice-water and stirred
for 30 min. The precipitate that formed was separated by filtration and washed with water (3 × 30 mL)
and dried in vacuo. Compound 3a was isolated as a white powder (2.85 g, 6.98 mmol, 93.5%). 1H NMR
(500 MHz, CDCl3) δ/ppm 7.09 (s, 2H, HC3), 3.95 (t, J = 6.5 Hz, 4H, Ha), 1.81 (m, 4H, Hb), 1.46 (m, 4H, Hc),
1.39 (m, 4H, Hd), 0.94 (t, J = 7.2 Hz, 6H). 13C{1H} NMR (126 MHz, CDCl3) δ/ppm 150.2 (CC2), 118.6
(CC3), 111.3 (CC1), 70.5 (Ca), 29.0 (Cb), 28.3 (Cc), 22.5 (Cd), 14.2 (Ce). In reference [29], 1H NMR signals
were unassigned, and 13C NMR spectroscopic data were not reported.

2.3. Compound 4a

Compound 4a has been reported but we find the following method more convenient. The method
was as for 3a starting with 2,5-dibromohydroquinone (1.5 g, 5.6 mmol), 1-bromo-4-phenylbutane
(0.96 mL, 3.04 g, 14 mmol) and anhydrous K2CO3 (2.32 g, 16.8 mmol) in dry DMF (100 mL). Then, 4a
was isolated as a white powder (2.67 g, 5.02 mmol, 89.6%). The NMR spectroscopic data agreed with
those published [29].

2.4. Compound 5a

Compound 5a has previously been reported [30], but we find the following synthesis more
convenient. The method was as for 3a starting with 2,5-dibromohydroquinone (1.5 g, 5.6 mmol),
benzyl chloride (1.61 mL, 1.77 g, 14.0 mmol) and anhydrous K2CO3 (2.32 g, 16.8 mmol) in dry DMF
(100 mL). Then, 5a was obtained as a white powder (2.19 g, 4.89 mmol, 87.3%). 1H NMR spectroscopic
data were in accord with those reported [30]. 13C{1H} NMR (126 MHz, CDCl3) δ/ppm 150.2 (CC2c),
136.3 (CD1), 128.8 (CD3), 128.3 (CD4), 127.4 (CD2), 119.4 (CC3), 111.7 (CC1), 72.1 (Ca).

2.5. Compound 3b

Compound 3a (1.8 g, 4.41 mmol) and dry Et2O (150 mL) were added to a dried flask and cooled
to 0 ◦C in an ice bath. nBuLi solution (1.6 M in hexanes, 8.27 mL, 13.2 mmol) was slowly added to
the solution of 3a over 20 min and the temperature maintained at 0 ◦C for 6 h. Dry DMF (1.02 mL,
13.2 mmol) was then added and the solution stirred for 15 h, while warming up to room temperature.
The reaction was neutralized with saturated aqueous NH4Cl solution and extracted with CH2Cl2
(200 mL). The organic phase was dried over MgSO4 and concentrated in vacuo. Compound 3b was
obtained as a yellow solid (1.14 g, 3.72 mmol, 84.4%) and used without further purification. 1H NMR
(500 MHz, CDCl3) δ/ppm 10.51 (s, 2H, HCHO), 7.42 (s, 2H, HC3), 4.08 (t, J = 6.5 Hz, 4H, Ha), 1.87–1.76
(m, 4H, Hb), 1.52–1.31 (m, 8H, Hc+d), 0.93 (t, J = 7.2 Hz, 6H, He). 13C{1H} NMR (126 MHz, CDCl3)
δ/ppm 189.6 (CCHO), 155.3 (CC2), 129.4 (CC1), 111.7 (CC3), 69.3 (Ca), 28.8 (Cb), 28.3 (Cc), 22.5 (Cd),
14.1 (Ce).

2.6. Compound 5b

The method was the same as for 3b but starting with 5a (2.0 g, 4.46 mmol) and nBuLi (1.6 M in
hexanes, 8.36 mL, 13.4 mmol). Compound 2b was obtained as a yellow solid (1.23 g, 3.55 mmol, 79.6%)
and was used without further purification. 1H NMR spectroscopic data matched those reported [29].
13C{1H} NMR (126 MHz, CDCl3) δ/ppm 189.2 (CCHO), 155.2 (CC2), 135.8 (CD1), 129.7 (CC1), 128.9
(CD2/D3), 128.5 (CD4), 127.7 (CD2/D3), 112.5 (CC3), 71.3 (Ca).

2.7. Compound 3

Compound 3b (0.3 g, 0.98 mmol) was dissolved in EtOH (100 mL), then 4-acetylpyridine (0.45 mL,
0.49 g, 3.92 mmol) and crushed solid KOH (0.22 g, 3.92 mmol) were added in one portion. Aqueous
NH3 (32%, 7.8 mL) was added dropwise and the reaction mixture was stirred at room temperature for
ca. 15 h. The precipitate that had formed was collected by filtration and washed with water, EtOH
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and Et2O (3 × 10 mL, each). Compound 3 was obtained as a white solid (0.13 g, 0.18 mmol, 18.8%).
M.p. = 297 ◦C. 1H NMR (500 MHz, CDCl3) δ/ppm 8.81 (m, 8H, HA2), 8.15–8.07 (m, 12H, HB3+A3), 7.16
(s, 2H, HC3), 4.07 (t, J = 6.3 Hz, 4H, Ha), 1.87 (m, 4H, Hb), 1.37 (m, 4H, Hc), 1.32–1.19 (m, 4H, Hd), 0.77
(t, J = 7.3 Hz, 6H, He). 13C{1H} NMR (126 MHz, CDCl3) δ/ppm 154.8 (CB2), 150.7 (CC2), 150.6 (CA2),
148.4 (CB4), 146.4 (CA4), 129.2 (CC1), 121.7 (CB3), 121.3 (CA3), 115.3 (CC3), 69.9 (Ca), 29.27 (Cb), 28.61
(Cc), 22.53 (Cd), 14.02 (Ce). ESI-MS m/z 754.40 [M + H + MeCN]+ (base peak, calc. 754.39), 713.35
[M + H]+ (calc. 713.36). HR ESI-MS m/z 713.3600 [M + H]+ (calc. 713.3599).

2.8. Compound 4

The method was as for compound 3 but starting with 4b (0.69 g, 1.62 mmol) and 3-acetylpyridine
(0.82 mL, 0.89 g, 7.25 mmol), crushed KOH (0.41 g, 7.25 mmol) and aqueous NH3 (32%, 12.4 mL).
Compound 4 was isolated as a white solid (0.47 g, 0.56 mmol, 34.7%). M.p. = 253 ◦C. 1H NMR
(500 MHz, CDCl3) δ/ppm 9.38 (d, J = 2.2 Hz, 4H, HA2), 8.73 (m, 4H, HA6), 8.50 (dd, J = 7.9, 2.0 Hz,
4H, HA4), 8.01 (s, 4H, HB3), 7.45 (dd, J = 8.0, 7.9 Hz, 4H, HA5), 7.17–7.12 (m, 6H, HC3+D3), 7.09 (m, 2H,
HD4), 6.98 (m, 4H, HD2), 4.07 (t, J = 6.1 Hz, 4H, Ha), 2.55 (t, J = 7.5 Hz, 4H, Hd), 1.87–1.78 (m, 4H, Hb),
1.75–1.67 (m, 4H, Hc). 13C{1H} NMR (126 MHz, CDCl3) δ/ppm 154.9 (CB2), 150.7 (CC2), 150.4 (CA6),
148.6 (CA2), 148.1 (CB4), 141.9 (CD1), 134.8 (CA3), 134.6 (CA4), 129.5 (CC1), 128.45 (CD3), 128.4 (CD2),
125.9 (CD4), 123.8 (CA5), 120.3 (CB3), 115.5 (CC3), 69.7 (Ca), 35.5 (Cd), 29.1 (Cb), 28.0 (Cc). ESI-MS m/z
837.40 [M + H]+ (base peak, calc. 837.39). HR ESI-MS m/z 837.3901 [M + H]+ (calc. 837.3912).

2.9. Compound 5

The method was as for 3, starting with 5b (1.06 g, 3.06 mmol), 4-acetylpyridine (1.56 mL, 1.7 g,
13.8 mmol), crushed KOH (0.77 g, 13.8 mmol), and aqueous NH3 (32%, 24 mL). Compound 5 was
isolated as a white solid (0.87 g, 1.16 mmol, 37.8%). Decomp. > 280 ◦C. 1H NMR (500 MHz, CDCl3)
δ/ppm 8.77 (m, 8H, HA2), 8.07 (s, 4H, HB3), 7.96 (m, 8H, HA3), 7.40–7.33 (m, 10H, HD2+D3+D4), 7.31
(s, 2H, HC3), 5.19 (s, 4H, Ha). 13C{1H} NMR (126 MHz, CDCl3) δ/ppm 154.9 (CB2), 150.7 (CC2), 150.5
(CA2), 147.7 (CB4), 146.3 (CA4), 136.2 (CD1), 129.5 (CC1), 129.0 (CD3), 128.7 (CD4), 127.9 (CD2), 121.5 (CB3),
121.4 (CA3), 116.1 (CC3), 72.1 (Ca). ESI-MS m/z 794.30 [M + H + MeCN]+ (calc. 794.32), 753.35 [M + H]+

(calc. 753.30). HR ESI-MS m/z 753.2967 [M + H]+ (calc. 753.2973).

2.10. {[Co(NCS)2(3)]·0.8C6H4Cl2}n

A solution of Co(NCS)2 (1.75 mg, 0.01 mmol) in MeOH (8 mL) was layered over a solution of 3
(7.13 mg, 0.01 mmol) in 1,2-dichlorobenzene (5 mL). A few pink crystals of [Co(NCS)2(3)·0.8C6H4Cl2]n

were obtained after 2–4 weeks. Insufficient material was obtained for powder X-ray diffraction.

2.11. {[Co(NCS)2(4)]·1.6H2O·1.2C6H4Cl2}n

A solution of Co(NCS)2 (3.5 mg, 0.02 mmol) in MeOH (8 mL) was layered over a solution of 4 (8.37 mg,
0.01 mmol) in 1,2-dichlorobenzene (5 mL). Pink crystals of [Co(NCS)2(4)·1.6H2O·1.2C6H4Cl2]n (2.2 mg,
0.0018 mmol, 18% based on 5) were obtained after 2–4 weeks. The bulk sample was characterized by
powder X-ray diffraction (Figure S1).

2.12. [Co(NCS)2(MeOH)2(5)2]·2CHCl3·2MeOH

A solution of Co(NCS)2 (3.5 mg, 0.02 mmol) in MeOH (8 mL) was layered over a
solution of 5 (15.1 mg, 0.02 mmol) in CHCl3 (5 mL). A small crop of pink crystals of
[Co(NCS)2(MeOH)2(5)2·2CHCl3·2MeOH] was obtained after 2–4 weeks. Insufficient material was
obtained for powder X-ray diffraction
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2.13. Crystallography

Single crystal data were collected on a Bruker APEX-II diffractometer (Bruker Biospin AG,
Fällanden, Switzerland); data reduction, solution and refinement used APEX2, SuperFlip and CRYSTALS
respectively [31–33]. Structure analysis used Mercury v. 3.10 [34,35]. In {[Co(NCS)2(3)]·0.8C6H4Cl2}n, the
dichlorobenzene molecule was refined as rigid body (occupancy = 0.8 per formula unit). In addition, the
aliphatic chain showed high thermal motion, and was refined isotropically using chemically reasonable
restraints to bond distances and angles. In {[Co(NCS)2(4)]·1.6H2O·1.2C6H4Cl2}n, the side chain of
the organic ligand is disordered with high thermal motion; as a result, the phenyl ring was refined
with rigid body restraints and the whole chain was refined isotropically. Powder diffraction data were
collected on a Stoe Stadi P powder diffractometer (Stoe & Cie GmbH, Darmstadt, Germany).

{[Co(NCS)2(3)]·0.8C6H4Cl2}n: C52.80H47.20Cl1.60CoN8O2S2, M = 1005.60, pink block, monoclinic,
space group P21/c, a = 10.3756(6), b = 19.1855(11), c = 16.2699(9) Å, β = 106.881(3)o, U = 3099.2(3)
Å3, Z = 2, Dc = 1.078 Mg m–3, µ(Cu-Kα) = 3.749 mm−1, T = 123 K. Total 31,013 reflections, 5731
unique, Rint = 0.033. Refinement of 4672 reflections (282 parameters) with I > 2σ (I) converged at final
R1 = 0.1176 (R1 all data = 0.1247), wR2 = 0.1340 (wR2 all data = 0.1341), gof = 0.9888. CCDC 1877183.

{[Co(NCS)2(4)]·1.6H2O·1.2C6H4Cl2}n: C65.20H56.00Cl2.40CoN8O3.60S2, M = 1217.36, pink block,
monoclinic, space group P21/c, a = 13.7465(6), b = 15.7832(7), c = 16.2872(8) Å, β = 112.147(2)o,
U = 3273.0(3) Å3, Z = 2, Dc = 1.235 Mg m–3, µ (Cu-Kα) = 3.953 mm−1, T = 123 K. Total 23,855 reflections,
5937 unique, Rint = 0.035. Refinement of 5459 reflections (313 parameters) with I >2σ (I) converged at
final R1 = 0.1460 (R1 all data = 0.1460), wR2 = 0.1415, gof = 0.9888. CCDC 1877182.

[Co(NCS)2(MeOH)2(5)2]·2CHCl3·2MeOH: C108H90Cl6CoN14O8S2, M = 2047.77, pink block,
triclinic, space group P–1, a = 14.1006(10), b = 14.5250(10), c = 14.5512(11) Å, α =62.394(3), β = 89.108(3),
γ = 64.293(3)o, U = 2314.5(3) Å3, Z = 1, Dc = 1.469 Mg m–3, µ(Cu-Kα) = 4.035 mm−1, T = 123 K.
Total 26,118 reflections, 8388 unique, Rint = 0.026. Refinement of 7965 reflections (618 parameters) with
I > 2σ (I) converged at final R1 = 0.1090 (R1 all data = 0.2656), wR2 = 0.1117 (wR2 all data = 0.2664),
gof = 0.9524. CCDC 1877184.

3. Results

3.1. Synthesis and Characterization of Ligands

Compounds 3–5 were prepared following the one-pot strategy of Wang and Hanan [36]
(right-side of Scheme 4), an approach that requires the appropriate dicarbaldehyde. Precursors
3a–5a (Scheme 4) were prepared by treatment of 2,5-dibromohydroquinone with 1-bromopentane,
1-bromo-4-phenylbutane or benzyl chloride under basic conditions. Subsequent lithiation and
treatment with DMF followed by addition of aqueous NH4Cl yielded the dicarbaldehydes 3b–5b.
After work-up, compounds 3–5 were isolated as white solids in yields ranging from 18.8 to 37.8%.
In the HR-ESI mass spectrum of each compound, the highest-mass peak corresponded to the [M + H]+

ion (m/z = 713.3600, 837.3901 and 753.2967, respectively). For 3 and 5, this was the base peak, and lower
intensity peaks at 357.1841 and 377.1522, respectively, arose from the [M + 2H]2+ ion. In the HR-ESI
mass spectrum of 4, the [M + 2H]2+ ion gave the base peak (m/z = 419.1994), and a peak assigned to
the [M + 3H]3+ ion (m/z = 279.8021) was also observed. The mass spectra are shown in Figures S2–S4.
The 1H and 13C NMR spectra of the ligands were assigned by COSY, NOESY, HMQC and HMBC
methods, and the atom labelling scheme is defined in Scheme 4. NOESY cross peaks between the
signals for protons HA3 and HB3 in 3 and 5 distinguished HA3 from HA2. Figure 1 displays the aromatic
regions of the 1H NMR spectra and Figures S5–S10 show full 1H and 13C NMR spectra.
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Figure 1. Aromatic regions of the 1H NMR spectra of ligands 3–5 (500 MHz, CDCl3, 298 K). See Scheme 

4 for atom labels. * = residual CHCl3. 

3.2. Crystal Growth 

All crystal growth experiments were carried out under ambient conditions by layering a 

methanol solution of Co(NCS)2 over a solution of the ligand in either 1,2-dichlorobenzene or 

chloroform (see Materials and methods). Parallel crystal-setups using 1,2-dichlorobenzene or 

chloroform for each ligand/Co(NCS)2 combination were made, and the ratio of Co(NCS)2 : ligand was 

Scheme 4. Synthetic routes to 3–5 with numbering for NMR spectroscopic assignments in the
experimental section; CH2 units in alkyloxy chains are labelled a, b, c . . . etc. starting at the OCH2

unit and the terminal phenyl rings are labelled D. Conditions: (i) RBr or benzyl chloride (see Materials
and Methods), anhydrous K2CO3, dry DMF, 100 ◦C, 15 h; (ii) nBuLi, Et2O, 0 ◦C; DMF, warmed to
room temperature, 15 h; (iii) 4-acetylpyridine, KOH, EtOH, aqueous NH3, room temperature, 15 h;
(iv) 3-acetylpyridine, KOH, EtOH, aqueous NH3, room temperature, 15 h.
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Figure 1. Aromatic regions of the 1H NMR spectra of ligands 3–5 (500 MHz, CDCl3, 298 K).
See Scheme 4 for atom labels. * = residual CHCl3.

3.2. Crystal Growth

All crystal growth experiments were carried out under ambient conditions by layering a methanol
solution of Co(NCS)2 over a solution of the ligand in either 1,2-dichlorobenzene or chloroform
(see Materials and methods). Parallel crystal-setups using 1,2-dichlorobenzene or chloroform for
each ligand/Co(NCS)2 combination were made, and the ratio of Co(NCS)2: ligand was either 1:1
or 2:1. For ligands 3 and 4, pink crystals were harvested after 2–4 weeks, although in the case
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of 3, few crystals formed. X-ray quality crystals were only obtained when 1,2-dichlorobenzene
was used during crystal growth, and single crystal X-ray diffraction established the assembly of
coordination networks (see below). For ligand 5, crystals were only obtained when using a solution
of 5 in chloroform, and X-ray diffraction revealed the unexpected discrete coordination compound
[Co(NCS)2(MeOH)2(5)2]·2CHCl3·2MeOH.

3.3. {[Co(NCS)2(3)]·0.8C6H4Cl2}n and {[Co(NCS)2(4)]·1.6H2O·1.2C6H4Cl2}n

Single crystal X-ray diffraction confirmed that reactions of Co(NCS)2 with 3 and 4 yielded
the coordination assemblies {[Co(NCS)2(3)]·0.8C6H4Cl2}n and {[Co(NCS)2(4)]·1.6H2O·1.2C6H4Cl2}n.
For the latter, verification that the single crystal was representative of the bulk sample was
obtained from powder X-ray diffraction (Figure S1). Both {[Co(NCS)2(3)]·0.8C6H4Cl2}n and
{[Co(NCS)2(4)]·1.6H2O·1.2C6H4Cl2}n crystallize in the monoclinic space group P21/c. The cobalt(II)
center in each compound is in a similar six-coordinate environment with trans-thiocyanato ligands and
nitrogen donors from four different ligands defining the equatorial sites. The asymmetric unit in each
structure contains one cobalt atom and half of a ligand 3 or 4. In {[Co(NCS)2(3)]·0.8C6H4Cl2}n, the
asymmetric unit contains 0.4 C6H4Cl2, while in {[Co(NCS)2(4)]·1.6H2O·1.2C6H4Cl2}n, the asymmetric
unit has 0.6 C6H4Cl2 disordered over two orientations modelled with equal occupancies. For the
compound with ligand 4, the pyridine ring containing N1 is disordered and was modelled over two
sites of occupancies 0.6 and 0.4. The O atom of the 4-phenyl-n-butoxy chain is also disordered, and
was again modelled over two sites with occupancies 0.6 and 0.4. In the discussion below, we focus
only on the major occupancy sites in {[Co(NCS)2(4)]·1.6H2O·1.2C6H4Cl2}n. Figures 2 and 3 illustrate
that each of ligands 3 and 4 binds four cobalt (II) centers, thereby acting as a 4-connecting node. Table 1
gives bond parameters within each cobalt (II) coordination sphere. These parameters and all other
bond distances and angles in the structures are unremarkable, and do not warrant further comment.
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Figure 2. The asymmetric unit in {[Co(NCS)2(3)]·0.8C6H4Cl2}n and symmetry-generated atoms to
show ligand 3 as a 4-connecting node. Symmetry codes: i = −1 − x, 1 – y, 1 − z; ii = −1 + x, y, 1 + z;
iii = −1 + x, 3/2 − y, 1/2 + z; iv = −x, 1 − y, −z; v = x, 1/2 − y, −1/2 + z; vi = −x, 1/2 + y, 1/2 – z;
vii = x, 1/2 − y, 1/2 + z.
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Figure 3. The asymmetric unit in {[Co(NCS)2(4)]·1.6H2O·1.2C6H4Cl2}n and symmetry-generated atoms
to show ligand 4 as a 4-connecting node. Symmetry codes: i = −1 − x, 2 − y, 1 − z; ii = −1 + x, 1 + y, z;
iii = −1 − x, 1/2 + y, 1/2 − z; iv = −x, 1 − y, 1 − z; v = −x, −1/2 + y, 3/2 − z; vi = x, 3/2 − y, −1/2 + z;
vii = −x, 1/2 + y, 3/2 − z.

Table 1. Important bond parameters in {[Co(NCS)2(3)]·0.8C6H4Cl2}n and {[Co(NCS)2(4)]·1.6H2O·
1.2C6H4Cl2}n.

Bond Parameter {[Co(NCS)2(3)]·0.8C6H4Cl2}n {[Co(NCS)2(4)]·1.6H2O·1.2C6H4Cl2}n

Distance/Å
Co1–N1 2.208 (2) 2.238 (4)
Co1–N4 2.062 (3) 2.065 (4)

Co1–N3v 2.179 (2) 2.169 (4)
Angle/deg
N1–Co1–N4 90.18 (10) 88.67 (15)

N3v–Co1–N1 84.73 (9) 93.81 (17)
N3v–Co1–N4 90.20 (11) 90.32 (16)
N3vi–Co1–N1 95.27 (9) 86.19 (17)
N3vi–Co1–N4 89.80 (11) 89.68 (16)
N1iv–Co1–N4 89.82 (10) 91.33 (15)

The dihedral angles between the planes through adjacent aromatic rings in coordinated 3 and 4
are given in the first two entries in Table 2. The twist of the ring with N2 with respect to the phenylene
ring in each compound is typical of covalently bonded arene rings and minimizes H . . . H repulsions.
There are small differences in the conformations of the 4,2′:6′,4′′- and 3,2′:6′,3′′-tpy units in coordinated
3 and 4, as displayed in Figure 4a in the overlay of the {Co4(3)} and {Co4(4)} units. However, both 3
and 4 function as planar 4-connecting nodes and, despite the isomeric donor sets, each propagates into
a {65.8} cds net (Figures 5 and S12) in which half of the adjacent nodes are mutually perpendicular and
half are coplanar [26]. This resembles the 3D net observed in {[Co(NCS)2(1d)]·2C6H4Cl2}n [28] and, for
comparison, the corresponding dihedral angles for this structure are given in Table 1. In fact, the unit cell
dimensions of {[Co(NCS)2(3)]·0.8C6H4Cl2}n and {[Co(NCS)2(1d)]·2C6H4Cl2}n (both in the space group
P21/c) are very similar (a = 10.3756(6), b = 19.1855(11), c = 16.2699(9) Å, β = 106.881(3)o, U = 3099.2(3) Å3

versus a = 10.2136(9), b = 19.3452(17), c = 16.2214(15) Å, β = 107.027(3)o, U = 3064.6(5) Å3), revealing that
the network can accommodate either n-pentyloxy or n-propoxy chains without significant perturbation
(Figure S11).
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Table 2. Dihedral angles between pairs of bonded aromatic rings in {[Co(NCS)2(3)]·0.8C6H4Cl2}n

and {[Co(NCS)2(4)]·1.6H2O·1.2C6H4Cl2}n, and in {[Co(NCS)2(1d)]·2C6H4Cl2}n [28] and
{[Co(NCS)2(2a)]·4CHCl3}n [20].

Compound
Dihedral Angle between Planes/Deg

Ring with N1/Ring
with N2

Ring with N2/Ring
with N3

Ring with
N2/Phenylene Ring

{[Co(NCS)2(3)]·0.8C6H4Cl2}n 25.3 30.7 40.2
{[Co(NCS)2(4)]·1.6H2O·1.2C6H4Cl2}n 34.6 6.4 44.3

{[Co(NCS)2(1d)]·2C6H4Cl2}n 19.5 31.3 40.5
{[Co(NCS)2(2a)]·4CHCl3}n 29.9; 22.7 12.7; 12.2 58.5; 55.9

Polymers 2018, 10, x FOR PEER REVIEW  10 of 15 

 

Table 2. Dihedral angles between pairs of bonded aromatic rings in {[Co(NCS)2(3)]·0.8C6H4Cl2}n and 

{[Co(NCS)2(4)]·1.6H2O·1.2C6H4Cl2}n, and in {[Co(NCS)2(1d)]·2C6H4Cl2}n [28] and 

{[Co(NCS)2(2a)]·4CHCl3}n [20]. 

Compound 

Dihedral Angle between Planes/Deg 

Ring with N1/Ring 

with N2 

Ring with N2/Ring 

with N3 

Ring with 

N2/Phenylene Ring  

{[Co(NCS)2(3)]·0.8C6H4Cl2}n  25.3 30.7 40.2 

{[Co(NCS)2(4)]·1.6H2O·1.2C6H4Cl2}n  34.6 6.4 44.3 

{[Co(NCS)2(1d)]·2C6H4Cl2}n 19.5 31.3 40.5 

{[Co(NCS)2(2a)]·4CHCl3}n 29.9; 22.7 12.7; 12.2  58.5; 55.9  

 

Figure 4. (a) Overlay of {Co4(3)} and {Co4(4)} units in {[Co(NCS)2(3)]·0.8C6H4Cl2}n and 

{[Co(NCS)2(4)]·1.6H2O·1.2C6H4Cl2}n; (b) Overlay of {Co4(4)} and {Co4(2a)} units in 

{[Co(NCS)2(4)]·1.6H2O·1.2C6H4Cl2}n (this work) and {[Co(NCS)2(2a)]·4CHCl3}n [20]. In each overlay, 

the atoms of the central phenylene ring superimposed. For clarity, only the O atoms of the alkyloxy 

chains are shown. 

 

Figure 5. Topological representation of the 3D net in {[Co(NCS)2(4)]·1.6H2O·1.2C6H4Cl2}n generated 

using Mercury [34,35] with 4-connecting cobalt and ligand nodes. The net in 

{[Co(NCS)2(3)]·0.8C6H4Cl2}n is the same (see Figure S12). 

The phenyl groups in the 4-phenylbutoxy chains in {[Co(NCS)2(4)]·1.6H2O·1.2C6H4Cl2}n do not 

play a critical role in the assembly process and are not involved in π-stacking interactions. This is in 

contrast to the 3-phenylpropoxy groups in [Zn2Br4(1c).H2O]n (see introduction) [25]. Instead, the 1,2-

dichlorobenzene solvate in {[Co(NCS)2(4)]·1.6H2O·1.2C6H4Cl2}n engages in a face-to-face π-interaction 

with the pyridine ring containing atom N3 (Figure S13). Pertinent parameters are centroid…centroid 

and centroid…pyridine-plane separations of 3.74 and 3.49 Å , respectively, and an angle between the 

ring planes of 9.7°. However, since the solvent site is only partially occupied, one must be cautious 

in over-discussing both these interactions and the Cl…H–C contacts shown in Figure S13. 

Figure 4. (a) Overlay of {Co4(3)} and {Co4(4)} units in {[Co(NCS)2(3)]·0.8C6H4Cl2}n

and {[Co(NCS)2(4)]·1.6H2O·1.2C6H4Cl2}n; (b) Overlay of {Co4(4)} and {Co4(2a)} units in
{[Co(NCS)2(4)]·1.6H2O·1.2C6H4Cl2}n (this work) and {[Co(NCS)2(2a)]·4CHCl3}n [20]. In each overlay,
the atoms of the central phenylene ring superimposed. For clarity, only the O atoms of the alkyloxy
chains are shown.

Polymers 2018, 10, x FOR PEER REVIEW  10 of 15 

 

Table 2. Dihedral angles between pairs of bonded aromatic rings in {[Co(NCS)2(3)]·0.8C6H4Cl2}n and 

{[Co(NCS)2(4)]·1.6H2O·1.2C6H4Cl2}n, and in {[Co(NCS)2(1d)]·2C6H4Cl2}n [28] and 

{[Co(NCS)2(2a)]·4CHCl3}n [20]. 

Compound 

Dihedral Angle between Planes/Deg 

Ring with N1/Ring 

with N2 

Ring with N2/Ring 

with N3 

Ring with 

N2/Phenylene Ring  

{[Co(NCS)2(3)]·0.8C6H4Cl2}n  25.3 30.7 40.2 

{[Co(NCS)2(4)]·1.6H2O·1.2C6H4Cl2}n  34.6 6.4 44.3 

{[Co(NCS)2(1d)]·2C6H4Cl2}n 19.5 31.3 40.5 

{[Co(NCS)2(2a)]·4CHCl3}n 29.9; 22.7 12.7; 12.2  58.5; 55.9  

 

Figure 4. (a) Overlay of {Co4(3)} and {Co4(4)} units in {[Co(NCS)2(3)]·0.8C6H4Cl2}n and 

{[Co(NCS)2(4)]·1.6H2O·1.2C6H4Cl2}n; (b) Overlay of {Co4(4)} and {Co4(2a)} units in 

{[Co(NCS)2(4)]·1.6H2O·1.2C6H4Cl2}n (this work) and {[Co(NCS)2(2a)]·4CHCl3}n [20]. In each overlay, 

the atoms of the central phenylene ring superimposed. For clarity, only the O atoms of the alkyloxy 

chains are shown. 

 

Figure 5. Topological representation of the 3D net in {[Co(NCS)2(4)]·1.6H2O·1.2C6H4Cl2}n generated 

using Mercury [34,35] with 4-connecting cobalt and ligand nodes. The net in 

{[Co(NCS)2(3)]·0.8C6H4Cl2}n is the same (see Figure S12). 

The phenyl groups in the 4-phenylbutoxy chains in {[Co(NCS)2(4)]·1.6H2O·1.2C6H4Cl2}n do not 

play a critical role in the assembly process and are not involved in π-stacking interactions. This is in 

contrast to the 3-phenylpropoxy groups in [Zn2Br4(1c).H2O]n (see introduction) [25]. Instead, the 1,2-

dichlorobenzene solvate in {[Co(NCS)2(4)]·1.6H2O·1.2C6H4Cl2}n engages in a face-to-face π-interaction 

with the pyridine ring containing atom N3 (Figure S13). Pertinent parameters are centroid…centroid 

and centroid…pyridine-plane separations of 3.74 and 3.49 Å , respectively, and an angle between the 

ring planes of 9.7°. However, since the solvent site is only partially occupied, one must be cautious 

in over-discussing both these interactions and the Cl…H–C contacts shown in Figure S13. 

Figure 5. Topological representation of the 3D net in {[Co(NCS)2(4)]·1.6H2O·1.2C6H4Cl2}n generated
using Mercury [34,35] with 4-connecting cobalt and ligand nodes. The net in {[Co(NCS)2(3)]·0.8C6H4Cl2}n

is the same (see Figure S12).

The phenyl groups in the 4-phenylbutoxy chains in {[Co(NCS)2(4)]·1.6H2O·1.2C6H4Cl2}n do not
play a critical role in the assembly process and are not involved in π-stacking interactions. This is
in contrast to the 3-phenylpropoxy groups in [Zn2Br4(1c).H2O]n (see introduction) [25]. Instead,
the 1,2-dichlorobenzene solvate in {[Co(NCS)2(4)]·1.6H2O·1.2C6H4Cl2}n engages in a face-to-face
π-interaction with the pyridine ring containing atom N3 (Figure S13). Pertinent parameters are
centroid . . . centroid and centroid . . . pyridine-plane separations of 3.74 and 3.49 Å, respectively, and
an angle between the ring planes of 9.7◦. However, since the solvent site is only partially occupied,
one must be cautious in over-discussing both these interactions and the Cl . . . H–C contacts shown in
Figure S13.
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It is instructive to compare the structures of {[Co(NCS)2(4)]·1.6H2O·1.2C6H4Cl2}n (this work)
and {[Co(NCS)2(2a)]·4CHCl3}n [20]. These compounds both have 3,2′:6′,3′′-tpy donor sets, but
differ in the nature of the alkyloxy chain (4-phenylbutoxy versus n-octyloxy). A second difference
is the solvent system for crystal growth (1,2-dichlorobenzene versus chloroform). Figure 4b
illustrates an overlay of the {Co4(4)} and {Co4(2a)} units in {[Co(NCS)2(4)]·1.6H2O·1.2C6H4Cl2}n and
{[Co(NCS)2(2a)]·4CHCl3}n, and reveals a significant difference in ligand conformation. This arises from
the larger dihedral angles between the 3,2′:6′,3′′-tpy ring with N2 and the phenylene ring (Table 1).
As previously described, {[Co(NCS)2(2a)]·4CHCl3}n possesses a {42.84} lvt net. It is now clear that the
assembly of the lvt net is not simply a consequence of introducing the 3,2′:6′,3′′-tpy in place of the
4,2′:6′,4′′-tpy domain. Unfortunately, we have not been able to obtain good quality X-ray diffraction
data from crystals grown from a combination of Co(NCS)2 with 1b (Scheme 2) and are unable, therefore,
to verify whether the switch from the cds to lvt net is a consequence of the steric demands of the long
n-octyl chain.

3.4. [Co(NCS)2(MeOH)2(5)2]·2CHCl3·2MeOH

The discussion above demonstrates that consistent networks can be obtained with a combination
of Co(NCS)2 and tetratopic ligands incorporating either 3,2′:6′,3′′- or 4,2′:6′,4′′-tpy metal-binding
domains. The observations suggest that the nature of the alkyloxy substituents, rather than the choice
of tpy isomer, may be the critical factor in determining the outcome of the coordination assembly.
On going from ligand 3 to 5, we gain the potential for π-stacking without significantly lengthening
the alkyloxy chain. Layering an MeOH solution of Co(NCS)2 over a CHCl3 solution of 5 produced
only a few crystals, and there was insufficient material to obtain powder XRD data for the bulk
sample. Single crystal X-ray diffraction revealed the unexpected formation of the discrete molecular
coordination compound [Co(NCS)2(MeOH)2(5)2]·2CHCl3·2MeOH. The compound crystallizes in the
triclinic space group P–1, and the centrosymmetric structure is shown in Figure 6 with selected bond
parameters given in the figure caption. Each ligand 5 acts as a monodentate N-donor ligand and
MeOH molecules complete the octahedral coordination sphere of Co1. While {Co(NCS)2(MeOH)2(py)2}
(py = pyridine) motifs are well established [37–42], there is only one example in the CSD (v. 5.39 with
updates [43]) featuring a monotopic 4,2′:6′,4′′-tpy ligand 6 (Scheme 5) [44]. In this work, crystal growth
by layering a MeOH/Co(NCS)2 solution over a solution of 6 in MeOH/CH2Cl2 with an intermediate
MeOH/CH2Cl2 layer resulted in the formation of [Co(NCS)2(MeOH)2(6)2]. The preference for this
discrete molecular assembly was attributed to the introduction of the sterically demanding pyrenyl
group which is involved in efficient intermolecular pyrene . . . 4,2′:6′,4′′-tpy π-stacking interactions [44].
In the case of [Co(NCS)2(MeOH)2(5)2]·2CHCl3·2MeOH, packing interactions (Figure 7) involve
centrosymmeric pairs of phenyl rings containing C20 and C20ii (symmetry code ii = 2 − x, 2 − y,
1 − z), pairs of 4,2′:6′,4′′-tpy units containing N2/N4 and N2iii/N4iii (symmetry code iii = 1 − x, 2 − y,
−z), and pairs of 4,2′:6′,4′′-tpy units containing N6/N7 and N6iv/N7iv (symmetry code iv = 2 − x, −y,
2 − z). The first two sets of interactions lock together four molecules (Figure 7a). For the phenyl . . .
phenyl π-stacking interaction, the separations of the ring planes and centroids are 3.35 and 3.65 Å,
respectively. The coordinated 4,2′:6′,4′′-tpy unit with N2/N3/N4 is virtually planar (dihedral angles
between the ring planes = 7.4 and 6.0◦), and 4,2′:6′,4′′-tpys with N2/N4 and N2iii/N4iii engage in
a π-stacking interaction (Figure 7a) with an angle between the ring planes of 6.0◦ and centroid . . .
centroid distance of 3.60 Å. For the non-coordinated 4,2′:6′,4′′-tpy unit, the dihedral angles between
pairs of rings with N5/N6 and N6/N7 are 24.1 and 3.2◦, respectively. Figure 7b depicts the face-to-face
π-stacking interaction pairs of 4,2′:6′,4′′-tpys containing N6/N7 and N6iv/N7iv (centroid . . . centroid
= 3.83 Å). The overall packing in the lattice is, therefore, dominated by efficient π-stacking [45], but,
because of the low yield of crystals, we are unable to say whether this leads to a preference for a
discrete molecular structure in which three of the four potential metal binding sites of ligand 5 remain
non-coordinated, or whether the isolation of crystals of [Co(NCS)2(MeOH)2(5)2]·2CHCl3·2MeOH
is serendipitous.
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Figure 7. Packing interactions in [Co(NCS)2(MeOH)2(5)2]·2CHCl3·2MeOH (solvent molecules omitted)
(a) between pairs of phenyl rings containing C20 and C20ii (symmetry code ii = 2 − x, 2 − y, 1 − z) and
pairs of 4,2′:6′,4′′-tpy units containing N2/N4 and N2iii/N4iii (symmetry code iii = 1− x, 2− y, −z) and
(b) pairs of 4,2′:6′,4′′-tpy units containing N6/N7 and N6iv/N7iv (symmetry code iv = 2 − x, −y, 2 − z).
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4. Conclusions

We have prepared three new ligands containing two 4,2′:6′,4′′-tpy or two 3,2′:6′,3′′-tpy
metal-binding domains with the expectation that they would function as 4-connecting nodes in
coordination networks. The ligands possess different alkyloxy functionalities attached to the central
phenylene spacer: n-pentyloxy in 3, 4-phenylbutoxy in 4, benzyloxy in 5. Reactions with Co(NCS)2

under ambient conditions with MeOH and 1,2-C6H4Cl2 as solvents resulted in the formation of
{[Co(NCS)2(3)]·0.8C6H4Cl2}n and {[Co(NCS)2(4)]·1.6H2O·1.2C6H4Cl2}n, both of which exhibit 3D cds
nets. These data taken along with previously reported related structures suggests that the assembly
of a particular net (cds or lvt) with 4-connecting Co and bis(tpy) ligands is independent of the choice
of 4,2′:6′,4′′- or 3,2′:6′,3′′-tpy. The role of the alkyloxy substituent appears to be more significant.
The combination of Co(NCS)2 with ligand 5 resulted in the formation of the discrete molecular complex
[Co(NCS)2(MeOH)2(5)2]·2CHCl3·2MeOH in which 5 behaves as a monodentate ligand. The pendant
phenyls and both coordinated and non-coordinated 4,2′:6′,4′′-tpy units engage in efficient π-stacking
interactions. However, we are unable to identify whether the isolation of the mononuclear complex is
preferred over network assembly, or is a serendipitous result. Further systematic investigations are
needed in order to delineate the assembly algorithms in these systems.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4360/10/12/
1369/s1, Figure S1: Powder diffraction data for the bulk sample of {[Co(NCS)2(4)]·1.6H2O·1.2C6H4Cl2}n.
Figures S2–S4: High resolution electrospray (HR-ESI) mass spectra of 3, 4 and 5. Figures S5–S10: 1H and 13C NMR
spectra of 3, 4 and 5. Figure S11: Overlay of {Co4(3)} and {Co4(1d)} units in {[Co(NCS)2(3)]·0.8C6H4Cl2}n and
{[Co(NCS)2(1d)]·2C6H4Cl2}n. Figure S12: Topological representation of the 3D net in {[Co(NCS)2(3)]·0.8C6H4Cl2}n.
Figure S13: Close contacts involving the 1,2-dichlorobenzene molecule in {[Co(NCS)2(4)]·1.6H2O·1.2C6H4Cl2}n.
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