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Abstract: Fluoranthene (FT) is a polycyclic aromatic hydrocarbon (PAH), consisting of naphthalene
and benzene rings connected by a five-member ring. It is widespread in the environment.
The hydrophobicity of FT limits its availability for biological uptake and degradation. In this study,
hydroxypropyl β-cyclodextrin oligomers (HP-β-CD-ol) were synthesized with epichlorohydrin (EP),
while the solubility enhancement of FT by HP-β-CD-ol was investigated in water. The synthesized
HP-β-CD-ol was characterized by MALDI-TOF mass spectrometry (MS), 1H NMR, and 13C
NMR spectroscopy. The solubility of FT increased 178-fold due to the complex formation
with HP-β-CD oligomers. The inclusion complexes of FT/HP-β-CD-ol were analyzed using
Fourier-Transform Infrared (FT-IR), Differential Scanning Calorimetry (DSC), Scanning Electron
Microscope (SEM), and Nuclear Overhauser Effect Spectroscopy Nuclear magnetic resonance
(NOESY NMR) spectroscopy. On the basis of these results, HP-β-CD-ol is recommended as a
potential solubilizer for the development of PAH removal systems.
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1. Introduction

Polycyclic aromatic hydrocarbons (PAHs) have caused considerable concern as environmental
organic pollutants that are highly carcinogenic or mutagenic. They are prevalent in air, soil,
and water [1]. PAHs remain in the environment for a long time due to their high persistence,
without degradation. PAHs are hydrophobic organic compounds that are composed of two or more
aromatic rings. They are found in coal and tar, and are generated by the incomplete combustion of
organic materials such as fuel and biomass [2]. PAHs have chemical stability, extremely low water
solubility and low bioavailability [3]. Therefore, there is a limit to the removal of PAHs from soil and
waste water. Various solubility enhancing agents, such as surfactants [4] and co-solvents [5], have been
used to improve the desorption efficiency of PAH from soil, which have enhanced the mobility and
bioavailability of PAHs in the aqueous phase [6]. However, it can be difficult to remove, while being
toxic to the resident microbial populations and humans [6].

Fluoranthene (FT) is composed of four aromatic rings and is a member of the most abundant
high-molecular-weight PAHs of various xenobiotics. FT has been identified in the atmosphere, on some
surfaces, in drinking and waste-water, and charcoal grilled foods [7]. FT can be absorbed through the
skin following dermal exposure [8]. It can also be absorbed into the gastrointestinal tract and lungs [9].
FT has been classified as a Group 3 carcinogen by the International Cancer Research Agency [10],

Polymers 2018, 10, 111; doi:10.3390/polym10020111 www.mdpi.com/journal/polymers

http://www.mdpi.com/journal/polymers
http://www.mdpi.com
http://dx.doi.org/10.3390/polym10020111
http://www.mdpi.com/journal/polymers


Polymers 2018, 10, 111 2 of 12

since it is a genotoxic [11] and mutagenic carcinogen [12]. However, it has high hydrophobicity and
is not readily accessible for biological absorption or degradation, thus increasing its persistence in
the environment.

β-cyclodextrin (β-CD) has been proposed as a substitute to enhance the water dispersion
of hydrophobic compounds through inclusion complexes. β-CD is a cyclic heptasaccharide,
containing α-(1,4) linked glucose units, and is produced by bacterial enzymes from starch. β-CD has
unique properties—The inner cavity is hydrophobic, while the outer is hydrophilic [13]. Based on
the structure, they are capable of forming inclusion complexes with hydrophobic compounds,
which non-covalently interact with the hydrophobic interior cavity of β-CD [13,14]. Furthermore,
the solubility and bioavailability of hydrophobic materials can be improved through inclusion
complexes with β-CD [15,16]. Chemical modification techniques have been introduced to extend the
application of natural β-CD. Their functional hydroxyl groups are modified with specific substituents
by chemical derivatization [17]. However, the oligomer types of β-CD or β-CD derivatives have not
been significantly studied so far, with respect to the effective complexation with target molecules.
In particular, hydroxypropyl β-cyclodextrin HP-β-CD is biocompatible, with better aqueous solubility
(>60%) than the original β-CD (1.8%) [18,19]. In this study, HP β-CD oligomer was synthesized
through a 1-step reaction using epichlorohydrin. Subsequently, its effective complexation with FT
was studied.

In this study, we proposed a chemically modified epichlorohydrin cross-linked hydroxypro
pyl-β-cyclodextrin oligomer (HP-β-CD-ol) as a novel solubilizer for its ability to enhance the aqueous
solubility and bioremediation of FT. The synthesized HP-β-CD-ol was analyzed by MALDI-TOF
MS, 1H NMR, and 13C NMR spectroscopy. The improved solubility of FT, using the modified β-CD
oligomer thus synthesized, was compared with β-CD derivatives. The apparent constant and solubility
efficiency of FT/HP-β-CD-ol were determined using the phase solubility method. The formation of
the inclusion complex was characterized by FT-IR, DSC and SEM. NOESY was studied to predict the
three-dimensional structure of the inclusion complex between HP-β-CD-ol and FT.

2. Materials and Methods

2.1. Chemicals

FT was purchased from Wacker-Chemie (Lyon, France), while HP-β-CD (MW 1540) was
purchased from Sigma-Aldrich chemical Co. (St. Louis, MO, USA). HPLC grade of Epichlorohydrin
(EP) and methanol (MeOH) were obtained from Fisher Scientific (Illkirch, France). Deionized water was
produced with a Milli-Q system from Millipore (Saint-Quentin-en-Yvelines, France). Other chemicals
used in the study were of analytical grade.

2.2. Synthesis of HP-β-CD-ol

The EP cross-linked HP-β-CD-ol was synthesized with a slight modification of the previously
reported method [20]. Firstly, the HP-β-CD was dissolved in NaOH solution (5%, w/w) completely by
magnetically stirring at 25 ◦C for 24 h. EP was added dropwise to the HP-β-CD solution. The molar
ratio of HP-β-CD to EP was 1:10. The mixture was heated to 60 ◦C and stirred at 600 rpm for 5 h.
The reaction was terminated by neutralization with 3 N HCl. For the removal of HP-β-CD monomer
derivatives, the reaction mixture was applied on the Bio-Gel P4 column. The separated HP-β-CD-ol
was identified by MALDI-TOF mass spectrometry (Applied Biosystems, Foster city, CA, USA) and
NMR spectroscopy (Bruker GmbH, Karlsruhe, Germany).
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2.3. HP-β-CD-ol Characterization

2.3.1. MALDI-TOF MS

The sample solution contained 1 µL of HP-β-CD-ol and 1 µL of 2,5-dihydroxybenzoic acid (DHB)
solution (10 mg/mL DHB/H2O solution) as a matrix was deposited on the 96 well plate using the
dried droplet method. The dried sample was analyzed using the AB SCIEX MALDI TOF-TOF 5800
System (Applied Biosystems, Foster city, CA, USA). All mass spectra were acquired in positive linear
mode with an accelerating voltage of 20 kV in the reflector mode. In addition, each spectrum is an
Average of 500 laser shots.

2.3.2. 1H NMR and 13C NMR Spectroscopy

1H NMR and 13C NMR spectroscopy were carried out using a Bruker Avance 500 MHz
spectrometer (Bruker GmbH, Karlsruhe, Germany) at room temperature by dissolving 5 mM of
the samples in 600 µL of deuterated water (D2O, 99.96%).

2.4. Solubility Enhancement Test

β-CD, randomly dimethyl β-cyclodextrin (RM-β-CD), sulfobutyl ether β-cyclodextrin
(SBE-β-CD), HP-β-CD, and HP-β-CD-ol were used to test the solubility of FT in water. A fixed
amount (200 µg) of FT was added to 1 mL aqueous solution of β-CD derivatives and HP-β-CD-ol
(1 mM). Subsequently, the mixture was stirred at 400 rpm for 24 h at 25 ◦C in the dark. The samples
were filtered through a PTFE 0.20 µm filter (Advantec MFS, CA, USA) and measured with a UV-Vis
spectrophotometer (UV 2450, Shimadzu Corporation, Kyoto, Japan).

2.5. Phase Solubility Analysis

Phase solubility study was performed using the previously reported procedure by Higuchi and
Conners [21]. The aqueous solution of HP-β-CD and HP-β-CD-ol was prepared at a concentration
of 0, 0.02, 0.05, 0.09, 0.19, 0.38, 0.75 and 1.5 mM. Excess FT (200 µg) was added to 1 mL of various
concentrations of HP-β-CD and HP-β-CD-ol solution in capped 5 mL vials. Subsequently, the mixtures
were magnetically stirred at 400 rpm for 24 h at 25 ◦C in the dark. After equilibrium was achieved,
the samples were filtered through a PTFE 0.20 µm filter (Advantec MFS, CA, USA). Concentrations of
dissolved FT were measured at 276 nm using a UV-Vis spectrophotometer. The apparent binding
constants (Km:n) of the FT/HP-β-CD derivative complexes were calculated based on the phase
solubility diagrams. The binding constants (Km:n) for the formation of the inclusion complexes
can be expressed as:

K1:1 =
slope1

So(1 − slope1)
(1)

K2:1 =
slope2
K1:1So

(2)

[S]t = So + K1:1So[Host] + K1:1K2:1So[Host]2 (3)

where S0 is the equilibrium solubility of FT in the absence of HP-β-CD-ol. The solubilization
efficiency (SE) was obtained using the ratio between the concentration of solubilized FT and the
total concentration of FT added:

SE =
Se

S0
(4)

where Se is the concentration of FT solubilized by the solubilizer and S0 is concentration of FT in
absence of solubilizer.
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2.6. Method of Sample Preparation

2.6.1. Preparation of the Physical Mixture (PM)

The PM was prepared by simple homogenization method. FT powder and lyophilized HP-β-CD-ol
powder were grinded in a molar ratio of 1:1 using a mortar and pestle.

2.6.2. Preparation of the Inclusion Complex (IC)

The IC of FT with HP-β-CD-ol was prepared by the freeze-drying method. Equimolar concentrations
of FT and HP-β-CD-ol were added in distilled water, subsequently being stirred at 25 ◦C in the dark.
After 24 h, the samples were filtered to remove uncomplexed FT. The filtered solution was freeze-dried to
obtained solid complexes for characterization.

2.7. Inclusion Complex Characterization

2.7.1. Fourier-Transform Infrared (FT-IR)

FT-IR spectra of FT, HP-β-CD-ol, FT/HP-β-CD-ol PM, and FT/HP-β-CD-ol IC were obtained
using Nicolet 6700 (Thermo Scientific, Waltham, MA, USA) with attenuated total reflection (ATR)
technique. The scanning range was 650–4000 cm−1, while the resolution was set to 8 cm−1.

2.7.2. Differential Scanning Calorimetry (DSC)

DSC analyses of FT, HP-β-CD-ol, PM, and IC were recorded using the Discovery DSC
(TA Instrument, New Castle, DE, USA). Samples were prepared in aluminum pans and scanned
in the temperature range of 50–300 ◦C. The scanning rate was 10 ◦C/min under a nitrogen flow of
100 mL/min.

2.7.3. Scanning Electron Microscope (SEM)

The morphology of FT, HP-β-CD-ol, PM, and IC were obtained by Hitachi S-4700 (Hitachi
High-Technologies Corporation, Tokyo, Japan). The samples were fixed on a brass stub using
double-sided adhesive carbon tape. They were coated with a thin layer of gold for 30 s to become
electrically conductive.

2.7.4. Nuclear Overhauser Effect Spectroscopy (NOESY)

The 2D NMR experiment of FT/HP-β-CD-ol IC was performed with a Bruker Avance 500 MHz
spectrometer (Bruker GmbH, Karlsruhe, Germany) in D2O at 25 ◦C.

3. Results and Discussion

3.1. Synthesis of Hydroxypropyl β-Cyclodextrin Oligomer (HP-β-CD-ol)

HP-β-CD-ol was synthesized using EP. The synthesized products were separated into oligomers
and monomers by size exclusion column chromatography. The separated HP-β-CD-ol was analyzed
with MALDI-TOF MS, 1H NMR, 13C NMR, and HSQC spectroscopy. The chemical structures of EP
crosslinked HP-β-CD dimers of oligomers are shown in Figure 1. Since EP was used as a cross-linker,
the reaction products have glyceryl bridges and glycerol tails of various lengths. The mass range of
HP-β-CD-ol can be observed in the MALDI-TOF mass spectrum (Figure 2). Although the oligomer
contains the HP-β-CD dimer, trimer, and tetramer, the dimer was the major product. The average
molecular weight (Mn) of the oligomer was 4202 Da. The structure of HP-β-CD-ol was also analyzed
using 1H NMR and 13C NMR spectroscopy (Figure 3). The –CH and –CH2 protons of HP-β-CD
appeared in the region of 3.5–4.5 ppm, except for the H1 proton. The –CH3 proton was observed
at δ 1.12 ppm. The –CH2–CHOH–CH2– protons of the linker appeared at δ 4.09 (H9), 4.04 (H10),
and 3.51 (H11) ppm, respectively. In 13C NMR spectrum, the methyl of the hydroxypropyl group signal
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was assigned at 18.3 ppm, while the glyceryl group protons were assigned at 76.8 (H9), 66.7 (H10) and
62.7 (H11) ppm. These results indicated that the EP residue was successfully substituted at HP-β-CD.
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3.2. Solubility Enhancement Test

Solubility enhancement test was conducted as described in the experimental Section 2.4.
To compare the FT solubilization capacity of different types of β-CD derivatives, the same amount
(200 µg) of FT was equilibrated in the presence of 1 mM synthetic HP-β-CD-ol and other β-CD
derivatives (SBE-β-CD, RM-β-CD, HP-β-CD, and β-CD) aqueous solution (1 mL), respectively. Figure 4
shows the UV absorption spectrum of the dissolved FT. The result indicated that HP-β-CD-ol highly
enhanced the aqueous solubility of FT compared to the other β-CD derivative monomers. The amount
of solubility enhancement was in the order of HP-β-CD-ol > SBE-β-CD > HP-β-CD ≥ RM-β-CD >
β-CD > pure FT.
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3.3. Phase Solubility Tests

Phase solubility tests are a commonly used method to determine the effect of cyclodextrin
complexation on the solubility of guest molecules (Figure 5). Phase solubility studies of FT were carried
out with HP-β-CD and HP-β-CD-ol using the Higuchi and Connors method [22]. The solubility of
FT linearly increased as a function of the HP-β-CD concentration. The diagram of HP-β-CD shows
AL-type slope. It indicates that the FT/HP-β-CD complexes were 1:1 molecular complexes. On the
other hand, HP-β-CD-ol shows the Ap type slope in the diagram, which suggests that FT/HP-β-CD-ol
complexes co-exist at 1:1 and 2:1. The binding constants of FT with HP-β-CD and HP-β-CD-ol were
obtained by Equations (1) and (2), while the solubility efficiency was obtained using Equation (4).
The stability constant (Kc) and solubilization efficiency (SE) thus calculated are listed in Table 1.
The stability constant (Kc) is an indication of the binding strength between FT and CDs. HP-β-CD
had a Kc of 6004 M−1. The FT/HP-β-CD complexes forming both, 1:1 and 2:1 complexes, had Kc
values of 159,504 and 2195 M−1, respectively. Considering the binding constants, the 1:1 complex is
more dominant and stable than the 2:1 complex. The intrinsic water solubility of FT is also known as
1.28 µM at 25 ◦C [23]. The solubility of FT in the presence of 1.5 mM HP-β-CD was 8.3 times higher
than that of the original FT. The solubility of FT increased up to 178.3 times by complexation with
1.5 mM HP-β-CD-ol. Thus, the oligomerization of HP-β-CD was highly effective for the solubilization
of FT via inclusion complexes. HP-β-CD-ol can provide additional recognition sites due to the glyceryl
bridges, glycerol tails, and additional cavity. In particular, the epichlorohydrin reacted HP-β-CD-ol
has the hyper-branched structure made of different lengthened tails or only 2-hydroxypropyl ether
segments, which would be favorable for the superior supramolecular complexation.
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Table 1. Binding constants and solubility efficiencies of FT complexes with HP-β-CD-ol.

Apparent stability constants, Km:n (M−1)
Solubilization efficiency (SE)

K(1:1) K(1:2)

HP-β-CD 6004 8.3
HP-β-CD-ol 159,504 2195 178.3

3.4. FT-IR Spectroscopic Analysis

The physico-chemical properties of FT changed after the inclusion complexation. FT-IR
spectroscopy, DSC, and SEM were analyzed to confirm the successful formation of the inclusion
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complexes. The vibrational changes of FT/HP-β-CD-ol were monitored by FT-IR spectroscopy.
The chemical interaction between the two molecules shows a recognizable change in intensity,
shape, and peak shift in the infrared spectrum of the composite [24]. The PM of FT/HP-β-CD
oligomer was used for comparison with the FT/HP-β-CD oligomer IC. The FT-IR spectra of FT (black),
HP-β-CD-ol (green), PM (blue), and IC (red) are shown in Figure 6. The FT IR spectrum showed
the characteristic absorbance from 1650 to 1420 cm−1 corresponding to the C=C aromatic stretches.
The =C–H aromatic out-of-plane banding occurs at from 900 to 690 cm−1. The peak at 3354 cm−1

corresponds to the –OH vibration in HP-β-CD-ol. The C-H stretching vibration bands appeared at
2930 cm−1. The CH2 stretching vibration and CH3 stretching vibration were detected at 1408 cm−1 and
1367 cm−1 respectively. Meanwhile, the C–O stretching vibration and C–O–C vibration were shown
at 1022 and 1080 cm−1. The FT-IR spectrum of the PM contains absorption peaks with a reduced
intensity at the same sites as the pure FT. Furthermore, HP-β-CD-ol peaks are also seen at the same
positions. This can be due to the simple addition of FT and HP-β-CD-ol. However, the FT-specific
absorption peaks disappear in the complex product. This indicates that the physical properties of FT
were modified through intensive molecular interactions within the inclusion complex. This confirms
the complex formation of FT and HP-β-CD-ol. All the observed IR absorption peaks are presented in
Table 2.
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Figure 6. FT-IR spectra FT (black), HP-β-CD-ol (orange), PM (green), and IC (red). (a) Spectra were
acquired between 4000 and 650 cm−1; (b) Spectra were acquired between 1700 and 650 cm−1.

Table 2. FT-IR absorption bands for FT, HP-β-CD-ol, PM, and IC.

FT HP-β-CD oligomer Physical mixture (PM) Inclusion complex (IC)

O–H 3354 3356 3356
C–H 2931 2930 2926 2930
CH2 1408 1409 1408
CH3 1367 1372 1366

C–O–C 1080 1081 1080
C–O 1022 1027 1024
≡C–H 3348
=C–H 3050 3050

C=C

1650
1562
1474
1452
1438
1420

1650
1561
1452
1438
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3.5. DSC Analysis

DSC analysis characterizes the interaction between the host and guest molecules in a solid
state [25]. Figure 7 shows the DSC thermogram of FT, HP-β-CD-ol, PM, and IC. FT has a sharp
endothermic peak at 112.1 ◦C, which was its melting point. HP-β-CD-ol has an endothermic peak
at 237.9 ◦C. Similar endothermic peaks of FT and HP-β-CD oligomer were also detected in the DSC
curve of PM. However, in the DSC curve of IC, the endothermic peak of FT disappears, while that of
CD is slightly shifted to 241.4 ◦C. These results suggest that the formation of complexes containing FT
and HP-β-CD-ol induces a change in the crystal state of FT.
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3.6. SEM Analysis

SEM is used to characterize the morphology changes of inclusion complexes [26,27]. The SEM
images of FT, HP-β-CD-ol, PM, and IC are shown in Figure 8. A crystalline particle shape appeared on
FT, while a thin plate shape appeared on HP-β-CD. PM shows a mixed shape with FT and HP-β-CD-ol.
However, IC shows an amorphous form, unlike the FT and HP-β-CD oligomers. This type of change
may be due to the improved dispersion of FT using HP-β-CD-ol. This result confirms the formation of
FT/HP-β-CD-ol inclusion complexes.
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3.7. NOESY Spectroscopy of the FT/HP-β-CD Oligomer Complexes

The 2D NMR spectroscopy is valuable for evaluating the non-covalent interactions at a molecular
level in inclusion complex [28]. The NOE peaks appear when two protons are closely located within
a distance of 5 Å [29]. The NOESY spectrum of FT/HP-β-CD-ol inclusion complex is shown in
Figure 9a. The NOE peaks provide complex model information, from the correlation between the FT
and HP-β-CD-ol. Clear cross-peaks were observed between the H-c/H-b/H-e/H-d/H-a protons of
FT at 8.23, 8.22/8.12/8.09, 8.07/7.88, 7.87, and 7.85/7.50 ppm, and the inner cavity H-3/H-5 protons
of HP-β-CD-ol at 4.04/3.88 ppm. H-b and H-a protons strongly interacted with the H-5 protons of
HP-β-CD. These results indicate that the benzene ring of FT was located in or near the inner cavity
of the HP-β-CD-ol. Furthermore, the inner cavity size (6–6.5 Å) of β-CD is suitable for the benzene
size (5 Å) [30]. H-c/H-d/H-e protons of FT were interestingly correlated with the H-12 proton of
HP-β-CD-ol at 1.17 ppm. However, there are no crosses peaks between H-b/H-a of FT and H-12 of
HP-β-CD-ol. These results suggest that the naphthalene ring of FT interacts with the hydroxylpropyl
moieties of HP-β-CD-ol. The epichlorohydrin hydroxypropyl moiety might assist the FT in entering
and immobilizing the inner cavity of the β-CD.
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Figure 9. (a) NOESY spectrum of FT/HP-β-CD-ol IC in D2O solvent with a mixing time of 500 ms;
(b) Proposed model of FT/HP-β-CD-ol IC.

Based on these analyses, we deduced that the benzene ring of FT merged into the HP-β-CD-ol
cavity from the wide side, similar to the results of the 1:1 and 1:2 stoichiometry suggested by the phase
solubility study. The expected model of FT/HP-β-CD-ol IC is illustrated in Figure 9b. A 1:1 inclusion
complex is the dominant type, where a single guest molecule is complexed with a single cyclodextrin.

4. Conclusions

FT is produced by the incomplete combustion of organic matter. Its removal from the environment
is extremely difficult due to its intrinsic hydrophobic nature. Here, we aimed to solubilize the PAHs
using complexation technology in water. The aqueous solubility of FT was successfully enhanced by
complexation with the synthesized Epichlorohydrin HP-β-CD-ol. The formation of complexes was
analyzed using FT-IR, DSC, FE-SEM, and NMR spectroscopy. On the basis of these results, HP-β-CD-ol
is suggested as a potential material for the development of PAH removal systems.
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