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Abstract: The aqueous-based Zn-ammine complex solutions represent one of the most promising
routes to obtain the ZnO electron transport layer (ETL) at a low temperature in inverted organic
solar cells (OSCs). However, to dope the ZnO film processed from the Zn-ammine complex solutions
is difficult since the introduction of metal ions into the Zn-ammine complex is a nontrivial process
as ammonium hydroxide tends to precipitate metal salts due to acid-base neutralization reactions.
In this paper, we investigate the inverted OSCs with Al-doped-ZnO ETL made by immersion of
metallic Al into the Zn-ammine precursor solution. The effects of ZnO layer with different immersion
time of Al on film properties and solar cell performance have been studied. The results show that,
with the Al-doped-ZnO ETL, an improvement of the device performance could be obtained compared
with the device with the un-doped ZnO ETL. The improved device performance is attributed to the
enhancement of charge carrier mobility leading to a decreased charge carrier recombination and
improved charge collection efficiency. The fabricated thin film transistors with the same ZnO or AZO
films confirm the improved electrical characteristics of the Al doped ZnO film.
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1. Introduction

Organic solar cells (OSCs) based on composites of conjugated polymers (electron donor) and
fullerene derivatives (electron acceptor) have attracted more and more attention due to their potential
of low cost, light-weight physical features and commercial large area production [1–7]. With persistent
efforts, the power conversion efficiency (PCE) of OSCs has been greatly improved to be above 10% in
the past decade [2,8–19]. OSCs are mainly fabricated with two structures: the conventional structure
and the inverted structure. In a typical conventional structure, the indium tin oxide (ITO) and
the low-work-function metal (e.g., Al, Ca) are usually used as the transparent anode and opaque
cathode, and an active layer (donor–accepter phase-separated blend) is sandwiched between the
anode and cathode. However, the long-term stability is a problem because of the degradation of
a low-work-function cathode by oxygen and water vapor and the corrosion of ITO by acidic and
hygroscopic poly(3,4-ethylenedioxithiophene):poly(styrene sulfonate) (PEDOT:PSS), which is used as
the hole transport layer [20–23]. To solve this problem, inverted OSCs have been developed with an
improvement in stability and the capability for the roll-to-roll fabrication process. Compared with the
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conventional structure, inverted OSCs utilize ITO as the cathode and air-stable high-work-function
metals like Ag as the anode [24–27].

In inverted OSCs, an n-type mental oxide as the electron transport layer (ETL) is introduced
between the ITO cathode and the active layer instead of PEDOT:PSS, which improves the device
stability. N-type metal oxides such as aluminum oxide (Al2O3), titanium oxide (TiOx), and zinc
oxide (ZnO) have been extensively investigated [28–33]. In particular, ZnO has been viewed as a
promising candidate as a result of several advantages such as low-cost, high transparency in visible
region and stable oxidation. To obtain a high performance inverted OSC, a high conductivity ETL is
required. However, the intrinsic conductivity of the ZnO film processed at a low temperature is still low.
Therefore, developing a high performance ZnO thin film is a key issue. As reported previously [34–38],
the doped ZnO film is found with better properties such as higher charge carrier mobility. In solar
cells, the LiF doped and Li doped ZnO have been reported, and both of them were shown to enhance
the charge collection efficiency and reduce the charge carrier recombination, resulting in a higher
photovoltaic performance [34,35]. In the meantime, the aluminum doped and other metals’ (e.g., Ba,
Mg and Sr) doped ZnO films have been introduced in organic light-emitting diodes, leading to higher
charge carrier mobility [36–38].

The aqueous-based Zn-ammine complex solutions represent one of the most promising routes to
obtain the ZnO film at a low temperature due to the extremely low decomposition temperature [39–42].
This makes it possible to deposition the ZnO thin-film onto flexible substrates [43,44]. However, very
different from the sol-gel method processed ZnO (where to dope the ZnO is relatively easy), to dope
the ZnO film processed from the Zn-ammine complex solutions is difficult since the introduction of
metal ions into the Zn-ammine complex is a nontrivial process as ammonium hydroxide tends to
precipitate metal salts due to acid–base neutralization reaction. Recently, it has been shown that the
immersion of metallic Al into the Zn-ammine precursor solution for different amounts of time is an
easy and efficient way to dope the ZnO film, which has been used in thin film transistors (TFTs) [45].
However, the Al doped ZnO (AZO) processed by this method has never been used in inverted OSCs.

In this paper, we investigate the inverted OSCs based on the poly(3-hexylthiophene): phenyl-
C61-butyric acid methyl ester (P3HT:PC61BM) blend system and the poly({4,8-bis[(2-ethylhexyl)oxy]
benzo[1,2-b:4,5-b′]dithiophene-2,6-diyl}{3-fluoro-2-[(2-ethylhexy)carbonyl]thieno[3,4-b]thiophenediyl}):
[6,6]-phenyl-C71-butyric acid methyl ester (PTB-7:PC71BM) blend system with the immersion of
metallic Al into the Zn-ammine precursor solution processed AZO as the ETL. The effects of ZnO
layer with different immersion times of Al on film properties and solar cell device performance
have been studied. The results show that, when Al has an appropriate immersion time in the ZnO
solution, an improvement of the device performance could be obtained compared with the device
with the un-doped ZnO ETL because of the enhancement of charge carrier mobility leading to a
decreased charge carrier recombination and improved charge collection efficiency. We also fabricate
and investigate TFTs with the ZnO film and the results confirm the improved electrical characteristics
of the Al doped ZnO film.

2. Materials and Methods

2.1. Materials

All the materials, zinc oxide (99.9%, Sigma-Aldrich, Saint Louis, MI, USA), ammonia
solution (≥28%, NH3 in H2O, Aladdin, Hamden, CT, USA), poly(3-hexylthiophene) (P3HT, BASF),
phenyl-C61-butyric acid methyl ester (PC61BM, 98%, Nano-C, Westwood, MA, USA), poly({4,8-bis[(2-
ethylhexyl)oxy]benzo[1,2-b:4,5-b′]dithiophene-2,6-diyl}{3-fluoro-2-[(2-ethylhexy)carbonyl]thieno[3,4-b]
thiophenediyl}) (PTB-7, 1-material), [6,6]-phenyl-C71-butyric acid methyl ester (PC71BM, 99%,
Nano-C), 1,8-diiodooctane (DIO, 98%, Sigma-Aldrich), 1,2-dichlorobenzene (99%, Sigma-Aldrich),
chlorobenzene (99.8%, Sigma-Aldrich), molybdenum oxide (MoO3, 99.98%, Sigma-Aldrich) are used
as received without further purification.
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For the low-temperature aqueous solution processing, ZnO solution was obtained by ZnO powder
directly dissolved in ammonia solution (8 mg/mL). For Al-doped-ZnO (AZO), Al was added into well
prepared ZnO solution with different immersion times.

2.2. Film Formation and Inverted Solar Cells Fabrication

Inverted OSCs were fabricated on pre-patterned ITO glass substrates (around 2 × 2.5 cm2 in size,
10 Ω per square, surface roughness of 2–3 nm). The patterned ITO glass substrates were sequentially
cleaned with detergent, de-ionized water, acetone, alcohol and isopropyl alcohol in an ultrasonic bath
at 50 ◦C for 20 min, respectively. Then, the cleaned ITO substrates were dried with nitrogen and treated
in a UV ozone oven for 15 min. After that, on the top of the ITO substrates, the ZnO solution was
spin-coated at 3000 rpm for 45 s, and thermally annealed in the baking oven at 150 ◦C for 30 min.
Subsequently, the substrates were transferred into a nitrogen-filled glovebox. The active layer solution
used P3HT and PC61BM blend with a weight ratio of 1:1 in 1,2-dichlorobenzene(1,2-DCB) (20 mg/mL).
The blend solution was spin-coated on the ZnO layer at 800 rpm for 120 s, and the active layer was
annealed at 150 ◦C for 15 min. Finally, the devices were finished by thermal evaporation of 8 nm MoO3

layer and 80 nm Ag electrode. The device area is 7 mm2.
For OSCs based on the PTB-7:PC71BM blend system, the same device fabrication procedures were

used except the spin coating of the PTB-7 and PC71BM blend (weight ratio of 2:3 in chlorobenzene
with 3 vol % DIO) at 1000 rpm for 60 s, and the following dried in the shade at least for 5 h.

The TFTs were fabricated with the same ZnO solution used in solar cells. Before the film
fabrication, the cleaned Si/SiO2 (100 nm) wafer should be treated with O2 plasma for 10 min to
remove the surface residues and facilitate the thin film formation. The ZnO solution was spin-coated
on the wafer at 3000 rpm for 30 s, annealed at 300 ◦C for 5 min, and then spin-coated a second time
with the same condition. Finally, a 100 nm Al layer was deposited on the top of ZnO to form the source
and drain contacts.

2.3. Device Characterization

The photovoltaic performances of OSCs were measured by using a Keithley 2400 source meter
(Tektronix, Inc., OR, USA)under a simulated AM 1.5G sunlight from XES-70S1 solar simulator (XES-301,
SEN-EI Electric. Co. Ltd, Osaka, Japan) with an intensity of 100 mW/cm2. The system was calibrated
against a National Renewable Energy Laboratory (NREL) certified silicon reference solar cell. Incident
photo-to-electron conversion efficiency (IPCE) was measured under short-circuit conditions by a solar
cell quantum efficiencies system (SCS10-X150, Zolix instrument. Co. Ltd., Beijing, China) with a
monochromatic light from an arc lamp.

The surface morphologies of the ZnO films and the active layers deposited on different ZnO films
were characterized by an atomic force microscopy (AFM, Bruker Dimension Icon, Bruker, Karlsruhe,
Germany). The UV-visible absorption spectra were recorded with an UV-visible spectrophotometer
(Perkin-Elmer Lambda 950, Waltham, MA, USA). All of the above measurements were performed
under ambient atmosphere at room temperature without encapsulation.

3. Results and Discussion

The schematic device structure and the energy level diagram of the component materials of the
inverted P3HT:PC61BM OSCs are shown in Figure 1a,b. In this paper, we use the inverted device
structure of ITO/ZnO(AZO)/active layer/MoO3/Ag. From Figure 1b, the conduction band minimum
of ZnO is approximately 4.0 eV, which is closed to the lowest unoccupied molecular orbital (LUMO) of
PC61BM, leading to a facilitated electron transport to ITO cathode, since the valance band maximum of
ZnO is anticipated at 7.4 eV, which will effectively block the hole from the highest occupied molecular
orbital (HOMO) of P3HT.
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where J0 is the saturation current, Jp the photocurrent, Rs the series resistance, Rsh the shunt resistance, 
n the ideality factor, q the electron charge, kB the Boltzmann constant, and T the temperature. By using 
Equation (1) with our proposed explicit analytic expression method [46], the experimental data were 
extracted and these parameters could rebuild the I-V curves of the OSCs as shown in Figure 2, which 
confirmed the validity of the extracted parameters. The photovoltaic performance parameters of the 
best devices are summarized in Table 1. The device based on the pure ZnO buffer layer shows a short-
circuit current density (JSC) of 6.95 mA/cm2 and a fill factor (FF) of 63.38%. With Al immersion time 
form 4 min to 16 min, both of them have an obvious increase. The increased FF may be due to the 
reduced charge recombination and increased shunt resistance (Rsh). In particular, when the Al 
immersion time is 8 min, the device shows the optimized performance with JSC of 7.21 mA/cm2 and 
FF of 68.21%. Therefore, PCE of the device increases from 2.79% to 3.09%. However, when the 
immersion time is increased to 16 min, there shows a slight decrease in JSC, FF and PCE. Since the JSC 
value is related to the properties of the ETL. It is inferred that when the Al immersion time is short, 
the doped Al could improve the charge carrier mobility and thus enhance the device performance. 
However, when the Al immersion time is long, the excess Al will become the scattering center, which 
will partly decrease the charge carrier mobility. This will be confirmed by the following charge carrier 
mobility measurement. Figure 3 shows the statistical results of the dependence of open circuit voltage 
(VOC), FF, JSC and PCE on the immersion time of Al in the ZnO solution. From the statistical results, it 
could be seen that the device with the Al immersion time at 8 min shows the best performance, which 
confirms the validity of the above discussion. From Figure 3, it is found that VOC slightly increases 
after doping Al into the ZnO solution from 4 min to 16 min. It corresponds to the previous report that 
VOC of the device increases with the increase of Al doping amount due to the Fermi energy shift of 
AZO film [47]. Meanwhile, VOC is related to the photon energy loss. The smaller photon energy loss 
occurred in the device may be caused by the reduced interface related recombination or energy loss, 
which will result in a higher VOC.  

Figure 1. (a) Schematic poly(3-hexylthiophene): phenyl-C61-butyric acid methyl ester (P3HT:PC61BM)
device structure used in this paper. The thickness of each layer is not in scale with the real thickness for
clarity; (b) Schematic illustration of the energy levels of the component materials of the studied devices.

Figure 2 illustrates the current density vs. voltage (J-V) characteristics of the inverted OSCs
introducing the ZnO buffer layer un-doped and doped with different amounts of Al by controlling
different immersion times. The parameters of OSCs are extracted according to the Shockley equation:

J = J0(exp(
q(V − Rs J)

nKBT
)− 1) +

V − Rs J
Rsh

− Jp, (1)

where J0 is the saturation current, Jp the photocurrent, Rs the series resistance, Rsh the shunt resistance,
n the ideality factor, q the electron charge, kB the Boltzmann constant, and T the temperature. By
using Equation (1) with our proposed explicit analytic expression method [46], the experimental data
were extracted and these parameters could rebuild the I-V curves of the OSCs as shown in Figure 2,
which confirmed the validity of the extracted parameters. The photovoltaic performance parameters
of the best devices are summarized in Table 1. The device based on the pure ZnO buffer layer shows a
short-circuit current density (JSC) of 6.95 mA/cm2 and a fill factor (FF) of 63.38%. With Al immersion
time form 4 min to 16 min, both of them have an obvious increase. The increased FF may be due
to the reduced charge recombination and increased shunt resistance (Rsh). In particular, when the
Al immersion time is 8 min, the device shows the optimized performance with JSC of 7.21 mA/cm2

and FF of 68.21%. Therefore, PCE of the device increases from 2.79% to 3.09%. However, when the
immersion time is increased to 16 min, there shows a slight decrease in JSC, FF and PCE. Since the JSC

value is related to the properties of the ETL. It is inferred that when the Al immersion time is short,
the doped Al could improve the charge carrier mobility and thus enhance the device performance.
However, when the Al immersion time is long, the excess Al will become the scattering center, which
will partly decrease the charge carrier mobility. This will be confirmed by the following charge carrier
mobility measurement. Figure 3 shows the statistical results of the dependence of open circuit voltage
(VOC), FF, JSC and PCE on the immersion time of Al in the ZnO solution. From the statistical results, it
could be seen that the device with the Al immersion time at 8 min shows the best performance, which
confirms the validity of the above discussion. From Figure 3, it is found that VOC slightly increases
after doping Al into the ZnO solution from 4 min to 16 min. It corresponds to the previous report that
VOC of the device increases with the increase of Al doping amount due to the Fermi energy shift of
AZO film [47]. Meanwhile, VOC is related to the photon energy loss. The smaller photon energy loss
occurred in the device may be caused by the reduced interface related recombination or energy loss,
which will result in a higher VOC.
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Figure 2. J-V characteristics of the P3HT:PC61BM devices introducing the ZnO film without and with
the different immersion times of Al doping.

Table 1. Photovoltaic parameters of best inverted structure P3HT:PC61BM solar cells with ZnO or
Al-doped-ZnO (AZO) as the electron transport layer ETL.

Device VOC (V) JSC (mA/cm2) FF (%) PCE (%)

ZnO 0.634 6.95 63.38 2.79
AZO 4 min 0.628 7.13 64.21 2.88
AZO 8 min 0.628 7.21 68.21 3.09

AZO 16 min 0.628 7.11 66.94 2.99
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Figure 3. The statistical results of the photovoltaic parameters of the inverted organic soalr cells (OSCs)
incorporating the ZnO layer without and with the different Al immersion time. Every statistical result
is derived from more than 20 devices.

Incident photon-to-current conversion efficiency (IPCE) spectra of the ZnO (AZO)/P3HT:PC61BM
devices are presented in Figure 4. Compared with the maximum IPCE 53.7% of the device with the
pure ZnO ETL, the devices with the 8 min and 16 min AZO buffer layers have the maximum IPCE of
61.18% and 63.07% at the wavelength around 500 nm, respectively. The integrated IPCE value of device



Polymers 2018, 10, 127 6 of 13

with 8 min AZO thin film is 7.42 mA/cm2, which is close to the measured JSC. The IPCE measurement
results also confirm that the device with the 8 min AZO buffer layer has the best performance.

Polymers 2018, 10, x FOR PEER REVIEW  6 of 13 

 

integrated IPCE value of device with 8 min AZO thin film is 7.42 mA/cm2, which is close to the 
measured JSC. The IPCE measurement results also confirm that the device with the 8 min AZO buffer 
layer has the best performance. 

 
Figure 4. Incident photon-to-current conversion efficiency (IPCE) spectra of inverted P3HT:PC61BM 
solar cells. 

The transmittance spectra of the ZnO ETL and the absorption spectra of the active layer 
(P3HT:PC61BM) with difference Al immersion times are shown in Figure 5a,b. As can be seen, all of 
the ZnO/ITO films have similar good transmittance in the visible wavelength range (from 300 nm to 
800 nm). It indicates that doping Al into the ZnO solution has a minimal effect on the transmittance 
of the ZnO thin film. As shown in Figure 5b, the absorption of the active layer with the un-doped 
ZnO layer is a bit higher at the wavelength from 400 nm to 600 nm. This shows that the introduction 
of Al in the ETL could slightly reduce the absorption ability of the active layer. Although the 
mechanism behind this is still not known, it indicates that the improvement of the device 
performance with the AZO ETL is due to the improved electrical properties of the AZO layer instead 
of the improved light absorption. 

(a) (b)

Figure 5. (a) The transmittance spectra of the ZnO the electron transport layer (ETL); (b) The 
absorption spectra of the active layer (P3HT:PC61BM) with difference Al immersion times. 

In order to further investigate the ZnO/AZO films, the surface morphologies of them and 
P3HT:PC61BM active layers were measured by the atomic force microscopy (AFM). The results are 
illustrated in Figure 6. For the increase of the immersion time of Al in ZnO solution, the topography 
images (Figure 6a–d) changes significantly. The surface of the AZO film is rougher than the pure ZnO 
film and the root-mean-square (rms) values of the surface roughness increases from 0.283 nm to 3.430 
nm for the Al immersion time from 0 min to 16 min. On one side, the rougher ETL increases the 
contact area with active layer, from which the electron collection may benefit and lead to an increased 
JSC. On the other side, if the roughness is too large, when voltage on the device is added, it is easier to 

300 400 500 600 700 800

0

20

40

60

 

IP
C

E(
%

)

Wavelength(nm)

 ZnO
 AZO 4min
 AZO 8min
 AZO 16min

300 400 500 600 700 800
0

20

40

60

80

100

350 400 450
40

60

80

 

 

 

 

Tr
an

sp
ar

en
cy

 (%
)

Wavelength (nm)

 ZnO
 AZO 4min
 AZO 8min
 AZO 16min

300 400 500 600 700 800
0

20

40

60

80

100

 

Ab
so

rp
tio

n(
%

)

Wavelength(nm)

 ZnO
 AZO 4min
 AZO 8min
 AZO 16min

Figure 4. Incident photon-to-current conversion efficiency (IPCE) spectra of inverted P3HT:PC61BM
solar cells.

The transmittance spectra of the ZnO ETL and the absorption spectra of the active layer
(P3HT:PC61BM) with difference Al immersion times are shown in Figure 5a,b. As can be seen, all of
the ZnO/ITO films have similar good transmittance in the visible wavelength range (from 300 nm to
800 nm). It indicates that doping Al into the ZnO solution has a minimal effect on the transmittance of
the ZnO thin film. As shown in Figure 5b, the absorption of the active layer with the un-doped ZnO
layer is a bit higher at the wavelength from 400 nm to 600 nm. This shows that the introduction of Al
in the ETL could slightly reduce the absorption ability of the active layer. Although the mechanism
behind this is still not known, it indicates that the improvement of the device performance with
the AZO ETL is due to the improved electrical properties of the AZO layer instead of the improved
light absorption.
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Figure 5. (a) The transmittance spectra of the ZnO the electron transport layer (ETL); (b) The absorption
spectra of the active layer (P3HT:PC61BM) with difference Al immersion times.

In order to further investigate the ZnO/AZO films, the surface morphologies of them and
P3HT:PC61BM active layers were measured by the atomic force microscopy (AFM). The results are
illustrated in Figure 6. For the increase of the immersion time of Al in ZnO solution, the topography
images (Figure 6a–d) changes significantly. The surface of the AZO film is rougher than the pure
ZnO film and the root-mean-square (rms) values of the surface roughness increases from 0.283 nm to
3.430 nm for the Al immersion time from 0 min to 16 min. On one side, the rougher ETL increases the
contact area with active layer, from which the electron collection may benefit and lead to an increased
JSC. On the other side, if the roughness is too large, when voltage on the device is added, it is easier
to cause the device breakdown. Combing the measured device performance in Figures 2 and 3, the
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immersion time of 8 min is optimal. Compared with obvious changes on the surface of the ZnO film,
the surface morphologies of the P3HT:PC61BM active layer with the ZnO or AZO ETL almost remain
unchanged. The result indicates that the surface morphology of the ZnO buffer layer almost has a
minimal effect on the topography of active layer. It is inferred that other factors such as the electrical
properties could affect the device performance.
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To evaluate the electrical properties of the ZnO/AZO films, the transistors are fabricated. The
transfer characteristics for the ZnO TFTs with different Al immersion times are shown in Figure 7.
The results show that TFTs fabricated with the un-doped ZnO film exhibit an electron mobility of
0.18 cm2·V−1·s−1, and with the increase of the Al immersion time, the electron mobility increases to
0.95 cm2·V−1·s−1 (8 min). As shown in Figure 7, the drain current increases by doping Al into ZnO.
However, the current begins to decrease when the immersion time is further increased to 16 min. This
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is consistent with the performance change of OSCs. The results above indicate that an appropriate
amount of Al doped into ZnO solution can improve the properties of the film, resulting in better
performance in both TFTs and inverted OSCs.
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Figure 7. Transfer characteristics of Al doped ZnO thin film transistors (TFTs) with different reaction
times (0 min (a), 4 min (b), 8 min (c) and 16 min (d)).

To further confirm the validity of using Al doped ZnO as ETL to improve the device performance,
the PTB-7:PC71BM OSCs were also fabricated. Figure 8 shows the corresponding schematic device
structure and the energy level diagram of the component materials. The structure is similar to the
P3HT:PC61BM OSCs except for the active layer.

The photovoltaic performance parameters of the best PTB-7:PC71BM devices are summarized in
Table 2, and the J-V curves are shown in Figure 9. From the parameters, it is shown that the PCE of
the device with AZO as ETL is higher than that with ZnO (7.39%), especially the AZO device with
immersion time of Al at 8 min (7.86%). Furthermore, in the PTB-7:PC71BM system, using proper AZO
can also improve the VOC and FF. The IPCE measurement results in Figure 9b also show that the device
with the Al immersion time of 8 min achieves the highest value, which corresponds to the best device
performance. The statistical results of the photovoltaic parameters in Figure 10 further confirmed the
validity of above discussion.
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Table 2. Photovoltaic parameters of best inverted structure PTB-7:PC71BM solar cells with ZnO or
AZO as the ETL.

Device VOC (V) JSC (mA/cm2) FF (%) PCE (%)

ZnO 0.721 14.52 70.58 7.39
AZO 4 min 0.731 14.96 69.57 7.61
AZO 8 min 0.732 15.13 70.98 7.86

AZO 16 min 0.723 15.06 69.88 7.60
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Figure 9. (a) J-V characteristics of the PTB-7:PC71BM devices introducing the ZnO film without and
with the different immersion times of Al doping; (b) IPCE spectra of the corresponding PTB-7:PC71BM
solar cells.
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Figure 10. The statistical results of the photovoltaic parameters of the inverted PTB-7:PC71BM OSCs
incorporating the ZnO layer without and with the different Al immersion times. Every statistical result
is derived from more than 20 devices.

4. Conclusions

In summary, Al-doped-ZnO (AZO) thin film as the ETL in inverted OSCs has been fabricated
via spin coating aqueous solution, which is a low temperature processing. Using AZO (immersion
time 8 min) as the buffer layer in P3HT:PC61BM system, PCE increases to 3.09%, compared with the
control device with a pure ZnO device (PCE 2.79%) under the same conditions. Furthermore, in a
PTB-7:PC71BM system, PCE with AZO (immersion time 8 min) can be improved to be 7.86% (pure
ZnO, PCE 7.39%). Our result suggests that AZO with this simple doping method can improve the
performance of inverted OSCs.
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