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Abstract: In the vacuum thermoforming process, the group effects of the processing parameters, when
related to the minimizing of the product deviations set, have conflicting and non-linear values which
make their mathematical modelling complex and multi-objective. Therefore, this work developed
models of prediction and optimization using artificial neural networks (ANN), having the processing
parameters set as the networks’ inputs and the deviations group as the outputs and, furthermore,
an objective function of deviation minimization. For the ANN data, samples were produced in
experimental tests of a product standard in polystyrene, through a fractional factorial design (2k-p).
Preliminary computational studies were carried out with various ANN structures and configurations
with the test data until reaching satisfactory models and, afterwards, multi-criteria optimization
models were developed. The validation tests were developed with the models’ predictions and
solutions showed that the estimates for them have prediction errors within the limit of values found
in the samples produced. Thus, it was demonstrated that, within certain limits, the ANN models
are valid to model the vacuum thermoforming process using multiple parameters for the input and
objective, by means of reduced data quantity.

Keywords: vacuum thermoforming process; modeling and optimization; artificial neural networks;
deviations and process parameters; multi-criteria optimization

1. Introduction

Thermoforming of polymers is a generic term for a group of processes that involves the forming
or stretching of a preheated polymer sheet on a mold producing the specific shape. It is considered to
be one of the oldest methods of processing plastic materials [1]. The process which uses the vacuum
negative pressure force to stretch this heated polymer sheet on a mold is called vacuum forming or
vacuum thermoforming [2]. Specifically, this is the forming technique and/or stretching where a
sheet of thermoplastic material is preheated by a heating system (Figure 1a,b), and forced against the
mold surface (positive or negative) by means of the negative vacuum pressure produced in the space
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between the mold and sheet (Figure 1c, by mold suction holes and a vacuum pump which “sucks” the
air from the space and “pulls” the sheet against the surface of the mold, transferring it, after cooling
and removing excess material to shape it (Figure 1d) [3,4]. The typical sequence of this technique by
Ghobadnam et al. [5] is presented in Figure 1.
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Figure 1. Schematic of basic vacuum thermoforming. (a) Heating; (b) sealing or pre-stretch; (c) forming
and cooling; and (d) demolding and trimming.

However, what is observed, in practice, is that incorporating prior knowledge or a trial-and-error
methods to predict the final result of the process and the quality of the product can be far more difficult.
Thus, the evaluation of the final performance of the system is sometimes complex, due to various
factors, such as the raw material of the mold, the equipment characteristics, the type and raw material
of the sheet, and other factors [6–8]. In addition, the process often highlights the conflicts between
aspects of quality and adjustments of process control variables [9,10]. In recent years, several authors
have developed work with the objective of modelling and predicting the quality of the final product of
the vacuum thermoforming process.

Thus, Engelmann and Salmang [6] presented a computational statistics model and data analysis,
and Sala et al. [11] and Warby et al. [12] in a complementary focus, worked on the development
of an elastic-plastic model for thickness analysis. Many studies concentrated on aspects of mold
geometry and process parameters to verify their influence on the wall thickness distribution [5,13–15].
A hierarchically-ordered multi-stage optimization strategy for solving complex engineering problems
was developed, [3,16]. Martin et al. [17] presented the study of the instrumentation and control of
thermoforming equipment and its analysis and control in real-time of multiple variables. The accuracy
of the developed controller and its prospective real-time application is evidenced by the results. Some
studies focused on modeling, simulation, and optimization of the heating system by different methods
and techniques [18–20].

However, in complex manufacturing processes such as this, Meziane et al. [21], Tadeusiewicz [22]
and Pham [23] suggest that the traditional approaches to process control fail to understand all aspects
of process control or existing subsystems. Sometimes the amount and type of variables involved
make the computational and mathematical modelling of the system a multi-variate, multi-objective,
complex process with non-linear and conflicting objectives [9,10,24]. Thus, according to them, in the
last few years, several studies have been presented, using computational intelligence (CI) techniques
aimed at the modeling of the non-linear characteristics and conflicting objectives of these processes.
The research was carried out using a series of computational tools for the resolution of problems that
require human intelligence abilities for their resolution or computational modeling, with artificial
neural networks (ANNs) being more intensively investigated and studied [25,26].

ANNs are mathematical computational models inspired by biological neural structures or
biological neurons [27,28]. The artificial neurons, or perceptron, is constituted of three elements.
One input, “X”, one weight “W”, and a combination of sum function (φ) which may be linear or not,
and in some cases, a bias, θj, is included [29]. The “Y” response of the ANN is obtained by applying
the activation function on the output of the combiner or sum function matrix Y = φ (W × X + θ) [30].
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One algorithm model, called a basic ANN, is the multi-layer perceptron (MLP), which is typically
composed of combinations of artificial neurons that are interconnected, usually by a node system
or mesh. The MLP generally consists of “n” neurons interconnected in a system of meshes of nodes
and divided into: an input layer, an output layer, and one or more hidden layers, and, between
layers, the neurons are connected with their respective weights (biological synapses), which learn
or record knowledge (by adjustable weights) between the input and output layers of the network.
Furthermore, the network of layers is interconnected externally with their supervised training or
learning algorithms [26,27].

In the MLP network, through the input and output data of the network or patterns, the network
is trained in a cyclical process by its algorithms and a performance index is calculated for the network
in each training round or epoch. These supervised training and learning MLP processes can be
continuous until the ANN model “learns” to produce desired outputs for input from its pattern [27] or
a performance index of the network, such as the mean square error (MSE), which achieves an error
equal to or less than specified, or when the network reaches any other stop criteria specified during
model programming. For this, the networks are implemented with training algorithms, the most
commonly used being the back propagation (BP) and Levenberg-Marquardt (LM) algorithms. The BP
algorithm is a method of supervised learning (batch) that seeks to minimize a global error function
or Sum Squared Error (SSE) for the j neurons of the layer(s) at each epoch [31,32]. The LM algorithm,
developed by Hagan and Menhaj [33] and implemented in MATLAB® software (MathWorks Inc.,
Natick, MA, USA) by Demuth and Beale [34], is a method that provides a solution to the minimization
problem of a non-linear function based on the Gauss-Newton method and gradient descent algorithm
via calculation of Jacobian matrices [35].

The ability to work with complex or multi-dimensional and multi-criteria problems makes
ANNs one of the main methods used in engineering for computational modeling [22]. A model with
multi-criteria optimization is defined when it is desired simultaneously to optimize several objective
functions and, in some cases, these functions are in conflict, or compete with, each other and, thus, the
possible optimal solutions do not allow, for example, the maximization of all the objectives in a joint
manner [36].

In this context, some authors have developed computational models based on Computational
Intelligence (IC) techniques associated, or otherwise, with statistical optimization for the analysis of
quality characteristics of the piece produced by vacuum thermoforming, some of them described by
Chang et al. [24]. Likewise, Yang and Hung [9,10] proposed an “inverse” neural network model which
was used to predict the optimum processing conditions. The network inputs in this work included
the thickness distribution at different positions various parts, and the output or optimal process
parameters were obtained by ANNs. Additionally, Küttneret et al. [3] and Martin et al. [17] presented
the development of a methodology that uses an ANN to optimize the production technologies together
with the product design. Finally, Chang et al. [24] tested an inverse model of ANN on a laboratory
scale machine, where it used the desired local thicknesses as inputs and the processing parameters as
outputs, with the aim being process optimization.

Thus, first of all, the current work studied both the values of manufacturing parameters and
the quality of samples produced by the vacuum thermoforming process on a laboratory scale.
Additionally, these initial experimental results were used to investigate the computational modeling
of the process through several ANN models that aimed to correctly present the deviation values
given a set of manufacturing parameters. These study sequences allowed the study of multivariable
and multi-objective optimization algorithms using ANN models to obtain optimum values of the
manufacturing parameters simultaneously with the group predictions of product deviations. Finally,
validation tests and confirmation are carried out with the objective of evaluating the ability of each
model to simulate the process under new experimental conditions and, also, estimate deviations, verify
the efficiency of the approach, and validate the proposed methodology.
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2. Experimental Work

2.1. Material, Equipment, and System

For the three-dimensional (3D) design of the model and mold, aspects inherent to the
manufacturing process and contraction of 0.5% were considered [8,37] and computer-aided design
(CAD) software, integrated with computer-aided manufacturing (CAM), was used. The mold was
machined in a computer numeric control (CNC) using plates of medium density fiberboard (MDF) as
a raw material. This has dimensional and geometric characteristics of a product standard and, also, a
3D coordinate measuring machine (3D CMM) was used to determine the dimensional and geometric
deviations present in the mold.

A semi-automated vacuum-forming machine was developed and automated by the researchers.
This equipment has the capacity to work with plates of thickness of 0.1 to 3.0 mm, a useful area of
280 × 340 mm, a displacement of the mold (z axis) of 150 mm, a vacuum pump of 160 mbar with a
motor of 1.0 CV, an infrared heating system composed of two resistors of 750 and 1000 W, movement
by pneumatic systems, and acquisition of temperature data by “K” thermocouples and non-contact
infrared. The system is programmable and controlled by a commercial personal computer (PC)
integrated with an Arduino microcontroller (Arduino Company Open Source Hardware, Somerville,
MA, USA).

In this work, 2.0 × 2.5 m of white laminated polystyrene (PS) sheets with a thickness of 1.0 mm
were used to manufacture the parts. The plates were cut into 300 × 360 (machine size) sheets, cleaned
with water and liquid soap of neutral pH, and then dried and packaged in plastic film packages that
had previously been heated at 50 ◦C for two hours.

The commercial equipment and software used in the development of this study are described
below and included: a Micro-Hite 3D TESATM 3D coordinate measuring machine (3D CMM, Hexagon
AB, Stockholm, Sweden), Discovery 560 ROMI TM Machining Center (CNC, INDÚSTRIAS ROMI
S.A, São Paulo, Brazil), and Arduino UNO Revision 3 microcontroller board (ATmega328, Arduino
Company). A commercial personal computer (PC) environment with Windows® 7 Home Premium
64-bit operating system (Microsoft Company, Redmond, WA, USA), Intel® CoreTM i3-2100 3.10 GHz
processor (Intel Corporation, Santa Clara, CA, USA.) and 6 GB of RAM to integrate the machine with
the Arduino system’s software and equipment. The software was chosen so that information could be
shared, and the main packages used were: Arduino Software (IDE) Release 1.0.5 Revision 2 (Arduino
Company) for Arduino microcontroller board, SolidWorks® 2008 (SOLIDWORKS Corp, Waltham,
MA, USA), EdgeCAM® 2010 by SolidWorks® (Vero Software, Brockworth, Gloucester, UK), Reflex
Software for Micro-Hite 3D TESATM (Hexagon AB, Stockholm, Sweden), MiniTab 16® (Minitab, Inc.,
State College, PA, USA), and MATLAB® 2011 version 7. 12. 0. 635 (R2011a) 64-bit (MathWorks Inc.).

2.2. Parameters and Measurement Procedure

There is no consensus among authors about the measurement parameters and procedures.
According to Küttner et al. [3], Muralisrinivasan [4], Yang and Hung [9,10] and Chang et al. [24] in the
vacuum thermoforming process several parameters of control and quality can be used, depending on
the type of equipment, mold, and product geometry. Throne [2], Klein [7], Throne [8] and Chang [24]
explain that there is no specific measurement procedure or equipment to be used. Thus, they
were defined to control the deviations as described in the following paragraphs, with the scales,
measurement procedures, and tolerances presented.

For measurement of the errors, 3D MMC was used carrying a 4mm diameter solid probe,
calibrated with an error of ±0.004 mm, which has an accuracy of 0.003 mm and CAI software.
The reference values for dimensions were calculated, based on the final dimensions of the mold.
Additionally, according to Throne [2] and Klein [7], a deviation of ±1% for linear dimension and ±50%
for flatness on surfaces are acceptable and, as a reference, the values calculated for dimensions were
adopted as the general criteria for acceptance of sample dimensions.
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Figure 2 presents the geometry of the product standard, where dimensions and deviations to be
measured in the samples are represented.

The dimensional deviation height (DDHi) or DEV 01 was defined as:

DDHi = (MHSi − TSH) == DEV01i = (MHSi − 57.92) (1)

where TSH is theoretical sample height and a negative (−) mean value indicates that the height is less
than the ideal and a positive mean value (+) that it is greater than the ideal. For the calculation of DEV
01, eight (8) points were collected on each surface. Additionally, in all equations in this section, the
index i represents the i-th analyzed sample.
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The deviation of the diagonal length (DDLi) or DEV 02 is calculated by the difference between the
values of the MLDSi and the value of the TDL, being:

DDLi = (MLDSi − TDL) (2)

where MLDSi is the measured length of the diagonal in the sample, which in this work was defined as
the quadratic relation of the lateral distances of the upper end of the sample (length and width) and
TDL is theoretical diagonal length of the Sample = 207.97 mm, so:

DDLi = DEV02i

(√
(widthi)

2 + (lengthi)
2 − 207.97) (3)

For the calculation of DEV 02, five points were collected along each lateral of the samples.
A negative (−) mean value indicates that the length is smaller than the ideal and a positive mean value
that it is greater than the ideal.
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The geometric deviation of flatness (GDi) or DEV 03, which will have a zero value (0) for an ideal
surface or positive value, was calculated as:

GDi = (MGDSi − TGDS) == DEV03i = (MGDSi − 0.11) (4)

where MGDSi is the measurement geometric deviation flatness in the sample and TGDS is the
theoretical geometric deviation flatness of the sample, that is, the deviation calculated, which was
0.11 mm. For DEV 03, nine (9) points were collected on the lower/bottom surface of the samples.

The DEV 04 or Geometric Deviation of Side Angles (GDSAi), in this study, is expressed as:

GDSAi =
1
z ∑Z

J−1 GDLAi == DEV04i =
1
4 ∑4

J−1(LAMFS − TLAFS) (5)

where z is the number of sides and s the evaluated face. The GDLA is the difference between the Lateral
Angle Measured on the Face of sample i (LAMFi) and the theoric lateral angle of the face (TLAF), for
s = 1 ... 4, respectively, 95.93◦, 95.93◦, 96.02◦, and 96.06◦. For DEV 04, nine (9) points were collected on
each surface analyzed.

2.3. Experimental Study

In this research, we used the manufacturing parameters (factors) described by Throne [2] and
compatible with the geometry of sample and equipment, namely: A. heating time (in seconds—s); B.
electric heating power (in percentage—%); C. mold actuator power (in Bar and cm/s); D. vacuum time
(s); E. vacuum pressure (in millibar—mbar). Table 1 shows the levels/values for each parameter.

Table 1. Factors and levels selected for the main experiments.

Level
Factors

A (s a) B (% a) C (bar and cm/s a) D (s a) E (mbar a)

1 (−1) 80 90 3.4 and 18.4 (100%) 7.2 10
2 (+1) 90 100 4.0 and 21.6 (85%) 9.0 15

a Unit.

The experiment was composed of 68 tests according to the planning 25-1V (fractional factorial
design, by Montgomery [38]) with 16 processes of parameter settings and one center point. For each
setting and the center point, two (2) replicates were performed in a random sequence. Still, a sample
and a repetition were manufactured in the same sequence, totaling 68 pieces (4 samples per processing
parameters settings).

The 68 samples of PS were produced and then cooled completely in an air-conditioned room
at 22 ◦C with 60% humidity. After, the inspection methods described in the previous chapter were
applied to quantify the linear and geometric dimensions of the samples.

Table 2 shows the types of deviations and respective values of the sample means (by four
samplings), the accuracy of this estimate of sample mean (AE) and the standard deviation (S) of
estimate of mean [38], for the 17 process parameters settings tested (center point, test No. 17). It is
observed that the data vs. type of deviation are well distributed, except for only one (1) point for DEV
03, respectively, standard test 1 (samples 26 and 31 and their repetitions—outlier).
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Table 2. Experimental main results.

Standard order test

Responses

DEV 01 (mm a) DEV 02 (mm a) DEV 03 (◦ a) DEV 04 (mm a)

Mean b AE e S Mean b AE e S Mean b AE e S Mean b AE e S

1 −1.300 ±0.040 0.025 −0.263 ±0.039 0.024 1.542 c ±0.104 0.065 0.635 ±0.023 0.015
2 −0.871 ±0.461 0.290 −0.308 ±0.040 0.025 0.411 ±0.222 0.139 0.455 ±0.098 0.062
3 −0.408 ±0.192 0.121 −0.335 ±0.253 0.159 0.349 ±0.160 0.100 0.351 ±0.121 0.076
4 −0.293 ±0.327 0.206 −0.310 ±0.133 0.084 0.323 ±0.134 0.084 0.188 ±0.154 0.097
5 −0.596 ±0.129 0.081 −0.222 ±0.010 0.006 1.100 ±0.123 0.077 0.476 ±0.066 0.041
6 −0.971 ±0.145 0.091 −0.259 ±0.035 0.022 0.366 ±0.201 0.126 0.407 ±0.021 0.013
7 −0.618 ±0.131 0.082 −0.395 ±0.054 0.034 0.321 ±0.470 0.296 0.239 ±0.006 0.004
8 −0.576 ±0.467 0.293 −0.416 ±0.072 0.045 0.164 ±0.200 0.125 0.230 ±0.020 0.013
9 −1.498 ±0.270 0.170 −0.207 ±0.087 0.054 0.933 ±0.132 0.083 0.501 ±0.095 0.060

10 −0.611 ±0.283 0.178 −0.301 ±0.015 0.010 0.234 ±0.152 0.096 0.078 ±0.064 0.040
11 −0.625 ±0.428 0.269 −0.394 ±0.068 0.043 0.500 ±0.450 0.283 0.227 ±0.007 0.005
12 −0.476 ±0.226 0.142 −0.268 ±0.038 0.024 0.208 ±0.069 0.043 0.253 ±0.098 0.061
13 −1.128 ±0.241 0.152 −0.278 ±0.060 0.038 0.955 ±0.364 0.229 0.442 ±0.001 0.000
14 −0.728 ±0.483 0.303 −0.224 ±0.016 0.010 0.297 ±0.101 0.063 0.105 ±0.067 0.042
15 −0.684 ±0.200 0.126 −0.463 ±0.028 0.018 0.214 ±0.042 0.027 0.198 ±0.063 0.039
16 −0.461 ±0.449 0.282 −0.350 ±0.105 0.066 0.254 ±0.031 0.020 0.200 ±0.034 0.021

17 d −0.789 ±0.079 0.049 −0.309 ±0.019 0.012 0.481 ±0.276 0.174 0.304 ±0.045 0.029

a Unit; b Mean average value for four (4) samplings; c Outlier; d Center point; e Accuracy of estimate of sample
mean (AE) with n = 4 and α = 0.05; DEV 01, DEV 02 and DEV 04 are in millimeters; DEV 03 is in decimal degrees.

2.4. Analysis of Data

First, the analysis of variance (ANOVA) was developed to test the factors and their effects of first
and second order and to evaluate whether each factor was significant or not. The ANOVA results for
deviations versus the factors studied are summarized in Table 3, or F-test table, with a confidence level
of 95% (α = 0.05), and where the critical test value for the F distribution is f 0,05;1;17 = 4.45.

Table 3. ANOVA summary table, results for the deviation analysis vs. factors in main experiments.

Factor
Responses

DEV 01 DEV 02 DEV 03 DEV 04

F(0) p-Value F(0) p-Value F(0) p-Value F(0) p-Value

A 10.2 a 0.005 0.42 0.542 89.7 a 0.000 77.72 a 0.000
B 37.0 a 0.000 22.5 a 0.000 82.6 a 0.000 86.23 a 0.000
C 0.30 0.592 1.44 0.246 4.6 a 0.046 8.93 a 0.008
D 0.98 0.336 0.02 0.899 6.43 a 0.021 56.03 a 0.000
E 0.08 0.776 0.34 0.567 4.50 a 0.049 1.36 0.259

A*B 1.92 0.184 3.91 0.065 52.1 a 0.000 43.81 a 0.000
A*C 4.86 a 0.042 0.27 0.612 2.73 0.117 6.24 a 0.023
A*D 6.13 a 0.024 2.27 0.150 1.29 0.271 5.58 a 0.030
A*E 1.87 0.189 0.29 0.596 2.63 0.123 2.04 0.171
B*C 5.66 a 0.029 5.04 a 0.038 0.01 0.943 0.42 0.525
B*D 0.05 0.833 0.12 0.739 6.98 a 0.017 30.14 a 0.000
B*E 0.63 0.438 0.89 0.359 0.08 0.783 2.45 0.136
C*D 0.03 0.867 0.14 0.709 1.81 0.196 1.54 0.232
C*E 3.02 0.100 1.12 0.305 2.23 0.154 29.55 a 0.000
D*E 4.89 a 0.041 1.38 0.257 0.37 0.550 0.25 0.817

S = 0.0648608; R2 = 70.26%; R2
(adj) = 42.28% and; a Significant factors and interaction effect.

In general, for main effects, from Table 3, it can be seen that factors “A” and “B” are the most
significant for all deviations and for DEV 01. Additionally, for DEV 02, the parameter of manufacturing
B stands out as significant; for DEV 03, all factors are significant; and in DEV 04, in sequence, the most
significant parameters are B, A, and D. Furthermore, many interaction effects are significant in terms
of the deviations. It is concluded that the critical manufacturing parameter for the deviations analyzed
are the electric heating power (B) followed by the heating time (A), and also, except for the vacuum
pressure factor (E) for the dimensional deviation of the diagonal length (DEV 02), at least one factor, or
its interaction effect, is significant for one of the deviations.
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Figure 3 presents the results of mean deviation values of all factor levels for all factors for each
type of deviation. In the figure, we verified that the most relevant factors are those related to heating
(A and B). Additionally, in general, it reveals that there is no predominant behavior between factor
levels and lower ranges of deviations and the relationships between factors are not proportional.
Furthermore, the variation of any input variable (+1 or −1) generates modifications in at least one type
of deviation. It can be concluded, in this analysis of data, that the modification of factor levels cannot
be studied in isolation for each type of deviation. Therefore, they must be evaluated simultaneously,
and also, none of these factors, or their interaction (second-order), can be eliminated from a study or
computational modeling of the process since they are significant in at least one type of deviation.Polymers 2017, 9, x FOR PEER REVIEW  8 of 18 
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Figure 3. Main experiment: (a) DEV 01 vs. variations of factor levels; (b) DEV 02 vs. variations of
factor levels; (c) DEV 03 vs. variations of factor levels; and(d) DEV 04 vs. variations of factor levels.

3. Development of Modeling and Optimization of Process Based on ANN Models

3.1. Modeling, Tests, and Selection of Artificial Neural Network Models

For tests of programming of ANN multilayer models, as input data of the nets, we have used the
sequence of factors (process parameters settings) and factor levels of the fractional factorial planning
“25-1V” with center points, respectively. The output data are the sample means of the results of the
deviations (Table 2).

The networks were tested with back propagation and the Levenberg-Marquardt training
algorithm. The transfer functions “tansig” was used in the first layer and, in the other layers,
combinations of the functions “purelin” and “tansig” were tested. The various network architecture
tested were composed of an entrance layer with five data (Xi), an exit layer with four values (Yl

j(p)),
and still, l-th hidden layer with j-th neurons in each. Figure 4 presents the general architecture of the
ANN used.
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Figure 4. Neural network structure model developed for the tests.

As general parameters of training of ANNs, the following were used: learning rate = 0.001, ratio
to decrease learning rate = 0.001, error maximum increment = 0.001 and network performance = “mae”.
As general parameters to stop the network, the following were used: performance goal = 0, minimum
performance gradient = 1 × 10−25, maximum number of epochs to train = 10000, maximum number of
validation increases = 100, and momentum constant maximum = 1 × 10308. Additonally, as the mean
absolute error (MAE) was adopted in substitution of MSE as a performance parameter of the network,
where MAE ≤ 0.145 (General MAE of the mean deviation in the samples). Equation (6) describes the
calculations of MAE.

MAE =
1
k ∑K

J−1
1
n∑n

i−1

∣∣ej,i
∣∣ (6)

For the development of multi-criteria optimization algorithms, based on the ANN models, the
script codes were implemented and processed using MATLAB® software. In each computational
test of a model of optimization, for the patterns shown to the ANN, the four initial solutions and the
MAE values were recorded. Then a new test of the algorithm was recursively initialized. Where the
model reached an improved general value of the MAE in a new test run, the code recorded all input
and output data of the network and classified it in a sequence of solutions, but, if the MAE does not
improve, the algorithm continues the tests until it reaches a net stop criterion and initializes a new
model. At each renewal of the network by a stop criterion, all weights and bias were updated with
random values. Each model was tested for even 2000 epochs or for the total time of simulation of
1020 min.

Table 4 summarizes the performance values and processing of main of multi-criteria ANN models
and data of the ANNs tested. In this table, we observe the evolution of models by modification of
the models’ characteristics, where techniques to improve or simplify the ANN already discussed in
other works were applied, along with the change of the training algorithms (model “D”, “K”, etc.), the
modification of the net structure (model “H”, “M”, etc.), the modification of the transfer function of
layers (model “T”, “W”, etc.), the proportional adjustment between the amount the patterns of the
network and the number of neuron layers (model “P”, “V”, etc.), and the adjustment of the amount of
training data and test data of the models [39–41].
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Table 4. Summary of the main characteristics and performance values of multi-criteria ANN models developed and tested.

Model
name

Error model
(MAE)

Error model
(MSE)

Processing
time of
Model

No. training
data of
Model

No. test
data of
Model

ANN
architecture

Network training function
of ANN

Transfer function of
ANN (1st Layer)

Transfer function of
ANN (Layer Hidden)

Best epoch
of ANN

Z 0.0001 0.0000001 5.347 14 6 10-8-4 ‘trainlm’;
mu_max = 1 × 10308 ‘tansig’ ‘tansig’ 461

Y 0.0002 0.0000003 6.728 12 4 10-8-4 ‘trainlm’;
mu_max = 1 × 10308 ‘tansig’ ‘tansig’ 873

X 0.0301 0.0000163 8.004 11 3 10-8-4 ‘‘trainlm’;
mu_max = 1 × 10308 ‘tansig’ ‘tansig’ 832

W 0.0877 0.0720541 39.575 11 3 10-8-4 ‘traingd’; η = 0.001; ρ = 0.001;
τ = 0.001; ‘tansig’ ‘tansig’ 10359

V 0.0303 0.0000795 6.192 11 3 10-8-4 ‘trainlm’;
mu_max = 1 × 10308 ‘tansig’ ‘purelin’, ’tansig’ 685

T 0.0164 0.0000976 220.040 11 3 16-8-4 ‘trainlm’;
mu_max = 1 × 10308 ‘tansig’ ‘purelin’, ’tansig’ 19855

P 0.0319 0.0000000 58.800 11 3 5-4-8-4 ‘trainlm’;
mu_max = 1 × 10308 ‘tansig’ ‘purelin’, ‘tansig’,

’purelin’ 762

O 0.0085 0.0000105 64.461 11 3 8-8-8-4 ‘trainlm’;
mu_max = 1 × 10308 ‘tansig’ ‘purelin’, ‘tansig’,

’purelin’ 4482

M 0.0320 0.0000620 140.268 11 3 16-8-8-4 ‘trainlm’;
mu_max = 1 × 10308 ‘tansig’ ‘purelin’, ‘tansig’,

’purelin’ 7444

K 0.1529 0.1669912 74.772 11 3 24-12-8-4 ‘traingd’; η = 0.001; ρ = 0.001;
τ = 0.001; ‘tansig’ ‘purelin’, ‘tansig’,

’purelin’ 11882

H 0.0256 0.0000000 490.485 11 3 24-12-8-4 ‘trainlm’;
mu_max = 1 × 10308 ‘tansig’ ‘purelin’, ‘tansig’,

’purelin’ 9340

D 0.1832 0.1938314 7.900 11 3 32-16-8-4 ‘traingd’; η = 0.001; ρ = 0.001;
τ = 0.001; ‘tansig’ ‘purelin’, ‘tansig’,

’purelin’ 1656

A 0.02135 0.0005825 205.544 11 3 32-16-8-4 ‘trainlm’;
mu_max = 1 × 10308 ‘tansig’ ‘purelin’, ‘tansig’,

’purelin’ 3507
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In Table 4, the model “A” was the first satisfactory solution (MAE ≤ 0.145); however, it presents a
net structure with many nodes, a considerable number of weights and bias and, in addition, a significant
amount of processing time, which results in slow computing. The models D, H, K, M, O, P, and T
are some intermediate models, but they presented problems that evolved or were improved, such
as Model “D” and “K”, that have an MAE > 0.145, i.e., with errors of predicted values higher found
in the process (Table 2). The V, X, Y, and Z models generally achieved the best performances and
predicted values errors considerably lower than the limits found in the process samples. The models
are theoretically similar, and present a network structure that simplifies and reduces the processing
time, with differences in the training process, the functions used and amount of data. Just as the
amount of data and the functions used can modify the models the ANN generated, it cannot be said
that the values of the weights and bias are the same, and, consequently, the predicted values (for
68 output data) and the general performance of the ANNs are not the same. Figure 5 presents the
predicted values by these models and model “A” for each type of deviation and the target values of
each pattern.
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Figure 5. Performance analysis of multi-criteria ANN models—type of deviations vs. predicted values
of models vs. target value: (a) predicted values of models vs. target values of dimensional deviation
height; (b) predicted values of models vs. target values of dimensional deviation of the diagonal length;
(c) predicted values of models vs. target values of geometric deviation of the flatness; (d) predicted
values of models vs. target values of geometric deviation of the side angles.

As seen in Figure 5, model “A” has significant prediction errors in all deviations, being more
evident in DEV 02 as, for example, data 5 = −0.222 ± 0.010 mm, and in model “A” = −0.254 mm.
Model “V” has several errors in the forecasts, highlighting the data value number 5 for DEV 01 and
data value number 5 for DEV 04. Of the other models, in general, “X” presents the worst performance
in the predictions and one significant prediction error, for test 9 of DEV 03, considering the sample
variation with value of 0.933◦ ± 0.132◦. Models “Y” and “Z” have negligible errors and, within the
ranges found in the samples, are considerably lower when compared with previous values of the
other models. The gain in performance value is due to the increase in the number of training data and
test data.

In Figure 6, the response surface of “V”, “Y”, and “Z” models for variables temperature vs. types
of deviations are shown. When we compare them, we observed that, although the “V” model has a
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network structure similar to the “Y” and “Z” models, the use of a linear fit function (purelin) in the
network contributed to a “linearization” of the surface and the generalization errors (Figure 6(C1–C4));
this was generally observed in other models. Already, the “Y” and “Z” models have hyperbolic tangent
sigmoid transfer functions (tansig), which contributed to the nonlinear generalization of the models.
However, as shown in Figure 6(B1–B4), the amount of data used in model “Y”, up to now, was not
adequate to generate an improved model, which was only achieved with the progressive increase
of the amount of data of model “Z” (Figure 6(A1–A4)), which makes this model more suitable for
this work.
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Figure 6. Comparison of the response surfaces of the models for heating time variables vs. electric
heating power vs. type of deviations, being: (A) “Z” model, (B) “Y” model; and (C) “V” model, and
DEV 01 is the dimensional deviation height, DEV 02 is the deviation of diagonal length, DEV 03 is the
geometric deviation of flatness (GDi), and DEV 04 is geometric deviation of side angles.

3.2. Modeling and Test of Multi-Criteria Optimization Algorithm Models

The multi-criteria optimization algorithms were developed based on the “Z” model (Table 4).
The coefficient of performance or the objective function of the algorithm for simultaneous minimization
of responses [36] was defined by Equation (7):

Oi =
1
8∑4

i=1

{( Yi,j(p)

admissible errosi

)
x weightsi

}
(7)
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where j represents the j-th coefficient of performance for a (01) solution vector and i the deviation type,
where i = 1, 2, 3, and 4 for the deviations DEV 01, DEV 02, DEV 03, and DEV 04. The values of the
“admissible errors” for i = 1, 2, . . . , 4 were defined as |0.6 mm|, |2.1 mm|, |1 mm|, |0.72◦|, and the
i-th weights adopted are: 2, 2, 3, and 1, respectively.

With this data, new codes were programmed with two variations of the algorithm, each with its
domain, constraints, and discretization. The data used are described in Table 5.

Table 5. Restrictions domain used for optimization model “A” and model “B”.

Optimization model Factor

Constraints
Generated pointsDomain Discretization

≤ Xi ≤ Unit

Variation“A”

A 80 90 5 3
B 90 100 5 3
C 85 100 7.5 3
D 7.2 9.0 0.9 3
E 10 15 2.5 3

Total 243

Variation“B”

A 75 95 2.2 10
B 85 105 2.5 9
C 77.5 100 2.5 10
D 6.3 9.9 0.9 5
E 7.5 15 1.25 7

Total 31,500

The two variations of the algorithm were processed according to the same logic, where: the input
values for the j-th possible solutions were generated in a data matrix, and then the matrix, the ANN
model, and the sub-codes were used to find the initial solution. Next, the deviations of this solution
were determined and the value of coefficient of performance (Oj) calculated. Finally, the information
and data from this possible solution were recorded in a control table in decreasing order. Once this
part is processed, the algorithm returns to the first step (internal loop process), repeating the process
in search of an improved solution. If it finds one, it writes the data again for this new solution in
the decreasing control table. The process was repeated until the model ran in the entire solution
space, selected and, thus, found the global minimum value of the solutions vector Oj and the optimal
parameters of manufacturing. Tables 6 and 7 present the best results.

Table 6. Summary of the 10 best results of the “A” variation of the optimization algorithm.

Solution
Factor

Oj(p)
A (s) B (%) C (%) D (s) E (mbar)

1st 90 100 100 8.1 12.5 0.27
2nd 90 100 92.5 7.2 12.5 0.27
3rd 85 100 100 7.2 12.5 0.27
4th 90 95 100 8.1 12.5 0.28
5th 90 100 85 8.1 10 0.28
6th 90 95 100 7.2 12.5 0.28
7th 85 95 100 7.2 12.5 0.28
8th 90 95 92.5 7.2 12.5 0.29
9th 90 100 100 7.2 12.5 0.29
10th 85 95 100 7.2 12.5 0.30
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Table 7. Summary of the 10 best results of the “B” variation of the optimization algorithm.

Solution
Factor

Oj(p)
A (s) B (%) C (%) D (s) E (mbar)

1st 92.6 90 100 7.2 12.5 0.24
2nd 95 90 100 8.1 12.5 0.24
3rd 95 87.5 100 7.2 12.5 0.24
4th 95 90 100 7.2 12.5 0.24
5th 95 87.5 100 6.3 10 0.24
6th 95 90 96.25 8.1 12.5 0.24
7th 95 87.5 96.25 6.3 10 0.24
8th 92.6 90 96.25 7.2 12.5 0.24
9th 92.6 87.5 100 7.2 12.5 0.24
10th 95 87.5 100 8.1 12.5 0.24

In Tables 6 and 7 we see that several configurations have the same value of Oj, or very close
values, which were already predicted when dealing with a problem with multiple solution spaces,
with all being possible optimal solutions to the problem. However, analyzing Figure 3, we see that, in
general, for the set of deviations, factor “A” has better results in levels ≥85, factor “B” in levels ≥95,
since factor “C” improves next at levels ≤92.5, factor “D” at mean levels ≥8.1, and factor “E” close to
levels ≥12.5. From this it follows that the first solution from Table 6 and the sixth solution from Table 7
are the most appropriate solutions to the problem.

3.3. Confirmation Experiment

To validate the multi-criteria optimization models developed, new experimental tests were
performed, with the respective factors and levels selected. For the processing of the samples,
two sequences of tests were performed with the processes of parameter settings or the solutions
selected, where five (5) sequentially-manufactured repetitions were performed for each type of setting.
Additionally, the same experimental conditions were preserved, as well as the same raw material
and infrastructure. In addition, the same steps of the experimental tests were followed. Afterwards,
the samples were inspected, adopting the same procedures already described and the deviations
previously calculated.

Tables 8 and 9 present the results of the expected values of the means of the four deviations for
samples in the validation tests, with the 95% confidence interval (CI) on the mean (n = 5 and α = 0.05).
The predictions, and the results of the best samples by the Oj value in the main experimental tests, the
standard test number being 5, are also shown (Table 2).

Table 8. Comparative results of the multi-criteria optimization model type “A”.

Validation samples a Model type “A” Main experimental n◦ 04 b

Mean 95% CI Predicted Mean 95% CI

DEV 01 −0.255 −0.298 −0.213 −0.294 −0.293 −0.620 0.034
DEV 02 −0.341 −0.419 −0.263 −0.376 −0.310 −0.444 −0.177
DEV 03 0.193 0.156 0.231 0.185 0.323 0.189 0.456
DEV 04 0.134 0.050 0.218 0.188 0.188 0.034 0.342

Oj 0.23 0.17 0.30 0.27 0.31 0.39 0.27
a For validation samples n = 5 and α = 0.05; b For the main experiment n = 4 and α = 0.05; DEV 01, DEV 02 and DEV
04 are in millimeters; DEV 03 is in decimal degrees.
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Table 9. Comparative results of the multi-criteria optimization model type “B”.

Validation Samples a Model Type “B” Main Experimental n◦ 04 b

Mean 95% CI Predicted Mean 95% CI

DEV 01 −0.366 −0.480 −0.252 −0.293 −0.293 −0.620 0.034
DEV 02 −0.246 −0.267 −0.225 −0.242 −0.310 −0.444 −0.177
DEV 03 0.108 0.078 0.139 0.182 0.323 0.189 0.456
DEV 04 0.136 0.068 0.204 0.099 0.188 0.034 0.342

Oj 0.25 0.17 0.33 0.24 0.31 0.39 0.27
a For validation samples n = 5 and α = 0.05; b For the main experiment n = 4 and α = 0.05; DEV 01, DEV 02 and DEV
04 are in millimeters; DEV 03 is in decimal degrees.

From Tables 8 and 9 it can be seen that the samples of the validation tests have mean deviations at
lower levels than those of the main experimental tests and, also, the CI limit values are at lower levels.
This being the case, in relation to the average values, there is a significant improvement of 20% when
compared to the best samples of each type test (type A = 18% and Type B = 22.5%). With regard to
the predictions of the multi-criteria optimization algorithms models, the deviations predicted by the
models are within of CI limits for the validation samples. Additionally, in relation to the means values
of these samples the predicted values of the model type “A” have a mean error on average of 13.2%
and type “B” o15.5%, both inside the CI. Furthermore, the values of Oj are, on average, 76% below the
tolerance limits defined in this work.

4. Conclusions

In general, it is concluded that the work developed with ANN models was able to simultaneously
and satisfactorily model the geometric deviations in the polymer vacuum thermoforming process,
where there are conflicts of objectives between the quality parameters and the manufacture of the
variables using a laboratory infrastructure and with a small number of tests.

The tests allowed us to determine that, to minimize deviations, one should use factor “A” between
85 and 95 s, “B” within the range of 87.5% to 100%, “C” in the range of 85% to 100%, “D” for 6.3 to
8.1, and “E” between 12.5 and 15 mbar. Additionally, the main factors of the analysis of the process
are heating time (A) and heating electric power (B). The understanding of their interactions is the
critical point for minimizing the set of deviations. In addition, we note that the analysis of results of
experimental tests does not allow us to select a (1) single set of factors and levels that simultaneously
optimize all parameters. This is because different levels of the same factor could be optimal for different
responses, e.g., factor “D” [9].

It has been verified that the gradual modification of the ANN architecture with the modification of
functions, algorithms, and the number of layers associated with the progressive increase in the amount
of data presented to ANNs significantly reduces the residues and can improve the approximation of
the network. Additionally, it can lead to the development of models of optimization by ANNs with
reduced numbers of neurons and satisfactory levels of generalization error.

In the validation tests, a gain was obtained in the general minimization of deviations of 20% and
coefficient of performance (Oj) of 22.6% and, also, forecast efficiency average values of 84% for the
target value. It was verified by CI limit values, that the predicted values by two models are within
the expected variability for the process. Additionally, it is concluded that the ANN’s models are an
option for the development of algorithms for prediction and optimization of the polymer vacuum
thermoforming process with a median amount of data.

Finally, each solution presented by the optimization models represents a (1) set of possible values
of the manufacturing parameters within the established modeling criteria, and the choice of one of
the solutions will depend on other technical or economic factors involved in the process, such as
processing time, operating cost, electric energy consumption, etc.
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