Catechol end-functionalized Polylactide by organocatalyzed ring-opening polymerization

Naroa Sadaba^{1,2}, Maitane Salsamendi¹, Nerea Casado¹, Ester Zuza², Jone Munoz², Jose-Ramon Sarasua², David Mecerreyes^{1,3}, Daniele Mantione¹, Christophe Detrembleur⁴, Haritz Sardon^{1,3*}

- ¹ POLYMAT, University of the Basque Country UPV/EHU, Joxe Maria Korta Center, Avenida Tolosa 72, Donostia/SanSebastian 20018, Spain
- ² Department of Mining-Metallurgy Engineering and Materials Science, POLYMAT, University of the Basque Country UPV/EHU, School of Engineering, Alameda de Urquijo s/n, Bilbao 48013, Spain
- ³ IKERBASQUE Basque Foundation for Science, Maria Diaz de Haro 3, E-48013 Bilbao, Spain
- ⁴ Center for Education and Research on Macromolecules (CERM), CESAM Research Unit, University of Liège (ULg), Sart Tilman B6a, LIEGE, Belgium
- * Correspondence: haritz.sardon@ehu.es; Tel.: +34-94-301-5303

Table S1: Different synthesis rout for the polymerization L-lactide initiate by dopamine.

	Solvent	Temperature (°C)	CATALYST	Time(h)	[M]/[I]/[Cat]	DP _{NMR}
1	DCM	25	-	96	10/1/0	8
2	CHCl ₃	25	-	96	10/1/0	12
3	DMF	25	-	48	10/1/0	9
5	THF	25	-	96	10/1/0	7
6	THF	50	-	48	10/1/0	7
7	DMF+CHCl ₃	25	-	144	10/1/0	-
8	DMF+CHCl ₃	25	TEA	24	10/1/1	11
9	DMF+CHCl ₃	25	DBU	48	10/1/1	

Figure S2: ¹H NMR of Catechol-PLLA for degree of polymerization. Dp = 10. Reaction conditions: 2 mol L^{-1} solution of L-lactide in CHCl₃ at 25 °C using DBU as catalyst. (entry 9 of table S1).

Figure S3:¹³C NMR of Catechol-PLLA for degree of polymerization DP = 10. (entry 2 of table 1).

Figure S4: ¹H NMR of Catechol-PLLA for degree of polymerization DP = 20. (entry 6 of table 1).

Figure S5: SEC trace with UV (289 nm wavelength) and refractive-index signals for semitelechelic for DP = 20. (entry 6 of table 1).

Figure S6: MALDI-TOFF spectra for semitelechelic catechol PLLA of DP = 20 (entry 6 of table 1).

Figure S7: ¹H NMR of Catechol-PLLA for degree of polymerization DP = 50. (entry 7 of table 1).

Figure S8: 13 C NMR of Catechol-PLLA for degree of polymerization DP = 50. (entry 7 of table 1).

Figure S9: SEC trace with UV (289 nm wavelength) and refractive-index signals for semitelechelic for DP = 50. (entry 7 of table 1).

Figure S10: MALDI-TOFF spectra for semitelechelic catechol-PLLA of DP = 50 (entry 7 of table 1).

Figure S11: ¹H NMR of Catechol-PLLA for degree of polymerization DP = 100. (entry 8 of table 1).

Figure S12: Kinetic plots for the different experiments runned with different TEA concentratios.