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Abstract: In this article, the molecularly imprinted polymers (MIPs) of ginsenoside Re (Re) were
synthesized by suspension polymerization with Re as the template molecule, methacrylic acid
(MAA) as the functional monomers, and ethyl glycol dimethacrylate (EGDMA) as the crosslinker.
The MIPs were characterized by Fourier transform infrared spectroscopy (FTIR), Field emission
scanning electron microscopy (FESEM), and surface porosity detector, and the selective adsorption
and specific recognition of MIPs were analyzed using the theory of kinetics and thermodynamics.
The experimental results showed that compared with non-imprinted polymers (NIPs), MIPs had a
larger specific surface area and special pore structure and that different from the Langmuir model
of NIPs, the static adsorption isotherm of MIPs for Re was in good agreement with the Freundlich
model based on the two adsorption properties of MIPs. The curves of the adsorption dynamics and
the lines of kinetic correlation indicate that there was a fast and selective adsorption equilibrium for
Re because of the affinity of MIPs to the template rather than its analogue of ginsenoside Rg1 (Rg1).
The study of thermodynamics indicate that the adsorption was controlled by enthalpy and that MIPs
had higher enthalpy and entropy than NIPs, which contributed to the specific recognition of MIPs.
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1. Introduction

Molecularly imprinted polymers (MIPs) are widely used for the specific recognition of template
molecules [1–4]. Usually, MIPs are obtained by following steps. First, the monomers are arranged
around the template molecules based on covalent structure or molecular self-assembly. Second,
the organized architecture is achieved by the photo- or thermal polymerization in the presence of a
crosslinker. Third, the binding sites, which are complementary to the template molecules in terms
of size, structure, and site of the functional groups, are formed after the removal of the template by
chemical reaction or extraction [5]. Therefore, the MIPs obtained have the characteristics of selectivity
and recognition of the desired target [6–8]. Compared with some natural biomolecular recognition
systems, such as antibody and antigen, receptor and ligand or enzyme and substrate, the MIPs have
some significant advantages including high resistance to temperature, pressure, acid, alkali, metal ion,
and organic solvents. Therefore, the MIPs can be applied not only as a substitute material for natural
biological molecules but also as the separation materials under a variety of complex conditions [9–11].

Ginsenoside Re (CAS:51542-56-4, Re) is a tetracyclic triterpene derivative, which exists mainly in
Panax ginseng C. A. Mey and Panax quinquefolium L. of the family Araliaceae [12]. It has been declared
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to have antioxidant effects and antihyperlipidemic efficacies [13], as well as being neuroprotective [14],
strengthening immunity, and improving memory [15,16]. In recent years, the extraction and
purification of ginsenoside Re from ginseng have been widely addressed in the field of separation.
There are several reports on MIPs being used for the specific recognition of ginsenoside Rb1 or Rg1
from the complex extract of ginseng [17–19]. In order to separate Re with higher selectivity, Re was
used as a template molecule in this paper.

As a widely used material, MIPs and their identification mechanism for their template have
been reported in depth [20–22]. It is generally believed that the molecular recognition and selective
adsorption are essentially the result of the complementation of the structure and function between the
imprint and target molecules. The regular arrangement of functional monomers in the polymerization
provides a binding space for the template, enabling the MIPs to selectively absorb imprinting molecules.
The shape of the MIPs can be considered as a molecular sieve, allowing molecules that are imprinted or
smaller than the template into the imprint network [23]. The adsorption mechanism of MIPs is similar
to the hypothesis of the “lock and key” of an enzyme and its substrate interaction, which is a very
famous principle of the adsorption mechanism of MIPs [24]. For different template molecules of MIPs,
there are different adsorption models, which include the Langmuir, Freundlich, or Langmuir-Freundlich
isotherm [25–27]. Although those theories provide a logical explanation for the universal application
of MIPs [28,29], the conclusions are usually qualitative, modal, or theorized. In fact, there are certain
limitations in some special cases such as natural low molecular weight organics and its imprinted
polymers [30].

The work of this paper focused on the adsorption thermodynamics and adsorption kinetics,
which help to understand the mechanism of selective adsorption and specific recognition by MIPs.
The imprinted polymers were prepared and used as a specific adsorbent for ginsenoside Re using
methacrylic acid (MAA) as the monomers. For a contrastive study, the ginsenoside Rg1 (CAS:
22427-39-0, Rg1), an analogue of Re, was selected. The mechanisms of selective adsorption and
specific recognition of MIPs were evaluated by material characterization and adsorption experiments.
The MIPs exhibited significant adsorption and recognition performances compared to the NIPs.
The purpose of this article is to provide a support for further understanding the mechanism of MIPs.

2. Experimental

2.1. Instruments and Reagents

The functional groups of polymers were characterized by Fourier transform infrared (FTIR)
(Nicolet IS10, Thermo Fisher, Waltham, MA, USA). Field emission scanning electron microscopy
(FESEM, operated at 2.0 kV, Oberkochen, Germany) was used to characterize the morphologies and
structures of the polymers. All of the chromatographic analysis data of Re and Rg1 were obtained
using an LC-10AT system (Shimadzu, Kyoto, Japan). In addition, the physical adsorption parameters
of the polymers were obtained using the V-sorb 2800P analyzer (Gold APP Co., Beijing, China). The UV
curing machine (VIPUV Co., Guangzhou, China) was used for photo-polymerization.

Ginsenoside Re and ginsenoside Rg1 (purity > 98%) were purchased from Chengdu Must Bio-Tech.
Co., Ltd. (Chengdu, China). Crude extract of ginsenoside was obtained from Zixin SGT Bio-Tech. Co.,
Ltd. (Tongliao, China). Structures of Re and Rg1 are shown in Figure 1. Methacrylic acid (MAA),
ethyl glycol dimethacrylate (EGDMA), and poly (vinyl alcohol)-1788 (PVA-1788) were purchased from
Sinopharm Chem. Reagent Co., Ltd. (Shanghai, China). EGDMA was washed with a solution of
10% NaOH, saturated solution of NaCl, and distilled water, respectively. In addition, EGDMA was
dried with anhydrous Na2SO4. 2,2′-azobisisobutyronitrile (AIBN) that was obtained from Sinopharm
Chemical Reagent Co., Ltd. (Shanghai, China) and was recrystallized with ethanol. All other chemicals
were analytical reagents and purchased from Beijing Chem. Works (Beijing, China).
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2.2. Preparation of MIPs

Uniformly sized polymer microspheres were synthesized by the method of suspension
polymerization according to reference [31], and the MIPs were prepared by light-initiating
polymerization with Re as the template, MAA as the functional monomer, EGDMA as the crosslinker,
and PVA-1788 as the dispersant. Figure 2 presents the synthetic scheme of MIPs.
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The imprinting process of MIP consisted of a series of complicated processes. First, 0.2 g PVA-1788
was dissolved in 30 mL water in a three-neck flask in a water bath at 80 ◦C. Then, the solution
was cooled naturally to room temperature. Second, Re (0.90 g, 0.95 mmol) was dissolved in 10 mL
chloroform and 0.450 g (5.23 mmol) MAA was added to the flask to pre-crosslink Re. Third, 2.5 g
(12.5 mmol) EGDMA, 40 mg AIBN, and 50 mL toluene were added to the flask. Then, the mixed
solution was stirred (600 rpm) for 24 h under constant nitrogen protection and the flask was irradiated
under ultraviolet light (λ = 365 nm). Afterwards, in order to eliminate Re, the polymer was washed
with a mixed solvent of methanol-acetic acid (v/v = 9:1) and then the residual acetic acid was removed
with ethanol. Hot water (80 ◦C) was used last to remove the residual PVA-1788. These elimination
steps for the template, acetic acid, and PVA were completed in a Soxhlet extractor, sequentially, and
the time of each step was 1 h.

For comparison, non-imprinted polymer microspheres (NIPs) were also obtained by the same
method except for the addition of Re.

2.3. Adsorption Experiments

The experiments for the adsorption kinetics were implemented at three temperatures (293, 303,
and 313 K) for 5 to 60 min. The thermodynamic parameters were obtained based on the effect of these
temperatures. In the experiments of the adsorption isotherm, polymers (50 mg) were added in 30%
ethanol solution of Re at different concentrations (100–500 mg/L) and the mixture was shaken for
30 min. Each adsorption experiment was repeated three times and the results were obtained by HPLC,
then the average was used for data analysis. The adsorption capacities of MIPs and NIPs were derived
using Equation (1):

Qe =
(C0 − Ce)×V

M
(1)

where Qe (mg/g) is the capacity of the equilibrium adsorption of Re or Rg1; C0 and Ce are the initial
and equilibrium concentrations (mg/L) of Re; V (L) is the volume of the solution; and M (g) is the
weight of the adsorbents.

In the field of molecular imprinting, for the quantitative analysis of the combination of the
template and the adsorbent, the Scatchard model is used [7]:

Qe

Ce
=

(Qmax −Qe)

KD
(2)

where KD is the dissociation constant; Qmax is the maximum adsorption capacity of Re; and Ce is the
equilibrium concentration of Re.

As a comparative study, the adsorption of the NIPs, together with Rg1, were carried out under
the same conditions.

Analyses of Re and Rg1 were carried out using an HPLC system (LC-10AT system) with a
Zorbax-C18 column (250 mm × 4.6 mm, 5 µm) and the detection wavelength was 203 nm. The mobile
phase was a solution of acetonitrile–water–acetic acid (20:80:0.05, v/v/v) and the flow rate was
1.0 mL/L. The calibration graphs and correlation coefficients were obtained based on the quantitative
determination of Re and Rg1, which were y = 2331.9x + 4.9801 (20–600 mg/L, R2 = 0.9990) and
y = 2574.6x + 3.4574 (20–600 mg/L, R2 = 0.9985), respectively.

2.4. Adsorption Kinetics

The adsorption process was evaluated and described by adsorption kinetics [32,33]. In order
to evaluate the adsorption process of Re and Rg1 on MIPs and NIPs, respectively, the first order
adsorption kinetics can be preliminary used:

ln
(

1− Qt

Qm

)
T
= Ar × ln

(
1− Qt

Qm

)
A

(3)
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where Re and Rg1 are represented by the subscripts ‘T’ and ‘A’, respectively, Ar is the relative
adsorption rate of Re and Rg1, and Qt and Qm are the actual and the maximal amount of adsorption.
The relative adsorption relationship of Re and Rg1 on MIPs and NIPs can be obtained based on
Equation (3).

2.5. Adsorption Isotherms

Adsorption isotherms are extremely important for describing the interaction between solute and
adsorbent, which indicates the distribution relationship of adsorbate between solution and adsorbent
in an equilibrium state [34]. In order to investigate the adsorption capacity of an adsorbent in solution,
the Langmuir and Freundlich isotherms are commonly used [35,36].

The Langmuir isotherm [35] is commonly used to describe the surface adsorption of single
molecular layers within the adsorbent:

Ce

Qe
=

1
bQm

+
Ce

Qm
(4)

where Qm (mg/g) and Qe (mg/g) are the maximum and equilibrium adsorption capacity of the
adsorbent, respectively; b (L/mg) is the adsorption equilibrium constant; and Ce (mg/L) is the
equilibrium concentration of Re.

However, the Freundlich isotherm is highly suitable for a heterogeneous surface. The equation [26]
can be expressed as follows:

ln Qe = ln Kd +
1
n

ln Ce (5)

where Kf (mg/g) and n are the Freundlich empirical parameters.

2.6. Thermodynamic Analysis

As generally known, the enthalpy of adsorption is a thermal effect of the adsorption process,
which is usually associated with the specific adsorption of the adsorbent and adsorbate and internal
energy [37]. The adsorption of MIPs is essentially the result of the induction of the template to the
polymer. Therefore, the change of adsorption enthalpy can indirectly describe the inducement between
MIPs and the substrate. A larger adsorption enthalpy shows a stronger binding capacity of the MIPs
to the substrate. However, the adsorption entropy is a function of the disordered state before and
after adsorption, which reflects the change of adsorbate from the solution to the surface of the MIPs.
Consequently, according to the change of adsorption enthalpy and adsorption entropy, the adsorption
process can be learned. Based on the thermodynamic theory [38], the correlation relationship of MIPs
and NIPs are expressed as follows [5]:

ln
(

1− QT × w
n0

)
=

∆Had
RT

− ∆Sad
R

(6)

where n0 is the initial molar number of the adsorbate; w is the mass of MIPs; ∆Had and ∆Sad are the
adsorption enthalpy and adsorption entropy, respectively; and T(K) is the absolute temperature of the
adsorption process.

2.7. Solid-Phase Extraction

A 1-mL polypropylene SPE cartridge was filled with MIPs. The imprinted SPE cartridge was
successively washed with 5 mL methanol and equilibrated using 1 mL loading solvent (methanol-water
= 3:7, v/v). After the crude extract solution of ginsenoside was loaded into the SPE cartridge
at a flow rate of 0.2 mL/min, the moving phase of 3 mL methanol-water (v/v = 3:7) and 3 mL
methanol-water-acetic acid (v/v/v = 5:4.5:0.5) were used to elute the impurities and Re at 0.5 mL/min,
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respectively. The collected elution of Re was completely volatilized under nitrogen and redissolved in
methanol for analysis by HPLC.

3. Results and Discussion

3.1. Characterization of MIPs and NIPs

Figure 3 presents the infrared spectra of the MIPs, NIPs, and MIP precursors. The fact that
the typical feature of –C=C– around 3045 cm−1 in Figure 3b disappeared confirmed that the MIPs
(Figure 3a) and NIPs (Figure 3b) had been prepared. The stretching adsorptions at around 3310, 2850,
1740, 1380, 1150, 1070, and 1010 cm−1 represented the functional groups of –OH, –CH2–, –COO–,
–CO–, –CH3, –COOC, –CO (v), and –CH (σ), respectively. For MIPs, a red shift of –OH stretching
bond appeared, which related to the limitation of the template molecules during polymerization.
After washing, the spectrum of MIPs became comparable to that of NIPs, indicating that almost
all of the template was removed and ready for Re adsorption. Therefore, due to the binding sites
being complementary to Re in terms of size and structure, MIPs had a characteristic selectivity and
recognition for Re.
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After polymerization, Re was eliminated after a post-processing step and micropores, as imprinted
sites, were left in the MIPs. Figure 4 obviously shows that the pores were formed in the structures of
MIPs and the surface of NIPs was relatively smooth. Therefore, MIPs often have a larger surface area
and a rougher structure with larger cavities than those of NIPs, which is mainly due to the presence
of the imprinted sites of the template molecule. Nitrogen adsorption-desorption plots of MIPs and
NIPs are shown in Figure 5. The adsorption curve of MIPs did not coincide with the desorption curve
and an adsorption lag was produced. The shape of the hysteresis loop reflects the pore structure in
the MIPs. Curves of MIPs had a hysteresis effect [38] (type II) within the range of 0.4–0.6 (relative
pressure). The hysteresis effects indicate that the uniform size and shape rule of mesoporous pores
existed in the pore structure of the MIPs compared with the NIPs. In addition, the specific pore
volumes, pore diameters, and surface areas of MIPs and NIPs are shown in Table 1. The results
show that the specific surface area and the average pore diameter of MIPs were greater than that of
NIPs. This indicates that the templates confined the shrinkage of the mesoporous pores effectively
in the process of the polymerization and the synthesized MIPs had a more regular pore structure.
These differences provided a complementary spatial structure for the selective recognition of the
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template and MIPs, and underline the indistinct impact of the template molecule on the molecularly
imprint polymer.
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Table 1. Properties of MIPs and NIPs.

Polymer Specific Surface Area a

(m2·g−1)
Average Pore Diameter b

(nm)
Specific Pore Volume c

(mL·g−1)

MIPs 328.96 4.43 0.69
NIPs 255.77 3.78 0.62

a Calculated by the Brunauer-Emmett-Teller (BET) formula; b Calculated by the Dubinin-Radushkevich (D-R)
formula; c Calculated by the Barrett-Joyner-Halenda (BJH) formula.

3.2. The Recovery of Re

In the preparation of MIPs, that is, the polymerization of functional monomers and crosslinker,
the double bonds of the reactants were broken to form the polymer matrix. Although Re has double



Polymers 2018, 10, 216 8 of 14

bonds, with its large size and steric hindrance, it does not co-polymerize into a polymer. This result
was proven by the above FTIR spectra of MIPs in Figure 3 where the characteristic peaks of ginsenoside
Re (2950, 1650, and 1460 cm−1) were not found. Therefore, Re was easily washed out from the polymer
matrix with a high Re recovery of 93.3%.

3.3. Adsorption Studies of MIPs and NIPs

The adsorption kinetic curves (Figure 6) for the adsorption of Re and Rg1 on MIPs and NIPs
show that the amount of adsorption increased with an increase in temperature or adsorption time.
There was a narrow difference between the Re and Rg1 with NIPs as the adsorbent. However, using
MIPs, the adsorption capacity of Re was much larger than NIPs and larger than that of Rg1. The result
indicates the selective adsorption for the template by the MIPs.
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Figure 7 is the Scatchard curves of Re on MIPs and NIPs. It shows that there were two
discontinuous lines of MIPs, which indicate there were two adsorption properties on MIPs, including
the higher adsorption combining sites with the fitting equation of Q/Ce =−0.972Q + 62.77 (R2 = 0.8852)
and the lower adsorption combining sites with the fitting equation of Q/Ce = −0.049Q + 27.93
(R2 = 0.9527). According to the two regression lines, KD and Qmax were 1.0288 mg/mL and 64.58 mg/g
for first receptor sites and 20.41 mg/mL and 570.05 mg/g for the second receptor sites, respectively.
On the contrary, one line of NIPs indicate only one type of adsorption function of NIPs; the fitting
equation was Q/Ce = −1.260Q + 17.10 (R2 = 0.9906) and KD and Qmax were 0.7937 mg/mL and
13.57 mg/g, respectively. The results show that only the adsorption of MIPs had a significant positive
departure for Re.
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3.4. Kinetic Consideration

Based on Equation (3), the plots of kinetic correlations for the relative adsorption of Re and Rg1
and the relative adsorption of MIPs and NIPs are shown in Figure 8. The relevant parameters of
the linear fitting equation are shown in Table 2. The typical nonspecific adsorption of NIPs can be
revealed because the Ar (slope) value was approximately 1 (Figure 8a). For MIPs, however, the slope
shows a distinct specific adsorption. Plotting ln(1 − Qt/Qm)-Re versus ln(1 − Qt/Qm)-Rg1 is normally
expected to give a straight line. The capacity of adsorption for Re was 1.27 times that of Rg1 and
the relative adsorption rate for Re was 1.28 times as much as that for Rg1. The results indicate that
a faster adsorption equilibrium and selective adsorption were the results of the affinity of MIPs for
the template, and the specific adsorption of MIPs was the result of a greater promotion in the process
of imprinting.
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Table 2. The relevant parameter of the linear fitting equation.

Object
Relevant Parameter

Slope Statistics

MIPs 1.3706 0.9932
NIPs 1.0828 0.9984

Re 1.9433 0.9938
Rg1 1.5259 0.9850

3.5. Adsorption Isotherms

Plots of Langmuir isotherms for the adsorption of MIPs and NIPs for Re are shown in Figure 9a,
and the values of Qm and b were obtained from the slopes and intercepts of the plots. Similarly,
plots of Freundlich isotherms are shown in Figure 9b and the values of Kf and n were achieved from
the intercepts and slopes of the plots. The parameters and correlation coefficients of the adsorption
isotherms are tabulated in Table 3. For MIPs, the correlation coefficients (0.9949–0.9989) of the Freundlich
model were very close to 1 and much larger than the Langmuir model (0.8990–0.9625), indicating that
the adsorption process of the MIPs for Re was more consistent with the adsorption of a porous
heterogeneous surface. However, the adsorption process of the NIPs was more suitable for the
Langmuir model of single molecular layer adsorption. The adsorption distribution coefficient (KD) was
equal to the value of Qe/Ce (C→0). The KD values of the two cases are also listed in Table 3. The values
of KD of MIPs were larger than those of NIPs and were the result of the specific recognition by MIPs
for Re.
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Table 3. The isotherm parameters of MIPs and NIPs.

Polymer T(K)
Langmuir Isotherm Freundlich Isotherm

Qm b KD R2 Kf n KD R2

MIPs
293 0.83 0.58 0.49 0.9483 0.68 1.10 1.07 0.9989
303 0.71 0.87 0.62 0.8990 0.93 1.13 1.37 0.9949
313 0.36 1.00 1.25 0.9625 1.85 1.47 1.80 0.9962

NIPs
293 0.25 1.76 0.45 0.9958 1.09 1.30 0.57 0.9941
303 0.30 1.80 0.56 0.9951 1.34 1.32 0.77 0.9937
313 0.39 1.83 0.70 0.9938 2.65 1.58 0.83 0.9921
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3.6. Thermodynamic Studies

Based on Equation (6), the plot of ln(1 − Q × w/n0) vs. (1/T) is shown in Figure 10; the plots
are normally expected to be a straight line. Compared with NIPs, the MIPs showed a significantly
different adsorption behavior for Re. Relative to NIPs (∆Had = 0.0521 KJ/mol), the adsorption enthalpy
(∆Had = 3.6045 KJ/mol) of MIPs was obviously larger. This indicates that the inducement of MIPs for
Re is greater than that of NIPs. However, the adsorption entropy of MIPs (∆Sad = 0.0132 KJ/mol·K)
was less than NIPs (∆Sad = 0.50 × 10−3 KJ/mol·K). The change in adsorption entropy, which reveals
a difference in the adsorption behavior of Re and Rg1, may be the result of the increased interaction
between the molecules due to the high specific imprint. The change in adsorption entropy can be the
result of a larger restriction on molecular motions due to the adsorption. According to the results of the
adsorption isotherms and kinetics, Re adsorption on MIPs was the spontaneous process of enthalpy
control. Relative to the previous discussion, the obvious induction in MIPs can be considered to be the
result of highly specific imprinting, which allowed the MIPs to specifically bind Re.
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3.7. Application of MIPs-SPE for Crude Extracts

Figure 11a is the HPLC profile of the crude extract of ginsenoside, which shows that there were
complex chromatographic peaks corresponding to Re, Rg1, and other multiple impurities. The peak
area ratio of Re to Rg1 in the crude extracts was 2.47. Figure 11b is the HPLC profile of the collected
elution from MIPs-SPE, which shows that there were two chromatographic peaks corresponding to
Re and Rg1 and the ratio of Re to Rg1 in the collected elution was 4.21. The SPE experiment result
demonstrates that the MIPs completely removed the major impurities and efficiently increased the
content of Re as Re and Rg1. Although the structure difference of Re and Rg1 was only one glycoside,
MIPs still exhibited good selectivity for Re. Therefore, the synthesized MIPs of Re exhibit practical
value for their application to crude extracts of ginsenosides.
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4. Conclusions

Compared with non-imprinted polymers (NIPs), the experimental results show that MIPs have
a larger specific surface area and special pore structure. For ginsenoside Re, the static adsorption
isotherm of MIPs was in good agreement with the Freundlich model based on the two adsorption
properties on MIPs, and there was a fast and selective adsorption equilibrium with high enthalpy and
entropy. Re adsorption on MIPs is the spontaneous process of enthalpy control. All of this information
indicates that the induced molecular memory within the MIPs make the polymer selectively adsorb Re.
The present investigation suggests that the molecularly imprinted polymers of ginsenoside Re can be
employed as an effective adsorbent for the enrichment of Re. We believe that these results are valuable
and necessary for further research on the recognition mechanism of molecular imprinting in the future.
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