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Abstract: A relatively unknown natural fiber extracted from the leaves of the fique plant, native of the
South American Andes, has recently shown potential as reinforcement of polymer composites
for engineering applications. Preliminary investigations indicated a promising substitute for
synthetic fibers, competing with other well-known natural fibers. The fabric made from fique
fibers have not yet been investigated as possible composite reinforcement. Therefore, in the present
work a more thorough characterization of fique fabric as a reinforcement of composites with a
polyester matrix was performed. Thermal mechanical properties of fique fabric composites were
determined by dynamic mechanical analysis (DMA). The ballistic performance of plain woven fique
fabric-reinforced polyester matrix composites was investigated as a second layer in a multilayered
armor system (MAS). The results revealed a sensible improvement in thermal dynamic mechanical
behavior. Both viscoelastic stiffness and glass transition temperature were increased with the amount
of incorporated fique fabric. In terms of ballistic results, the fique fabric composites present a
performance similar to that of the much stronger KevlarTM as an MAS second layer with the same
thickness. A cost analysis indicated that armor vests with fique fabric composites as an MAS second
layer would be 13 times less expensive than a similar creation made with Kevlar™.

Keywords: fique fabric; composites; polyester matrix; thermal dynamic mechanical behavior;
ballistic performance

1. Introduction

The beginning of this new century witnessed a surge in research works dedicated to the use of
fibers extracted from plants in engineering applications. Several specialized and review articles [1–15]
emphasized the use of these natural lignocellulosic fibers and their fabrics as reinforcements of
polymer composites, competing with synthetic fibers. Environmental sustainability goals associated
with lower cost, societal benefits, and some technical advantages favor the substitution of natural fiber
and fabric for glass fiber [16] and aramid fabric [17]. Industrial components, mainly in automobile
fabrication [18–20], increasingly employ natural fiber and fabric composites. A specific industrial
sector in which fibers and fabrics are of relevance is that of armor vests. Originally, fiber glass was
extensively used [21,22] and carbon fiber-reinforced polymer composites were also considered [23].
Today, synthetic aramid fabrics such as Kevlar™ (Du Pont, Richmond, VA, USA) [24] and Twaron™
(Teijin Aramid, Conyers, GA, USA) [25] as well as ultra-high molecular weight polyethylene fibers, such
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as Spectra™ (Spectra Energy Corporation, Houston, TX, USA) [26] and Dyneema™ (DSM Dyneema
LLC, Stanley, NC, USA) [27], are major choices for personal armor vests. Recent publications [28–33]
revealed that natural fibers as well as corresponding fabrics-reinforced polymer composites display
comparable ballistic performance to KevlarTM. In spite of numerous publications dedicated to this
subject, the growing interest for engineering applications is continuously demanding research works
on less common promising natural fibers and fabrics. An example is the relatively unknown fiber
extracted from the leaves of an Andean plant (Furcraea andina). This fique fiber has been brought
to attention for its potential as a composite reinforcement [34–39]. Figure 1 illustrates: (a) fique
plantation in Colombia and (b) a bundle of fique fibers extracted from the leaves of the plant.
For practical use, the fique fabric is yearlong found in the Colombian market and largely available
for common applications, mostly as sackcloth for agricultural products. Owing to its national
importance, the federal government of Colombia controls both the price and quality of the fique
fiber, which is stored and distributed for industrial processing, including as a textile. The extraction
cost, from plantation to clean fibers (see Figure 1a,b), is around US$0.14, while the consumer price
varies from US$0.36 to US$0.45. Fiber surface modification [34] and thermal degradation [35] as well
as bending [36] and tensile [37,38] properties of fique fiber-reinforced composites were preliminarily
investigated. Moreover, an inverse correlation between the density and the diameter of fique fibers
was established [39]. As for fique fabric, either woven or non-woven, characterization and properties
of polymeric-reinforced composites are still not found in the scientific literature. In particular, thermal
dynamic mechanical properties, which are important for engineering applications, were not mentioned
for fique fabric in the only review [40] dedicated to polymer composites reinforced with less common
natural fiber-based materials. These properties might be obtained by dynamic mechanical analysis
(DMA) and could provide viscoelastic behavior as well as temperature effect on distinct dynamic
moduli. Any possible engineering application of fique fabric-reinforced composites, particularly in
personal armors, will demand additional information on thermal dynamic mechanical and ballistic
properties, which is the objective of the present work.
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Itagüí, Antioquia, Colombia. A piece of as-received fabric is shown in Figure 1c. An average 
equivalent diameter of 0.18 mm and an average density of 667 kg/m3 for the fique fiber, Figure 1b, 
were reported elsewhere [39]. The areal density of the plain-woven fabric, Figure 1c, investigated in 
this work was found to be 0.036 kg/m2. An isophtalic polyester resin hardened with 1% methyl-ethyl-
ketone, fabricated by Dow Chemical and supplied by Resinpoxy, Rio de Janeiro, Brazil, was used as 
the composite matrix. Composites were prepared by accommodating the previously dried fabric (60 
°C for 24 h) in a steel mold, and then pouring the still fluid resin-hardener mixture between fabric 
layers. In this way, 120 × 150 × 50 mm3 plates of laminate composites with 10, 20, and 30 vol % fique 

Figure 1. Plantation of fique (Furcraea andina) in Colombia (a), bundle of fique fibers (b), and as-received
piece of fique fabric (c).

2. Materials and Methods

2.1. Materials Source and Process

Fique fabric commercially available in Colombia was supplied by Compañia de Empaques, Itagüí,
Antioquia, Colombia. A piece of as-received fabric is shown in Figure 1c. An average equivalent
diameter of 0.18 mm and an average density of 667 kg/m3 for the fique fiber, Figure 1b, were reported
elsewhere [39]. The areal density of the plain-woven fabric, Figure 1c, investigated in this work was
found to be 0.036 kg/m2. An isophtalic polyester resin hardened with 1% methyl-ethyl-ketone,
fabricated by Dow Chemical and supplied by Resinpoxy, Rio de Janeiro, Brazil, was used as
the composite matrix. Composites were prepared by accommodating the previously dried fabric
(60 ◦C for 24 h) in a steel mold, and then pouring the still fluid resin-hardener mixture between fabric
layers. In this way, 120 × 150 × 50 mm3 plates of laminate composites with 10, 20, and 30 vol % fique
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fabric associated with 4, 8, and 12 layers were respectively produced. These plates were kept under
3 MPa pressure for 24 h, at room temperature (25 ◦C), until complete solid cure. Test samples were cut
from the laminate composite plates and standard flexural specimens with 10, 20, and 30 vol % fabric,
as well as neat polyester for control, were prepared.

2.2. Dynamic Mechanical Analysis (DMA)

DMA tests were performed in fique fabric composites, using flexural specimens according
to standard. All analyses were conducted in triplicate to evaluate the degree of dispersion in
corresponding curves. Less than 10% difference was found between curves for identical conditions,
basically confirming the same results. Therefore, only one typical curve is used to illustrate
each condition.

Each DMA test was carried out in the interval from −20 to 160 ◦C in a model Q/800 TA
Instruments (New Castle, DE, USA) in three-point flexural mode, 1 Hz frequency, and a heating
rate of 3 K/min (3 ◦C/min) under nitrogen atmosphere. The storage modulus (E′), loss modulus
(E”), and tangent delta curves were provided by the equipment. Prismatic standard specimens with
dimensions of 50 × 13 × 3 mm were used for the tests.

2.3. Ballistic Tests

In addition to DMA, preliminary ballistic tests were carried out according to the NIJ 0101.06
standard using 7.62 × 51 mm2 NATO military ammunition with a 9.7 g projectile propelled from a
gun barrel. The tests were conducted at the Brazilian Army shooting facility, CAEX, in the Marambaia
Peninsula, Rio de Janeiro, with three samples of 10 and 20 vol % of fique fabric for each type of
multilayered armor system (MAS) [41,42]. Figure 2a shows the exploded view of the ballistic test setup
while Figure 2b illustrates, schematically, the MAS composed of a front ceramic followed by a layer of
fique fabric composites and backed by an aluminum alloy sheet. The MAS is set as a target together
with a block of so-called clay witness that simulates a human body and should only allow penetration
to a certain depth. According to the standard NIJ 0101.06, the measured depth of indentation is limited
to 44 mm in order to avoid lethal trauma to the MAS wearer. Measurements were performed with a
laser sensor caliper with 0.01 mm of precision.
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Figure 2. (a) Schematic exploded view of the ballistic experimental setup and (b) schematic illustration
of the investigated multilayered armor system (MAS), as a target placed ahead of a clay witness block.

2.4. Fracture Microscopy

The ruptured surface of each MAS component after the ballistic test was analyzed by scanning
electron microscopy (SEM) in a model QUANTA FEG250 Fei (Thermo Fisher Scientific, Hillsboro, OR,
USA) microscope operating with secondary electrons at 20 kV.
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3. Results and Discussion

3.1. Dynamic Mechanical Analysis (DMA)

Figures 3–5 respectively show the DMA storage modulus (E′), loss modulus (E”), and tangent delta
(tan δ) curves for the neat polyester resin and fique fabric-reinforced composites. Figure 3 compares the
variation of the storage modulus (E′) with temperature for the neat polyester and different composites
investigated. For all temperature levels, from 25 ◦C up to 70 ◦C, the E′ values for the fique fabric
composites are significantly higher than that of the neat polyester resin. In fact, the value of E′ is
directly related to the material’s ability to withstand mechanical loads with recoverable viscoelastic
deformation. Consequently, the results in Figure 3 above room temperature indicate a substantial
raise in the viscoelastic stiffness of the polyester with increasing incorporation of fique fabric, without
loss in recoverable deformation. Moreover, while an accentuated decrease in stiffness begins to occur
around 10 ◦C for the neat polyester, the 30 vol % fique fabric composite remains stiffer up to 40 ◦C.
As the temperature increases, there is a rapid decrease in the E′ value from about 40 ◦C until a plateau
of less than 100 MPa is reached.
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Figure 3. Storage modulus (E′) curves for the neat polyester resin and for the composites reinforced
with fique fabric.

Figure 4 compares the variation of the loss modulus (E”) with temperature for the neat polyester
resin and the investigated composites. All of the curves of this figure go through a well-defined
maximum value that can be associated with the relaxation peak α [43]. This relaxation is attributed to
the mobility of the chains in the crystalline phase of the polymer, which in this work is the polyester
matrix [44]. For the fique fabric composites, the peaks α in the E” curves are shifted by about 15 ◦C for
higher temperatures. Kalusuraman et al. [43] suggested that the α peaks in E” could be related to the
onset of the glass transition temperature (Tg) of the polymeric matrix. Therefore, the results in Figure 4
revealed that the incorporation of fique fabric restrains the mobility of the polyester chains and retards
the formation of an amorphous structure. This mechanism also explains the relative shift to higher
temperature (10 to 40 ◦C) of the fique fiber composites viscoelastic softening, Figure 3, as compared to
the neat polyester.
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The variation of the tan δ with the temperature for the neat polyester resin and the composites
incorporated with fique fabric is shown in Figure 5. It can be seen in this figure that the composites
exhibit peaks with lower amplitude and shifted to relatively higher temperatures as compared to
the neat polyester resin. This suggests, as also observed for the storage modulus in Figure 3 and
loss modulus in Figure 4, that the fique fabric effectively interacts with the polyester matrix chains,
impairing their mobility and reducing their structural damping ability. The tan δ peaks are attributed
to the upper limit of Tg [43]. Moreover, the decrease in peak amplitude and increase in temperature,
Figure 5, also suggest a higher attenuation in internal vibration and a shift to higher temperature of Tg

with the increasing amount of fique fabric in the polyester matrix. Consequently, the results in Figure 5
indicate that the incorporation of fique fabric not only reduces the mobility of the polyester chains, but
also prevents the disruption of their structural organization. Consequently, the end of the polyester
matrix transition from the glass to the rubbery state could occur at higher temperatures.
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3.2. Ballistic Tests

Table 1 presents the average depth measured in the clay witness for the different MAS targets
investigated. For application in armor vests, the fique fabric composite is lighter and significantly
cheaper than the Kevlar™. These are factors that are further discussed and might play practical
advantages in considering the substitution of fique fabric composites for Kevlar™ in an MAS for
personal protection against high velocity projectiles, such as the 7.62 × 51 mm projectile.

Table 1. Average depth of penetration in the clay witness backing different MAS of fique
fabric composites.

Intermediate Layer Material Depth of Penetration (mm)

10 vol % fique fabric 17 ± 3
20 vol % fique fabric 15 ± 3

Kevlar™ 23 ± 3 [45]

Figure 6a illustrates the aspect of the different MAS targets after the ballistic tests. In Figure 6b,
it can be seen that the ceramic has disappeared by complete shattering.
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fabric-reinforced polyester composite.

After ballistic tests, the fracture surface of MAS components were observed by SEM. Figure 7a
shows the expected inter-crystalline brittle fracture surface of a collected macroscopic ceramic
particle, which is almost splitting into microscopic fragments associated with grains. As indicated
by Medvedovski [46], a 7.62 mm projectile causes different kinds of cracks to be formed during the
impact. Figure 7b shows the ability of the 20 vol % fique fabric composite second layer, in an MAS
with a ceramic front, to collect fragments generated from the ballistic impact shown in Figure 7a.
This ability does not require stronger fibers but mechanisms of mechanical incrustation as well as
fragment attraction by Van der Waals forces and static charges on the fiber surface, of either synthetic
Kevlar™ [47] or natural fiber-based composites [28–33].
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3.3. Cost Comparison

A cost model associated with the use of fique fabric composites in comparison to conventional
engineering composites is presented in Table 2. The basic costs were obtained from the literature for
polyester, epoxy, aramid laminates (KevlarTM), and glass fiber [48], as well as for fique fiber/fabric [49]
and for sisal, jute, curaua, and piassava [50].

Table 2. Cost model for different fabric composites.

Composite Material Cost (US$/Kg) Reference

64.8 vol % aramid laminate/epoxy 49.59 [48]
72 vol % glass fiber/epoxy 18.06 [48]

30 vol % sisal fiber/polyester 3.23 [49]
30 vol % jute fiber/polyester 3.24 [50]

30 vol % curaua fiber/polyester 3.19 [50]
30 vol % piassava fiber/polyester 3.21 [50]

20 vol % fique fabric/polyester 3.61 Present Work
30 vol % fique fabric/polyester 3.26 Present Work

In this table, is it shown that KevlarTM (aramid fiber laminate) is the most expensive composite,
more than 13 times the price of any common natural fiber composite, including the presently
investigated fique composites. Even a less expensive glass fiber composite is more than five times as
costly as any natural fiber composite. Therefore, the incorporation of any common natural fiber-based
material, including fique fabric, reduces the price of the composite.

4. Summary and Conclusions

• The introduction of fique fabric raises the viscoelastic stiffness level and tends to shift the curves
of the storage modulus (E′) to higher temperatures. This leads to a delay in the onset of the
thermal softening of the composite. The peak α of the loss modulus (E”) is also shifted to higher
glass transition temperatures (Tg), indicating less mobility in the polyester resin chains of the
matrix by interaction with the fique fabric. The maximum in tan δ curves, associated with end of
Tg, suffers not only a reduction in its amplitude but also a shift towards higher temperatures with
the introduction of fique fabric. Hence, a high attenuation of internal vibration and increase in Tg

occur with an increasing amount of fique fabric in the polyester matrix.
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• A multilayered armor system (MAS), in which conventional Kevlar™ was replaced by a polyester
matrix composite reinforced with 10 or 20 vol % of fique fabric as second layers, attended the
NIJ trauma limit after ballistic tests with 7.62 mm ammunition. The depth of penetration into
20 vol % fique fabric composite, 15 mm, demonstrated this composite to be more efficient than
conventional Kevlar™ with 23 mm as a second MAS layer.

• More than ballistic performance, the significantly lower cost in association with the environmental
and societal benefits of using a natural material favor the substitution of fique fabric composite
as an MAS second layer. As an economical advantage, armor vests with fique fabric composites
would be 13 times cheaper than similar ones made with Kevlar™.
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