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Abstract: Dimer acid cyclocarbonate (DACC) is synthesized from glycerol carbonate (GC) and Sapium
sebiferum oil-derived dimer acid (DA, 9-[(Z)-non-3-enyl]-10-octylnonadecanedioic acid). Meanwhile,
DACC can be used for synthetic materials of bio-based non-isocyanate polyurethane (bio-NIPU).
In this study, DACC was synthesized by the esterification of dimer acid and glycerol carbonate using
Novozym 435 (Candida antarctica lipase B) as the biocatalyst. Via the optimizing reaction conditions,
the highest yield of 76.00% and the lowest acid value of 43.82 mg KOH/g were obtained. The product
was confirmed and characterized by Fourier transform-infrared spectroscopy (FTIR) and nuclear
magnetic resonance spectroscopy (NMR). Then, the synthetic DACC was further used to synthesize
bio-NIPU, which was examined by FTIR, thermogravimetric analysis (TGA), and differential scanning
calorimetry (DSC), indicating that it possesses very good physio-chemical properties and unique
material quality with a potential prospect in applications.

Keywords: glycerol carbonate; dimer acid; esterification; lipase; cyclocarbonate; bio-based
non-isocyanate polyurethane

1. Introduction

Forestry oil has become an important renewable resource in the consideration of environmental
concerns, fossil fuel depletion, and food production [1,2]. The major component of forestry oil is
triglycerides (esters of glycerol with three fatty acids); there are different long-chain fatty acids in the
different sources of oil [3], which can provide different applications in industry. Since Sapium sebiferum
oil, a non-edible oil, is abundant in China and its production significantly benefits the environment
construction, it has been attracting wide attention and has been moderately studied [4,5]. Moreover,
S. sebiferum can give way to arable land because it can grow in alkaline, saline, droughty, and acidic
soil. Its seeds contain 45–60% oil, which is mostly unsaturated, resulting in a high iodine value of
186.8 g of I2/100 g. S. sebiferum oil possesses many double bonds (Figure 1), which are the appropriate
groups for the synthesis of various industrial compounds and polymers, especially for the synthesis of
dimer acids [5,6].

Dimer acids (DAs), produced by a Diels–Alder reaction of unsaturated fatty acids from
unsaturated oil, are highly value-added industrial products and are widely used in different fields,
such as adhesives, preservatives, plastic additives, and lubricants [7–9]. On the other hand, glycerol can
also be easily produced from forestry oil, or sometimes is a byproduct of forestry oil processing [10–12].
A downstream synthetic product of glycerol is glycerol carbonate (GC), which also has many different
industrial applications, such as coatings, surfactants, cosmetics, lubricants, and so on. Its structure
contains a 2-oxo-1,3-dioxolane group and a hydroxyl group, which have high reaction activity with
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anhydrides, acyl chlorides, isocyanates, and the like [13–15]. Having a bio-based origin and wide
reactivity, GC has become a versatile and renewable building block for chemical synthesis. To obtain
highly purified GC, different synthesis methods have been investigated, including direct synthetic
routes and indirect synthetic routes [16,17]. They all aim at the lowest production cost, the least
pollution, and the highest yield of GC.Polymers 2018, 10, 263 2 of 13 
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Figure 1. The structure of Sapium sebiferum oil and its fatty acid content. 

Dimer acids (DAs), produced by a Diels–Alder reaction of unsaturated fatty acids from 
unsaturated oil, are highly value-added industrial products and are widely used in different fields, 
such as adhesives, preservatives, plastic additives, and lubricants [7–9]. On the other hand, glycerol 
can also be easily produced from forestry oil, or sometimes is a byproduct of forestry oil processing 
[10–12]. A downstream synthetic product of glycerol is glycerol carbonate (GC), which also has many 
different industrial applications, such as coatings, surfactants, cosmetics, lubricants, and so on. Its 
structure contains a 2-oxo-1,3-dioxolane group and a hydroxyl group, which have high reaction 
activity with anhydrides, acyl chlorides, isocyanates, and the like [13–15]. Having a bio-based origin 
and wide reactivity, GC has become a versatile and renewable building block for chemical synthesis. 
To obtain highly purified GC, different synthesis methods have been investigated, including direct 
synthetic routes and indirect synthetic routes [16,17]. They all aim at the lowest production cost, the 
least pollution, and the highest yield of GC. 

At present, GC has been employed as a substrate to synthesize non-isocyanate polyurethane 
(bio-NIPU) in order to meet the increasingly serious environment regulations. The route is green and 
without the requirement of either toxic isocyanate monomers or phosgene [18]. However, the main 
synthesis pathway of cyclocarbonate is based on the catalytic synthesis of N,N’-dicyclohexylcarbodiimide 
(DCC) and 4-dimethylaminopyridine (DMAP), which are also poisonous to humans in some way 
[18–20]. Consequently, the cyclocarbonates react with amines to form urethane, or more specifically 
hydroxyurethane bonds [21,22]. The consumption and the recycling of the catalysts in the synthesis 
reaction is a huge problem, especially in large-scale industrial applications. 
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Scheme 1. Synthesis of dimer acid cyclocarbonate (DACC). 

Dimer acid cyclocarbonate (DACC) is a monomer of non-isocyanate polyurethane. It has the 
following advantages: (1) simple synthetic methods; (2) biodegradability; and (3) biologic material. 
The route of synthesis is shown in Scheme 1. The traditional chemical synthesis of DACC requires a 
large number of chemical catalysts and dehydrants, resulting, in most cases, in numerous byproducts. 
Until now, most cyclocarbonates are chemically synthesized, which needs high pressure and more 

Figure 1. The structure of Sapium sebiferum oil and its fatty acid content.

At present, GC has been employed as a substrate to synthesize non-isocyanate polyurethane
(bio-NIPU) in order to meet the increasingly serious environment regulations. The route is
green and without the requirement of either toxic isocyanate monomers or phosgene [18].
However, the main synthesis pathway of cyclocarbonate is based on the catalytic synthesis of
N,N’-dicyclohexylcarbodiimide (DCC) and 4-dimethylaminopyridine (DMAP), which are also
poisonous to humans in some way [18–20]. Consequently, the cyclocarbonates react with amines
to form urethane, or more specifically hydroxyurethane bonds [21,22]. The consumption and the
recycling of the catalysts in the synthesis reaction is a huge problem, especially in large-scale
industrial applications.

Dimer acid cyclocarbonate (DACC) is a monomer of non-isocyanate polyurethane. It has the
following advantages: (1) simple synthetic methods; (2) biodegradability; and (3) biologic material.
The route of synthesis is shown in Scheme 1. The traditional chemical synthesis of DACC requires a
large number of chemical catalysts and dehydrants, resulting, in most cases, in numerous byproducts.
Until now, most cyclocarbonates are chemically synthesized, which needs high pressure and more
energy consumption and produces toxic waste [23,24]. On the contrary, enzymatic synthesis has
garnered considerable interest with regard to its many merits, such as high regio-, chemo- and
enantio-selectivity, environmental friendliness, mild reaction conditions, simple purification steps,
and the enzyme being reused [16,25,26]. So far, there are considerable researches on the enzymatic
synthesis of ester compounds [27]. Carlos et al. obtained the dodecyl lactate and glycolate through a
lipase from Candida antarctica [28]. Afife et al. investigated isoamyl acetate synthesis using immobilized
Rhizomucor miehei and C. antarctica lipases by esterification of acetic acid and isoamyl alcohol without
organic solvent [29]. Actually, enzymatic synthesis of ester compounds is becoming a research
hotspot. Novozym 435 (Candida antarctica lipase B physically immobilized within a macroporous resin
of poly(methyl methacrylate)), a commercially available heterogeneous biocatalyst, has been used
successfully for polyesters and polyamides synthesis [30].

Therefore, in this work, the enzymatic synthesis of DACC was first investigated by esterification
of bio-based DA with GC. Then, experiments were designed to optimize the conditions of DACC
synthesis, mainly to examine the effects of GC/DA molar ratio, reaction time, enzyme concentration,
reaction temperature, molecular sieve content, agitation speed, solvent and enzyme cycling.
The derivative DACC was subsequently reacted with different amines to prepare various bio-based
non-isocyanate polyurethanes (bio-NIPUs), and their chemical structures and thermal properties were
further characterized.
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large number of chemical catalysts and dehydrants, resulting, in most cases, in numerous byproducts. 
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Scheme 1. Synthesis of dimer acid cyclocarbonate (DACC).

2. Materials and Methods

2.1. Materials

Dimer acid (DA, 9-[(Z)-non-3-enyl]-10-octylnonadecanedioic acid, CAS No. 61788-89-4) and
glycerol carbonate (GC, CAS No. 931-40-8) were purchased from Bangcheng Chemical Ltd. (Shanghai,
China) and Tokyo Chemical Industry Co., Ltd. (Tokyo, Japan), respectively. Novozym 435 (immobilized
lipase B from C. antarctica) with a specific activity 10,000 propyl laurate units (PLUs) per gram was
commercially obtained from Novozym Co. Ltd. (Zealand, Denmark). Acetonitrile (CAS No. 75-05-8),
hexane (CAS No. 110-54-3), dichloromethane (CAS No. 75-09-2), molecular sieve type 4A (CAS No.
70955-01-0), ethylenediamine (EDA, CAS No. 107-15-3), diethylenetriamine (DETA, CAS No. 111-40-0),
triethylenetetramine (TETA, CAS No. 112-24-3), tetraethylenepentamine (TEPA, CAS No. 112-57-2),
and hexanediamine (HMDA, CAS No. 124-09-4) were analytical reagents and bought from Sinopharm
Chemical Reagent Ltd. Co. (Shanghai, China).

2.2. Synthesis of Dimer Acid Cyclocarbonate (DACC)

DACC was synthesized in acetonitrile via an esterification reaction between DA and GC catalyzed
by Novozym 435 [31–35]. Experiments were conducted in a conical flask placed in a thermostat shaking
bed with a temperature monitor. A single factorial experiment was first designed. The effects of GC/DA
molar ratio (2.00:1.00–10.00:1.00), time (4–24 h), Novozym 435 concentration (1–10 wt %, w/w DA),
temperature (35–65 ◦C), molecular sieve content (30–100 wt %, w/w DA), agitation speed (50–300 rpm),
solvent (acetonitrile, tert-butanol, tetrahydrofuran, acetone, and methylbenzene), and Novozym 435
cycle number (1–5 times) on the production of DACC were explored. The yield and acid value were
chosen as the indicators.

2.3. Purification of the Esters

All the esters were purified after being prepared. These purified materials were further used in
follow-up experiments to characterize their structures and calculate the conversion rates [28].

The enzyme was removed from the reaction mixture via filtration and the solvent was evaporated
using a rotovap system. Then, the filtered and evaporated reaction mixtures were dissolved in n-hexane
and the esters precipitated out, aiming to separate DA. Finally, precipitation in deionized water
afforded DACC as a yellow viscous liquid; the residual water from the production was evaporated.

2.4. Synthesis of Bio-NIPU

DACC and dichloromethane were placed in the Teflon mold and stirred mechanically for 5 min.
Then, different amines (EDA, DETA, TETA, TEPA, and HMDA) were added and the mixture was
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stirred mechanically for 5 min [36]. Thereafter, the mold was heated at 90 ◦C and reduced pressure for
12 h. All products were kept in a desiccator for later use.

2.5. Analysis and Characterization

The FTIR spectra of the samples were recorded in the frequency range of 4000–400 cm−1 with
a spectral resolution of 4 cm−1 using a Bruker Vertex70 FTIR spectrometer equipped with a DTGS
detector (Bruker Optics, Karlsruhe, Germany). Taking the KBr plate as a blank for the background,
a few of the samples were dropped on it for the test.

The 1H-NMR spectra of the samples were determined by a Bruker AV600 MHz NMR spectrometer
(Bruker, Karlsruhe, Germany). The samples were dissolved in CDCl3 (Tetramethylsilane (TMS) as
internal standard) and then placed in 5 mm diameter NMR sample tubes for the determination.
The measurement was performed at room temperature.

To confirm the degree of esterification, samples were characterized by acid value according
to Chinese National Standard (GB/T 264-1983) [37]. The yield was calculated by the following
equation. The mass of theoretical objective product was calculated according to the starting mass of
DA. The actual objective product was weighed accurately after purification.

Product yield =
the weight of actual objective product

the weight of theoretical objective product
×100%

Thermogravimetric analyses (TGA) were performed using a Pyris 1 TGA (Perkin-Elmer
Instruments, Boston, MA, USA) at a heating rate of 10 ◦C /min. Approximately 5 mg of sample
was subjected to temperatures from 50 to 600 ◦C in an N2 atmosphere.

Differential scanning calorimetry (DSC) analysis was performed on a Perkin-Elmer Diamond
DSC instrument (Perkin-Elmer Instruments, Boston, MA, USA) under N2 atmosphere. The sample
was first heated from −50 to 100 ◦C at 10 ◦C/min.

3. Results and Discussion

3.1. Single Factorial Experiments

3.1.1. Effect of GC/DA Molar Ratio

According to the chemical equation in Scheme 1, 1 mol of DACC is synthesized from 1 mol
of DA and 2 mol of GC through esterification, and 2 mol water is obtained. However, according
to this theoretical ratio, raw materials cannot completely react as a result of the reversible reaction.
Meanwhile, DA has a long alkyl chain, resulting in steric hindrance. This repulsive hindrance lowers
the electron density in the intermolecular region and disturbs the bonding interactions [38]. Therefore,
with an increase in the ratio, the reaction is driven in the direction of a forward reaction. Therefore,
the effect of the GC/DA molar ratio was optimized for DACC synthesis (Figure 2a). As shown in
Figure 2a, the DACC yield increased with the molar ratio from 2.00 to 10.00, which was attributed to
more collisions between DA and GC. When the molar ratio reached 4.00, the DACC yield remained
about the same with increasing molar ratio. However, the acid value decreased, which was ascribed
to the decrease in carboxylic acid (–COOH) groups. When the molar ratio reached 10.00, the acid
value showed little change. Considering the economy of the raw materials and that a lower acid
value led to a higher esterification degree, a GC/DA molar ratio of 8.00 was a better choice. Although
the theoretical GC/DA molar ratio for synthesis of DACC was 2.00, its actual optimized GC/DA
molar ratio for DACC synthesis, which resulted in a better yield and a lower acid value, was 8.00.
The following tests used this optimal GC/DA molar ratio.
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Figure 2. Effect of single factorial experiments. (a) GC/DA molar ratio, (b) time, (c) enzyme concentration, 
(d) temperature, (e) molecular sieve content, (f) agitation speed, (g) solvent, (h) cycle number. 

3.1.2. Effect of Time 

To find the proper reaction time, the reaction was performed from 4 to 24 h. As shown in Figure 
2b, the reaction time had a great effect on yield. As the reaction time went on, the yield continued to 

Figure 2. Effect of single factorial experiments. (a) GC/DA molar ratio, (b) time, (c) enzyme
concentration, (d) temperature, (e) molecular sieve content, (f) agitation speed, (g) solvent,
(h) cycle number.

3.1.2. Effect of Time

To find the proper reaction time, the reaction was performed from 4 to 24 h. As shown in Figure 2b,
the reaction time had a great effect on yield. As the reaction time went on, the yield continued to
increase. However, the reaction showed little change after 10 h. When the reaction time reached 24 h,
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the yield did not change too much because an equilibrium had been reached. Therefore, 12 h with
the highest yield was selected as the optimal time. Although it had the same yield as at 10 h, the acid
value was higher than that of 12 h. Given the cost of time, 12 h was better than 24 h even though the
acid value was lower. Therefore, 12 h was determined as the optimal reaction time for maximizing
the efficiency.

3.1.3. Effect of Enzyme Concentration

Enzymes are more efficient and environmentally friendly catalysts than chemical catalysts. Here,
Novozym 435 was employed to catalyze DACC synthesis. The effect of enzyme concentration and
its optimal dosage were investigated at various levels ranging from 1 to 10 wt % (Figure 2c). It can
be seen from Figure 2c that the yield increased as the Novozym 435 concentration increased from 1
to 8 wt %. When the Novozym 435 concentration increased to 10 wt %, the yield decreased slightly.
The adsorption of DACC on the immobilized enzyme always occurred; after reaching 10 wt %, a higher
enzyme concentration led to higher adsorption. However, an excess in enzyme concentration could
hamper the internal diffusion and relevant acquaintance of the substrate with the active sites [39].
Therefore, the increased concentration of immobilized enzyme was good for the synthesis of DACC,
leading to a lower acid value, while the yield was affected with high enzyme dosage. Considering the
better yield and an appropriate acid value, a Novozym 435 concentration of 8 wt % was chosen as the
optimal enzyme concentration.

3.1.4. Effect of Temperature

The reaction temperature exerts a significant effect on enzyme activity and the economic effect of
the DACC synthesis [40]. The effect of temperature on the esterification was investigated in the range
from 35 to 65 ◦C (see Figure 2d). The maximum yield and minimum acid value were both obtained at
50 ◦C. A higher reaction temperature could increase the reaction rate and yield but it would lead to
enzyme inactivation. At a lower reaction temperature, the substrate and intermediate cannot dissolve
in sufficient quantity for synthesis [41,42]. Hence, the reaction temperature of 50 ◦C was selected as
the optimal temperature.

3.1.5. Effect of Molecular Sieve Content

Because hydrolysis is the reverse reaction of esterification, removing water is the key to the
degree of esterification. The effect of molecular sieve content was investigated over a range from 30
to 100 wt % (Figure 2e). The results show that yield reached a maximum value at 50 and 60 wt %,
while the acid value reached a minimum at 60 wt %. The presence of the molecular sieves increased
the yield at the initial stage because the desiccant can urge the reaction to esterification instead of
hydrolysis. However, the yield decreased from 60 to 100 wt % and this could have been caused by
molecular sieve adsorption. GC was adsorbed and diminished the effective concentration in the
reaction. Meanwhile, the acid value increased from 60 to 100 wt %, indicating that molecular sieves
adsorbed GC rather than DA. Considering the water absorption and raw materials adsorption of
molecular sieves, the content at 60 wt % was defined as the optimal condition.

3.1.6. Effect of Agitation Speed

In this reaction, agitation speed is an easily overlooked single factor. Figure 2f shows that the
yield reached a maximum when the agitation speed attained 200 rpm. From 50 to 200 rpm, the yield
continued to increase because the mechanical agitation accelerated the collisions of the molecules.
However, the yield decreased when the agitation speed approached 300 rpm; a possible reason could
be that a high agitation speed would reduce the contact time and the contact area with the reaction
interface. There was an interesting phenomenon that the acid value reached a minimum value when the
agitation speed was 150 rpm. A reasonable explanation is that high agitation speeds could hamper the
reaction between DA and the second GC, which then led to high acid values between agitation speeds
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of 150 and 300 rpm. Considering the yield and the acid value, 200 rpm was set as the appropriate
agitation speed.

3.1.7. Effect of Solvent

In this reaction, dimer acid and glycerol carbonate do not mix. Therefore, a suitable solvent should
dissolve enough raw materials for the lipase-catalyzed esterification, and the solvent should not affect
lipase activity and stability. The results show that the reaction had the lowest yield in tetrahydrofuran,
which might have altered the native conformation of the lipase (Figure 2g). Tert-butanal and acetone
led to high acid values because GC did not dissolve entirely, which would have led to inadequate
participation in the reaction. However, acetonitrile did dissolve the DA and GC at 50 ◦C, and had a
low effect on Novozym 435. Foremost, the yield had the highest value and the acid value was low
enough in acetonitrile. Thus, acetonitrile was selected for use in subsequent experiments.

3.1.8. Reuse of Novozym 435

Immobilized lipase has a reusable feature. We performed a series of experiments to examine its
characteristic for the synthesis of DACC. After one cycle, the immobilized lipase was recovered by
paper filtration and then dried for the next cycle. As shown in Figure 2h, the yield decreased and the
acid value increased with the cycle number. The results indicate that the immobilized lipase loses its
activity with cycle number; the probable reason could be that dichloromethane, which was used to
wash the immobilized lipase in order to clear the remaining raw materials and DACC, could cause
enzyme inactivation. Therefore, although the first two cycles can provide sufficient objective product,
improving cycle efficiency will be a key research direction in the future.

3.2. Determination of DACC by FTIR

Figure 3 shows the FTIR spectra of DA and DACC. The top curve is the FTIR spectra of DA,
which had a carbonyl C=O stretching vibration at 1710.26 cm−1 attributed to a carboxyl group.
The curve below is the FTIR spectra of DACC, which had two carbonyl C=O stretching vibrations
attributed to an ester group at 1742.62 cm−1 and carbonic ester at 1810.65 cm−1. Obviously, the carboxyl
group disappeared and two new carbonyl C=O stretching vibrations appeared because the carboxyl
group reacted with a hydroxyl group to get an ester group. The FTIR spectra of DA and DACC
clearly indicate the formation of DACC, especially the changes of the different carbonyl C=O
stretching vibrations.
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3.3. Determination of DACC by 1H-NMR

Compared with the spectra of DA (Figure 4a), the spectra of DACC (Figure 4b) included some
new peak groups attributed to methylene protons and methine protons [43], which were δ 4.21–4.28
(c, –OCH2CH–, 2H), δ 4.29–4.34, 4.56–4.59 (a, –CHCH2O–, 2H), δ 4.99–5.03 (b, –CH–, 1H), suggesting
that the DACC had been successfully synthesized.
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3.4.2. Determination of Bio-NIPU via DSC

To study the thermal properties of different bio-NIPUs, the DSC curves are recorded in Figure 6.
Glass transition temperature (Tg) values of the bio-NIPUs with secondary amines were higher than
those of the bio-NIPUs with diamine. Tg value of DETA-NIPU was −6.00 ◦C, which was higher than
the other NIPUs. The results suggest that secondary amines have a positive effect on the crystallization
of bio-NIPU. These bio-NIPUs have low Tg values due to the soft segment long chain structure of
dimer acid. There was only one single glass transition temperature for all bio-NIPUs, indicating
good miscibility.
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3.4.3. Determination of Bio-NIPU via TGA

The influence of the average amine functionality was investigated for the thermal stability of
the synthesized polymers via thermogravimetric analysis (TGA). Figures 7 and 8 present TGA and
differential thermal gravity (DTG) curves for different bio-NIPUs, respectively. The thermal stability of
the EDA-NIPU, DETA-NIPU, TETA-NIPU, and HMDA-NIPU were similar with Td5% (the temperature
at 5% weight loss) around 210 ◦C. The thermal stability value of TEPA-NIPU was lower with a Td5%

equal to 194 ◦C (Table 1). The char contents at 550 ◦C are also shown in Table 1. These results
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suggest that secondary amines have no contribution to bio-NIPU synthesis. Thermal degradation of
different bio-NIPUs takes place in two stages, corresponding to the hard and soft segments, because
of thermodynamic incompatibility of the two segments in the bio-NIPU matrix. The temperatures
for the maximum rate of degradation (Tmax) for each of the two stages for different bio-NIPUs are
given in Figure 8 and Table 1. The Tmax1 values of DETA-NIPU, TETA-NIPU, and TEPA-NIPU were
about 220 ◦C. However, Tmax1 values of EDA-NIPU and HMDA-NIPU were higher due to no reaction
between the secondary amines and cyclocarbonates. The Tmax2 value of TEPA-NIPU was 468 ◦C,
which was the highest temperature in the different bio-NIPUs. This result is due to the high boiling
point of TEPA, which may influence the maximum rate of degradation of the soft segments.
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Table 1. TGA and DTG results for different bio-NIPUs.

EDA-NIPU DETA-NIPU TETA-NIPU TEPA-NIPU HMDA-NIPU

Td5% (◦C) 212.31 202.90 210.85 194.09 218.10
Tmax1 (◦C) 232.68 220.58 227.81 224.02 258.71
Tmax2 (◦C) 453.16 451.39 450.18 468.00 447.05

Residue at 550 ◦C (%) 3.7 6.2 3.9 4.9 4.1

4. Conclusions

This study attempted to optimize the enzymatic catalyzed production of DACC from DA and
GC derived from S. sebiferum oil by esterification using Novozym 435 as the catalyst. Considering the
economic effect and efficiency criteria, GC/DA molar ratio, reaction time, Novozym 435 concentration,
reaction temperature, molecular sieve content, agitation speed, and different solvents were optimized
one by one. Meanwhile, enzyme cycling was studied. The yield was 76.00% and the lowest acid value
for synthesized DACC was 43.82 mg KOH/g under optimal conditions. The product was further
confirmed by FITR and NMR. Then, DACC was employed to synthesize bio-NIPU and subsequently
characterized by FTIR, DSC, and TGA. These studies prove that it is feasible to synthesize DACC by
lipase. Furthermore, the bio-NIPU had a low Tg and a good thermostability, which can be potentially
used in the coating industry. This study demonstrates a new method to synthesize cyclocarbonate,
which has a prosperous future potential for the bio-polyurethane industry.
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