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Abstract: Functional core-shell-structured particles have attracted considerable attention recently.
This paper reviews the synthetic methods and morphologies of various electro-stimuli responsive
polyaniline (PANI)-coated core-shell-type microspheres, including PANI-coated Fe3O4, SiO2, Fe2O3,
TiO2, poly(methyl methacrylate), poly(glycidyl methacrylate), and polystyrene along with their
electrorheological (ER) characteristics when prepared by dispersing these particles in an insulating
medium. In addition to the various rheological characteristics and their analysis, such as shear stress
and yield stress of their ER fluids, this paper summarizes some of the mechanisms proposed for ER
fluids to further understand the responses of ER fluids to an externally applied electric field.
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1. Introduction

Electrorheological (ER) fluids are a type of intelligent and smart material, generally consisting of
electrically polarizable or semi-conducting materials dispersed in an insulating medium, which are in
a fluid-like state in the absence of an electric field and exhibit an almost instantaneous transition to
a solid-like state under an applied external electric field [1,2]. Under the application of an external
electric field, the initially freely and randomly dispersed particles in the ER fluids aggregate and form
chain-like structures [3], which undergo deformation and destruction in a shear flow perpendicular
to the electric field and recombine continuously in an applied external electric field. Therefore,
the behavior of ER fluids in an electric field, such as shear stress, shear viscosity, and dynamic modulus,
can be quite different from those in the absence of an electric field. ER fluids usually exhibit Newtonian
fluid-like behavior in the absence of an electric field, in which the shear stress increases linearly with
increasing shear rate and the shear viscosity shows an almost constant value. On the other hand, in the
presence of an electric field, the ER fluids exhibit Bingham fluid-like behavior, in which the shear stress
remains stable in the low shear rate region and increases with increasing shear rate in the high shear
rate region. Moreover, the shear viscosity always exhibits obvious shear thinning behavior [4]. Owing
to these characteristics, ER fluids have potential applications as dampers [5,6], clutches [7], brakes [8],
robotics [9], and finishing [10].

Recently, conducting polymer materials have been studied widely in many fields because of their
low density, good thermal and chemical stability, reproducibility, and controllable conductivity [11–13].
Polyaniline (PANI), which is one of the most promising and extensively investigated conducting
polymers, has been applied extensively to several areas, such as supercapacitors [14], catalysts [15],
sensors [16], and biological fields [17], because of its electro-activity, environmental and chemical
stability, controllable conductivity, biological compatibility, ease of preparation, and low cost [18].
Furthermore, the properties of ER fluids based on different forms of PANI synthesized by different
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methods have been studied extensively [19–25]. On the other hand, pristine PANI also has some
defects as an ER material, such as high current density, easily leading to electric breakdown in high
electric field strengths; irregular morphology; and colloidal instability. Several methods have been
used to improve these problems, such as synthesis of composites [26–29], and synthesis of PANI with
a regular morphology using a template [30,31].

On the other hand, many theoretical models on the ER mechanisms are based on the assumption
that the particles dispersed in ER fluids are monodisperse and spherical. Therefore core-shell structured
microspheres with a monodispersed spherical core and semi-conductive shell could attract interests
for their theoretical approach and as better ER materials.

This paper reviews various PANI-coated core-shell-type microspheres applied to electro-stimuli
responsive ER fluids, including their synthetic methods, morphologies, and ER characteristics.
In addition, some possible mechanisms proposed for ER behaviors are summarized briefly to further
understand ER fluids.

2. Core-Shell Typed Microspheres

Core-shell type microspheres are ordered assemblies of materials that are formed by coating
other materials with either a chemical bond or other attractive forces between the core and coating
shell materials, while possessing a regular spherical morphology. Owing to their unique structural
characteristics and the advantages of integrating the properties of both the internal core and external
shell materials, core-shell typed microspheres have become an important research direction in recent
years and are considered to have a wide range of application prospects in many fields, such as
catalysis [32,33], sensors [34], monitors [35], photocatalysis [36], sewage treatment [37], and drug
adsorption [38], drug delivery system [39].

Furthermore, the spherical morphology of ER materials is a critical factor in their theoretical
models, but many actual ER materials have an irregular morphology. Therefore, to understand the
ER mechanism better, many studies have been interested in synthesizing spherical ER materials using
various methods. One of them is the synthesis of core-shell typed microspheres by encapsulating
irregular materials with a microspherical shape or coating electro-responsive materials on monodispersed
spherical core. In addition, a core-shell structured ER material composed of a conductive material and
an insulating material can effectively prevent the electrical breakdown that occurs easily during the
ER test process. Many ideal core-shell-type microspheres have been applied to ER fluids. For example,
Park et al. [40] encapsulated PANI by poly(methyl methacrylate) (PMMA) via a simple physical adsorption
route in aqueous media, in which the high conductivity of PANI was controlled by the insulating
PMMA shell. Poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonic acid) coated polystyrene (PS)
particles via a simple physical adsorption procedure [41], monodisperse polypyrrole (PPy)-coated
silica particles using 3-(trimethoxysilyl)propyl methacrylate as a modifying agent to enhance the
chemical affinity between core and shell [42], and core-shell structured PS/poly(diphenylamine) via a
controlled-releasing process with chemical oxidative polymerization [43] were reported. Park et al. [44]
synthesized PPy-coated Fe3O4 by in situ polymerization, and not only applied these particles to ER
fluid, but also to magnetorheological (MR) fluids. In general, ER fluids based on core-shell-type
microspheres have attracted considerable interest and deserve further study.

3. Electrorheology

3.1. Electrorheological Phenomenon

ER fluids are actively controllable smart materials available for many applications. In practice,
however, the development of their commercial devices has been hampered by the lack of effective
ER fluids except for giant ER fluids with a sufficient yield stress. While an understanding of the
mechanism for controlling the ER activity could be one of the keys to developing suitable ER fluids
and devices, a range of mechanism or models have been proposed to explain the ER responses.
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Initially, Winslow [45] reported that the bridging of fibrillated chains occurs between two
electrodes under an electric field, resulting in a significant increase in the viscosity of the suspension.
In this fibrillation model, particles are considered to be polarized and be arranged as a dipole aligned
with an applied electric field. The neighboring polarized particulates are attracted to each other along
the direction of the electric field and are mutually exclusive in the direction perpendicular to the
electric field, resulting in an ER effect.

In the case of wet-based moist ER fluids, the electric double layer model and water/surfactant
bridge mechanism were proposed to explain the key role of the water content in ER particles on the
ER response. Klass et al. [46] proposed that in the presence of water in the ER suspension, the electric
double layers wrapped around the particles could be polarized and distorted under an electric field.
The distorted electric double layers overlap each other, causing increased electrostatic repulsion,
leading to the ER response. On the other hand, Stangroom [47] attributed the ER effect to the formation
of an adhesive water bridge among particles. When an electric field is applied, ions from water move
out of the pores and migrate to another particle, thus forming a bridge between two particles. Based
on this model, Kim et al. [48] proposed a surfactant bridge model in that the surfactant enhances the
ER response by increasing the surface polarization at low surfactant concentrations, and a nonlinear
ER response due to the formation of surfactant bridges among particles induced by an electric field.
Obviously, these mechanisms are limited by anhydrous ER fluids.

For anhydrous dry-based ER fluids, the electrostatic polarization mechanism and conduction
model can be used to explain most experimental observations [49]. In the electrostatic polarization
mechanism, the ER fluid is believed to consist of a dispersed and continuous phase with different
dielectric properties. Based on an idealized ER fluid system, the electrostatic force (F) was found to be
dependent on the dielectric constant mismatch between the particles and medium as follows:

F = kεm(2r)2 f 2E2S (1)

where k is a constant; r is the particle radius; S is a factor related to the particle microstructure;
f = (g− 1)/(g + 2); and g = εp/εm, in which εm is the dielectric constant of the continuous phase
and εp is the permittivity of a hard dielectric sphere. Many experimental observations confirmed
that the particles tend to form chains that span the electrode gap and the yield stresses vary with the
square of the applied electric field strength [50]. In addition, Hao et al. [51,52] proposed an extended
electrostatic polarization model-dielectric loss model. The ER response is considered to be divided into
two dynamic processes. The first step is the dielectric constant-dominated particle polarization process
and the second step is particle turning that is determined by the particle dielectric loss. Under an
applied electric field, both ER particles and non-ER particles could be polarized but only ER particles
can form a fibrillated bridge between two electrodes, as shown in Scheme 1. Nevertheless, these
mechanisms are limited by dc or low frequency ac electric fields, in which case, the conductivity
mismatch between the particle and liquid phase is considered to be a dominant factor rather than the
dielectric constant mismatch [53]. Thereby, Atten [54] and Foulc [55] proposed a conduction model to
explain the case when both the particle and liquid phase are conductive. This model could predict the
current density, yield stress, and temperature dependence of the ER fluids. On the other hand, because
the change in the microstructure after the electric field was applied was not considered, this model
was applicable only when used in static situations where the particle microstructure had been fully
formed [56].
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3.2. Electrorheological Particles

A variety of particulates, ranging from inorganic to organics to polymers, have been proposed for
the use as ER particles. Many chemical and physical methods, including sol-gel, Pickering emulsion,
hydrothermal, etc., are used for their synthetic process. Although the particulate materials should be
selected based on their physical and chemical properties, ER particles generally possess a relatively
high dielectric constant and a low conductivity (<10−6 S/m) with their densities almost matching that
of the corresponding dispersing phases.

Under an applied electric field, the particle size and shape affect the ER performance. Particles
with a number average size of 0.1 to 100 µm are commonly used in ER fluids. Particles that are too
small or too large are expected to exhibit weak ER performance, as Brownian motion or sedimentation
would have a dominantly effect in the formation of fibrillation bridges. The size of the particles
also depends on the gap between the electrode elements in the ER device to be used. Nevertheless,
many experimental results indicate that there is no simple dependency between the particle size
and ER performance. Cho et al. [57] prepared three different core sizes of monodisperse polymeric
microspheres, and examined the particle size effect on the ER performance. The results showed that
the ER performance increased with increasing core particle size, and a larger particle size ranging from
1 to 10 µm is advantageous for the ER property if their electrical properties are similar. In addition,
the computer simulation result showed that the field-induced shear stress could be proportional to the
cube of the particle diameter [58]. On the other hand, a large enhancement of yield stress was achieved
by decreasing the size of barium titanyl oxalate nanoparticles coated with urea for giant ER fluids [59].

The particles used in an ER fluid can be in the form of spherical, fibrous, rod, sheet, and core-shell
structures. The dielectric property of a suspension is closely related to the shape of dispersed
particles [60]. The interfacial polarizability of particles may increase with increasing dielectric
constant, resulting in a stronger ER response [61]. Liu et al. [62] synthesized core-shell structured
snowman-like particles and suggested that this snowman-like particle-based ER fluid exhibited a
larger yield stress and shorter relaxation time than spherical particles owing to its polarization along
the long axis in a short time. The dynamic modulus increased almost linearly with increasing aspect
ratio of the particle [63]. The fibrous or ellipsoidal particles may be advantageous to enhancing the
ER performance.

As a new discovery, the concept of a giant ER fluid, which can be distinguished from conventional
dielectric ER fluids, has been proposed. Because most practical applications require a strong yield or
shear behaviors of ER fluids, the relatively low yield behavior of conventional ER fluids limits their
applications to a great extent. Wen et al. [64] developed urea-coated barium titanyl-oxalate nanoparticle
[NH2CONH2@BaTiO(C2O4)2]-based ER fluid with a yield stress of up to 130 kPa, which far exceeded
the theoretical limits predicted by conventional dielectric ER fluids. This giant ER fluid displays a
near-linear dependence of the static yield stress on the applied electric field, as well as an opposite
dependence on the particle size. Therefore, the rheological properties of giant ER fluids cannot
be explained fully by conventional ER models. To understand the giant ER effect, Yin et al. [65]
synthesized a new ER material of mesoporous cerium-doped TiO2 with a high surface area and robust
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crystalline pore walls, and observed its giant ER activity with a high yield stress of 70 kPa. Lu et al. [66]
synthesized a Ca-Ti-O-based ER liquid by a wet chemical method, and proposed a polar molecule-type
ER (PM-ER) fluid. They developed a polar molecular orientation and bonding model that suggested
there are two types of interactions among particles: dipole-dipole interactions and dipole-charge
interactions. Recently, Hong and Wen [67] adopted six different oil samples to investigate the wetting
characteristics of giant ER fluids. They suggested that the carrier liquid played a key role in the giant ER
effect, in which the highest yield stress of the giant ER fluid was obtained when hydrogenated silicone
oil was used as the continuous phase. Certainly, great advancement has been made in understanding
the mechanisms of typical fluids and giant ER fluids using the current theoretical models. Future
studies will still require the establishment of different models for theoretical and experimental research.

4. Polyaniline-Coated Core-Shell Structured Microspheres

4.1. Inorganic Core

4.1.1. Silica (SiO2)

Silica (SiO2) particles are used widely in the fields of drug delivery [68,69], food industry [70,71],
catalytic [72], sensor [73], biochemical [74], etc. [75,76] because of their special porous structure,
biocompatibility, colloidal stability, low cost, and easy preparation. In addition, owing to their
excellent reinforcing properties and regular spherical morphology, SiO2 particles are considered very
promising partners for the preparation of polymer-coated composite materials. The preparation of
conductive polymer-coated SiO2 composites has attracted considerable attention, such as PANI [77,78],
polythiophene [79], polypyrrole [80], poly(2-methylaniline) [81], and poly(3,4-ethylenedioxythiophene)
(PEDOT) [82]. Furthermore, such particles have great potential as ER materials.

Trlica et al. [83] applied core-shell-type SiO2/PANI microspheres to ER materials by coating PANI
on the surface of porous spherical SiO2 with a mean particle size of 15 µm through an in situ chemical
oxidative polymerization without a surfactant. The as-synthesized SiO2/PANI microspheres were
treated with hydrochloric acid (HCl) and ammonium hydroxide (NH3·H2O) to obtain SiO2 coated with
a protonated PANI and PANI base, respectively. Jang et al. [84] also synthesized SiO2/PANI core-shell
spherical nanoparticles with a diameter less than 30 nm by the in situ polymerization of aniline on
the SiO2 surface, which has a mean diameter of 22 nm. Scheme 2 shows the synthetic procedure,
in which the protonated aniline monomer is positively charged and adsorbed onto the negatively
charged SiO2 surface through electrostatic interactions. After adding the ammonium persulfate (APS)
initiator, the aniline monomer begins to polymerize and form a PANI shell on the SiO2 core.
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Hong et al. [85] dispersed these particles in silicone oil to examine the ER properties and
compared these properties with those of other conducting polymer (polythiophene (PT), polypyrrole
(PPy), and poly(ethyldioxythiophene) (PEDOT))-coated SiO2 core-shell nanoparticle-based ER fluids.
The results showed that the SiO2/PANI-based ER fluid has the highest yield stress, which will be
discussed later.

On the other hand, Park et al. [86] coated PANI uniformly over a silica surface by modifying the
silica in advance with N-[(3-trimethoxysilyl)-propyl] aniline. Scheme 3 shows a graphical diagram of
the synthetic process of SiO2/PANI, in which the aniline monomers are adsorbed on the surface of
modified silica particles through π-π* stacking interactions, and polymerization starts after adding
APS. Figure 1 shows SEM and TEM images of SiO2 and SiO2/PANI, after coating PANI, the surface
of the particles become rougher and both SiO2 and SiO2/PANI microspheres showed a diameter of
approximately 1 µm, where the thickness of the PANI shell was approximately 50 nm by TEM analysis.
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4.1.2. Ferric Oxide (Fe2O3)

Ferric oxide (Fe2O3) has been studied extensively in many applications, such as photocatalysis [87,88],
wastewater treatment [89], biomedical [90], microwave absorption [91], sensors [92], and lithium-ion
battery anodes [93]. A variety of Fe2O3 structures, such as cube-shaped [94], rod-shaped [95],
pine-leaf-shaped [96], and flower-like [97], have been fabricated successfully by different steps.
Flower-like Fe2O3 has attracted considerable attention because of its special structure.

Tian et al. [98] synthesized flower-like Fe2O3/PANI core/shell nanoparticles consisting of special
hierarchical structures that give them special physical and chemical properties using a two-steps method.
These novel core/shell structured particles were applied as an ER material. The monodispersed
flower-like Fe2O3 was prepared by a high temperature refluxing method using ferric chloride
hexahydrate, urea, tetrabutyl ammonium bromide, and ethylene glycol. The final flower-like
Fe2O3 particles were obtained by calcining the as-obtained flower-like sample at 550 ◦C for 2 h.
The core/shell-structured Fe2O3/PANI were synthesized by in situ polymerization with cetyltrimethyl
ammonium bromide (CTAB) as a surfactant. As shown in Figure 2, the synthesized flower-like
Fe2O3/PANI nanoparticles were uniform and monodispersed. The PANI fill in the sheets of flower-like
Fe2O3 and coat its surface without destroying the spherical particle shape and make the surface more
cluttered and rougher than pure Fe2O3.
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Copyright Elsevier, 2016).

4.1.3. Iron Oxide (Fe3O4)

Iron oxide (Fe3O4) has attracted widespread interests in many fields, such as lithium-ion batteries [99],
electromagnetic shielding [100], adsorbents [101,102], catalysts [103,104], and so on [105,106], because of
its paramagnetic, low cost, large surface area, biocompatibility, environment-friendly, and electrochemical
stability [107,108].

Sim et al. [109] fabricated PANI-coated iron oxide (Fe3O4@PANI) spherical particles with acidification
and applied them to both ER and MR materials. The spherical Fe3O4 particles were synthesized by a
solvothermal process using ferric chloride hexahydrate, sodium acetate, and ethylene glycol. Fe3O4
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particles were acidified by HCl. After acidification, the aniline monomer was adsorbed onto the surface
of the Fe3O4 core due to electrostatic interactions and hydrogen bonding. PANI can then grow on
the Fe3O4 core through a chemical oxidative polymerization method and form core-shell structured
microspheres. Figure 3 presents the morphology of Fe3O4 (a) and PANI-coated Fe3O4 (b). Pure Fe3O4

is spherical with a grainy surface that changes significantly after coating with PANI. The core-shell
structure of Fe3O4@PANI can be confirmed by TEM.Polymers 2018, 10, x FOR PEER REVIEW  8 of 31 
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4.1.4. Titanium Oxide (TiO2)

Titanium oxide (TiO2) particles have many benefits, including of its low price, chemical stability,
dielectric properties, and easy synthesis [110], being applied into many areas, such as solar cells [111],
photocatalysis [112,113], and environmental restoration [114,115].

Inorganic-organic core-shell-structured TiO2/PANI composite can combine the high chemical
stability and dielectric properties of TiO2 and the tunable electric conductive property and low density
of PANI, which is considered a potential ER material. Wang et al. [116] fabricated a core-shell structured
TiO2/PANI nanocomposite via in situ oxidative polymerization in the presence of a surfactant after
the preparation of TiO2 nanospheres. The TiO2 was prepared by the controlled hydrolysis of tetrabutyl
titanate and calcination at 550 ◦C to obtain single-crystal TiO2. The type of surfactant (CTAB), polyvinyl
pyrrolidone (PVP), polyvinyl alcohol (PVA), sodium dodecyl sulfonate (SDS), amount of aniline
monomer, and type of protonic acid (citric acid, hydrochloric acid (HCl) and acetic acid (HAc)) on the
morphology of the TiO2/PANI particles were studied; CTAB was found to be the best of the applied
surfactants. When using CTAB as a surfactant and HCL as a protonic acid, PANI can coat the TiO2

surface well, and produce interesting PANI nanorings.
Scheme 4 shows a probable schematic diagram of the TiO2/PANI generation mechanism using

CTAB and HCl. While the TiO2 nanospheres and CTAB surfactant are dispersed in an aqueous solution,
CTAB will be adsorbed to the surface of hydrophilic TiO2 nanospheres or form spherical micelles
without TiO2. With the addition of a protonated aniline monomer, two types of CTAB spherical micelles
with and without TiO2 will induce the assembly of a protonated aniline monomer on CTAB. The in situ
polymerization of aniline will then occur after the addition of an initiator, APS, to form the core-shell
structured TiO2/PANI nanocomposites or hollow PANI nanorings. If the dose of aniline monomer
increases, further polymerization will cause the growth of ring-like PANI, which will reduce the pore
size of the PANI nanorings and cause the rings to interconnect and form nanofiber webs. With the
continued increase in the amount of monomer, excessive polymerization leads to the aggregation of
PANI and the formation of thicker PANI shells.
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Scheme 4. Proposed schematic growth mechanisms for the formation of TiO2/PANI nanocomposite.
(Wang et al. [116], Copyright Elsevier, 2013).

Tian et al. [117] synthesized an anisotropic peanut-like TiO2/PANI core/shell nanocomposite
via a three-step method. First, monodispersed amorphous TiO2 nanospheres were prepared by the
controlled hydrolysis of tetrabutyl titanate, similar to that reported by Wang et al. [116]; the reaction
equation is shown below:

Ti(OC4H9)4 + 4H2O = Ti(OH)4 + 4C4H9OH (2)

On the other hand, as-obtained monodispersed TiO2 nanospheres are amorphous and have
hydroxyl groups (–OH) on their surface, while anisotropic peanut-like TiO2 nanospheres were obtained
using a weak acid to etch the monodispersed TiO2 spheres. Tian et al. [117] used glacial acetic acid
(GAA) and oleic acid. Figure 4a,b show SEM images of amorphous TiO2 and Figure 4c–f show SEM
images of anisotropic peanut-like TiO2 obtained using glacial acetic acid and oleic acid, respectively.
The results show that GAA has a better etching effect, and can etch the amorphous TiO2 nanospheres
into more regular peanut-like TiO2 nanospheres.

Finally, PANI was coated on the surface of the anisotropic peanut-like TiO2 using an in situ
polymerization method with CTAB as a surfactant. Figure 4g–j show SEM and TEM images of anisotropic
peanut-like titanium TiO2/PANI core/shell nanocomposite, respectively. A thin polyaniline layer was
coated on the surface of peanut-like TiO2.
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Figure 4. SEM images of (a,b) amorphous TiO2 under different magnifications; (c,d) anisotropic
peanut-like TiO2 obtained using glacial acetic acid, (e,f) oleic acid. SEM (g,h) and TEM (i,j) images of
anisotropic peanut-like titanium TiO2/PANI core/shell nanocomposite. (Tian et al. [117], Copyright
Elsevier, 2016).

4.2. Polymeric Core

4.2.1. Poly(methyl methacrylate)

Poly(methyl methacrylate) (PMMA), which is usually synthesized by a dispersion polymerization
method, has potential use as a core in core-shell structure because of its regular spherical morphology
and mono-dispersity [118,119]. Therefore, PANI-coated mono-dispersed spherical PMMA core has
been applied widely to ER materials.

Cho et al. [120] prepared monodispersed PMMA spheres with a diameter of approximately 2 µm
by the dispersion polymerization of methyl methacrylate (MMA) monomers in a methanol medium
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with 2,2-azobisisobutyronitrile (AIBN) as an initiator and PVP as a stabilizer, and then coated with
PANI by the chemical oxidative polymerization of aniline monomers on the surface of PMMA using
sodium dodecyl sulfate (SDS) as a surfactant. They examined the ER properties of this PANI-coated
PMMA (PMMA/PANI) particle-based ER fluid. Based on this approach, Cho et al. [57] continued
to study the effect of the particle size on the ER characteristics of PMMA/PANI-based ER fluid.
They synthesized PANI-coated PMMA particles with a diameter of 2, 4.5 and 9 µm, respectively,
and compared the ER characteristics of these particle-based ER fluids.

Furthermore, Lee et al. [121] synthesized PMMA/PANI microspheres with the graft polymerization
of aniline, improving the adhesion between PANI and PMMA and forming a uniform PANI shell
thickness. Scheme 5 presents a schematic diagram of the synthetic procedure. The seed PMMA particles
with a diameter of 6.5 µm were prepared using a dispersion polymerization method and swollen
by glycidyl methacrylate (GMA) and benzoyl peroxide (BPO) initiator. When the temperature was
increased to 75 ◦C, GMA began to polymerize on the PMMA surface to form poly(glycidyl methacrylate)
(PGMA), which contains glycidyl groups. The oxydianiline (ODA) and glycidyl groupsthen undergo an
epoxy-amine reaction to graft the aniline functionality onto PMMA cores. Finally, the aniline polymerizes
on the surface of PMMA with APS as an initiator and PVA as a stabilizer to form a PANI shell.
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Fang et al. [122] added the ethylene glycol dimethacrylate (EGDMA) as a crosslinking agent
on PMMA core to enhance further the mechanical strength of the PMMA/PANI particles; the other
synthetic steps are the same as above (Lee et al. [121]). Figure 5 shows SEM images of PMMA and
PMMA/PANI particles synthesized by Cho et al. [57] and Fang et al. [122]. The PMMA particles
were spherical and monodispersed with a smooth surface, and after coating with PANI, the surface of
particles became rougher.
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Figure 5. SEM images of (a) PMMA and (b) PMMA/PANI particles synthesized by Cho M.S. et al. [57]
(Copyright American Chemical Society, 2003) and (c) PMMA and (d) PMMA/PANI particles
synthesized by Fang et al. [122] (Copyright The Royal Society of Chemistry, 2011), respectively.

4.2.2. Poly(glycidyl methacrylate)

As mentioned above, in the synthesis of PANI/PMMA, poly(glycidyl methacrylate) (PGMA) was
synthesized on the surface of PMMA to graft the aniline functionality. Zhang et al. [123] reported
the facile and fast synthesis of core-shell structured PGMA/PANI microspheres and applied these
microspheres to ER materials. Scheme 6 presents a schematic diagram of the synthetic procedure.
Monodispersed PGMA particles were synthesized by the dispersion polymerization of GMA in the
methanol medium with PVP as a stabilizer and AIBN as an initiator. Amine groups were then grafted
onto the surface of PGMA through an epoxy-amine reaction between the ethylenediamine and glycidyl
groups of PGMA. Finally, the aniline monomers adhered to the surface of PGMA through the covalent
bonds formed between the aniline and amine group-modified PGMA via amine-amine functional
groups and polymerized by chemical oxidative polymerization with APS as an initiator.
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Figure 6 shows SEM and TEM images of PGMA and PGMA/PANI particles. The PGMA are
spherical and monodispersed with a diameter of approximately 1.6 µm. After coating PANI, the surface
became rougher than pure PGMA. TEM showed that the coated PANI layers were not uniform.
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4.2.3. Polystyrene

Core-shell structured PS/PANI microspheres are also considered a promising ER materials
because spherical and monodisperse polystyrene (PS) microspheres are easy to prepare [124].
In contrast to coating PANI on the PMMA and PGMA surface, the process of coating PANI onto
the PS is much simpler. Kim et al. [125] and Liu et al. [126] coated PANI on the surface of PS by the
diffusion and polymerization of aniline at the interface without a surfactant or surface modification of
PS. Scheme 7 presents a graphical diagram of the synthetic process.

Polymers 2018, 10, x FOR PEER REVIEW  13 of 31 

 

Figure 6 shows SEM and TEM images of PGMA and PGMA/PANI particles. The PGMA are 
spherical and monodispersed with a diameter of approximately 1.6 µm. After coating PANI, the 
surface became rougher than pure PGMA. TEM showed that the coated PANI layers were not 
uniform. 

 
Figure 6. SEM images of (a) PGMA microspheres, (b) PGMA/PANI particles. In addition, (c,d) TEM 
images of PGMA/PANI particles. (Zhang et al. [123], Copyright Elsevier, 2013). 

4.2.3. Polystyrene 

Core-shell structured PS/PANI microspheres are also considered a promising ER materials 
because spherical and monodisperse polystyrene (PS) microspheres are easy to prepare [124]. In 
contrast to coating PANI on the PMMA and PGMA surface, the process of coating PANI onto the PS 
is much simpler. Kim et al. [125] and Liu et al. [126] coated PANI on the surface of PS by the diffusion 
and polymerization of aniline at the interface without a surfactant or surface modification of PS. 
Scheme 7 presents a graphical diagram of the synthetic process. 

 
Scheme 7. Schematic diagram of PS/PANI microsphere preparation. (Liu et al. [126], Copyright The 
Royal Society of Chemistry, 2011). 

Scheme 7. Schematic diagram of PS/PANI microsphere preparation. (Liu et al. [126], Copyright
The Royal Society of Chemistry, 2011).



Polymers 2018, 10, 299 14 of 32

The monodispersed PS microspheres with a diameter of 1–2 µm were prepared using a facile
dispersion polymerization method in a methanol medium with PVP as a stabilizer and AIBN as an
initiator. When PS microspheres, aniline monomers, and APS were dispersed in DI-water, the aniline
monomers will be adsorbed on the PS through π-π* stacking interactions. After the addition of HCl,
the aniline monomers begin to polymerize and form a PANI shell on the PS surface.

Piao et al. [127] modified the surface of PS with concentrated sulfuric acid (H2SO4) before coating
with PANI, allowing the aniline monomers to adsorb better on the PS surface through charge-charge
interactions to achieve a better PANI shell. Scheme 8 shows a graphical diagram of their experimental
route. The PS microspheres were also prepared by a dispersion polymerization method, while in
this study, the diameter of the PS particles were approximately 360 nm. After modification with
concentrated H2SO4, the surface of the PS particles were negatively charged, and the aniline monomers
protonated by HCl were positively charged. Therefore, the aniline monomers will be adsorbed on the
surface of the PS particles through charge-charge interactions, and polymerization begins after adding
the APS initiator.
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Figure 7 compares SEM images of PS and PS/PANI synthesized by (a,b) Liu et al. [126] and (c,d)
Piao et al. [127], clearly showing that the PS particles prepared by Piao et al. [127] are smaller, which may
be related to the molecular weight of PVP and the amount of initiator during the synthesis process.
In addition, the synthesized PS/PANI surfaces became rougher with increasing PANI shell thickness
of 70 nm from the TEM images while the thickness of the coated PANI shell from Liu et al. [126] was
50 nm, indicating that surface modification with sulfuric acid is advantageous to form a better PANI
shell on the PS core.
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On the other hand, for shell material with different morphologies, Kim et al. [128] synthesized
interesting sea urchin-like core-shell-type PS/PANI particles by a seeded swelling polymerization
process using ferric nitrate as an oxidant instead of the usual APS, without even using HCl.
The monodispersed PS seed was prepared by the dispersion polymerization of styrene in an isopropyl
alcohol aqueous solution. The PS seeds and aniline monomers were then dispersed in water, and aniline
monomers were attached on the surface of PS through the π-π* stacking interactions. The chemical
oxidative polymerization began after adding ferric nitrate, and finally formed urchin-like core-shell
PS/PANI particles. Figure 8 shows SEM and TEM images of the PS and urchin-like core-shell
PS/PANI particles synthesized [128]. The mean diameter of PS and urchin-like PS/PANI particles were
approximately 1 and 1.3 µm, respectively. After coating with PANI, the surface of the particles became
uneven, and the morphology of the PANI shell was significantly different from that synthesized with
APS as an oxidant.
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Overall, the advantage of using polymeric cores is their proper control of shape and size while
their ER efficiency is limited especially for non-functional commodity polymers such as PMMA and PS.

5. Electrorheological Characteristics

ER fluids are typically prepared by dispersing electro-responsive particles in non-conducting oils,
such as silicone oil or mineral oil, while the dispersed particle need to be semi-conducting. In the case
of PANI, however, which is generally synthesized by an oxidative polymerization process in an acid
environment with its protonation, the pristine PANI appears to be the highly electrically conductive
emeraldine salt form, which is likely to cause electric breakdown during the ER measurements. On the
other hand, protonated PANI can be converted to a lowly electrically conductive PANI base by a
treatment with alkali [129,130]. Therefore, before applying the PANI-coated core-shell microspheres
to the ER fluids, a de-doping process is generally necessary to reduce the electrical conductivity
of the particles in the semi-conducting regime to prevent electric breakdown at high electric field
strengths. Scheme 9 illustrates the conversion process between protonated PANI (HCl as an example)
and PANI base.
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Scheme 9. Schematic diagram of the conversion process between protonated PANI (HCl as an example)
and PANI base by treating with alkali.

For ER fluids, among the various rheological characteristics, the shear stress and dynamic yield
stress are two very important properties, which will be discussed briefly for PANI-coated core-shell
microsphere-based ER fluids.

5.1. Shear Stress

The shear stress of the ER fluids is generally measured from a controlled shear rate (CSR) test
mode under various electric field strengths, and increases linearly with increasing shear rate in the
absence of an electric field, indicating Newtonian fluid-like characteristics. On the other hand, upon
the application of an electric field, ER fluids exhibit Bingham fluid-like properties with a significant
yield stress [131,132]. The Bingham model, a well-known rheological equation of state used to explain
the shear stress characteristics of suspensions, has also been adopted to ER fluids under an electric
field. The model has two flow regimes: a pre-yield region with a stable shear stress value for shear
stresses lower than the dynamic yield stress (τy), and a post-yield region for shear stresses beyond the
τy, showing Newtonian fluid behavior [133]. The Bingham model can be expressed as follows:

τ = τy + ηpl
.
γ, τ ≥ τy, (3a)

.
γ = 0, τ < τy (3b)

where the
.
γ is the shear rate; ηpl is the plastic viscosity, which is generally regarded as a constant value

for the same fluid; and τy is the yield stress, which is a function of the electric field strengths.
Figure 9 shows the shear stress versus shear rate for Fe2O3/PANI and various conducting polymer

(PT, PPy, PEDOT and PANI)-coated SiO2 core-shell nanosphere-based ER fluids on a log-log scale.
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As shown in Figure 9a, in the absence of an electric field, the shear stress of Fe2O3/PANI-based
ER fluid increases linearly with increasing shear rate, exhibiting Newtonian fluid properties. In the
case of an applied electric field, the shear stress remains stable over a low shear rate range at each
electric field intensity, and when the shear rate is relatively high, the shear stress begins to increase,
which is consistent with the Bingham model. Figure 9b shows the shear stress curves of core-shell
structured SiO2/PT, SiO2/PPy, SiO2/PEDOT, and SiO2/PANI-based ER fluids under an electric field
strength of 3 kV/mm. All curves showed characteristics consistent with the Bingham model and
the SiO2/PANI-based ER fluid has the highest shear stress, indicating that the strongest chain-like
structure may be formed between the SiO2/PANI particles under the same magnetic field strength.
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Figure 9. (a) Shear stress curves for Fe2O3/PANI-based ER fluid (20 wt % in silicone oil) at various
electric field strengths (Tian et al. [98], Copyright Elsevier, 2016) and (b) shear stress (open symbols)
and shear viscosity (closed symbols) curves for various conducting polymer coated SiO2 core-shell
nanospheres-based ER fluids (30 vol % in silicon oil) under 3 kV/mm of electric field (Hong et al. [85],
Copyright The Royal Society of Chemistry, 2010).

In many cases, however, the simple Bingham model with two parameters cannot match the shear
stress curve exactly. As shown in Figure 10, the shear stress curves of the PMMA/PANI-based
ER fluids show a decreasing trend in the low shear rate range, which is inconsistent with the
Bingham model, in which the shear stress at a low shear rate region remains stable. Therefore,
further modified rheological equations of state were presented to explain such ER characteristics,
known as the Cho-Choi-Jhon (CCJ) model [134–136], which can be expressed as

τ =
τy

1 +
(
t2

.
γ
)α + η∞[1 +

1(
t3

.
γ
)β

] (4)

where τy is the dynamic yield stress; α is related to the decrease of shear stress in the low shear rate
region; t2 and t3 are time parameters; η∞ is the shear viscosity at the infinite shear rate; the exponent, β,
is related to the increase in shear stress in the high shear rate region with its range of 0 < β ≤ 1. This
model with six parameters can explain better the shear stress curve with decreasing tendency in a low
shear rate region and provide a more reliable dynamic yield stress.
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Figure 10. Shear stress versus the shear rate for the PMMA/PANI-based ER fluid (10 vol % in silicone
oil) under various electric field strengths. (Lee et al. [121], Copyright Elsevier, 2005).

As shown in Figure 11a, Fang et al. [122] fitted the shear stress curve for PMMA/PANI-based
ER fluid with both Bingham model and CCJ model, and the results showed that the Bingham model
was unable to fully describe the curve, while the CCJ model fitted the data well. Liu et al. [126] also
adopted the CCJ model to fit the shear stress curve for the PS/PANI-based ER fluid.
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Figure 11. Shear stress versus shear rate for (a) PMMA/PANI-based ER fluid (20 wt % in silicone oil),
the dashed lines were fitted using a conventional Bingham model, the solid lines were fitted via a CCJ
model (Fang et al. [122], Copyright The Royal Society of Chemistry, 2011) and (b) PS/PANI-based ER
fluid (10 vol % in silicone oil), the solid lines are fitted via a CCJ model (Liu et al. [126], Copyright
The Royal Society of Chemistry, 2011).

The shear stress behavior of the ER fluid based on different types of PANI-coated core-shell-type
microspheres may be in accordance with the Bingham model or the CCJ model, and the particle size
also has an important effect on the behavior of the shear stress curve. Figure 12 presents the shear
stress curves of pure PANI and core-shell structured PMMA/PANI particle-based ER fluids with
different core sizes (2, 4.5 and 9 µm) under an electric field strength of 3 kV/mm. The shear stress of
the ER fluids based on PMMA/PANI with a core size of 4.5 and 9 µm exhibited a relatively stable
value at low shear rates, which is consistent with the Bingham model. On the other hand, for an ER
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fluid based on PMMA/PANI particles with a core size of 2 µm, the shear stress exhibited a significant
downward trend at a low shear rate range, which is more consistent with the CCJ model. In addition,
the shear stress of the pure PANI-based ER fluid is higher than that of the PMMA/PANI-based ER
fluid, which is probably because with pure PANI, polarization occurs throughout the particle, but for
PMMA/PANI particles, polarization only occurs in the PANI shell, and even the PMMA core will be
polarized by the movement of electrons in the PANI shell, which reduces the electrostatic interactions
among the PMMA/PANI particles. Scheme 10 shows a proposed schematic diagram of polarization
behavior of PMMA/PANI and PANI particles under an electric field.
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Under an applied electric field, the particles in the ER fluid are polarized to form a chain-like
structure along the direction of the electric field via electrostatic interactions. On the other hand,
the chain-like structure will be interrupted by the shear flow in the direction perpendicular to the
electric field and reorganized by electrostatic interactions. In other words, there is competition for
hydrodynamic interaction and electrostatic interactions in the ER fluid system [137]. The behavior of the
shear stress under an applied electric field is dependent on the balance between the hydrodynamic and
electrostatic interactions. For the Bingham model, the shear stress is stable in the low shear rate range
because the chain-like structure interrupted by the shear flow can be reorganized rapidly by the electric
field, but as the shear rate increases to a certain extent, the dynamic interaction dominates, the structure
is severely destroyed, and the shear stress increases with increasing shear rate, which exhibits fluid-like
behavior. In contrast, the CCJ model explains the special behavior of shear stress decreasing with
increasing shear rate in the low shear rate range, which may be because the chain-like structure
reorganized by the electric field is incomplete compared to that before the application of shear
flow. In other words, the rate of reorganization of the chain-like structure cannot match the rate
of destruction. On the other hand, it can be also noted that the PANI has been encapsulated with
melamine-formaldehyde resin for the ER study which is the inverse case of the majority of the PANI
shell in this review [138].

5.2. Yield Stress (τy)

Among the different yield stresses dependent on its measurement, the dynamic yield stress is the
minimum stress that can continuously interrupt the chain-like structure among the particles, which is
usually evaluated by extrapolating the shear stress to a zero shear rate limit from the shear stress flow
curve. The relationship between the yield stress and electric field strength can be expressed as

τy ∝ Eα (5)

where τy is the yield stress and E represents the electric field strength; the value of the index α is
usually between 1.0 and 2.0. When α = 2.0, this equation corresponds to a polarization model, while
α = 1.5 corresponds to a conduction model. Figure 13a–d show the dynamic yield stress versus electric
field strength on a log-log scale for PS/PANI, PGMA/PANI, Fe2O3/PANI, and PMMA/PANI-based
ER fluids, respectively. PS/PANI-based ER fluid (Figure 13a) shows a polarization model with slope
equal to 2.0 while the PGMA/PANI-based ER fluid (Figure 13b) shows a conduction model with a
slope equal to 1.5. The particle concentration, particle morphology and size, electric field strength,
and dielectric properties of the ER fluid etc. are also known to affect the dynamic yield stress; so
sometimes, the relationship between the dynamic yield stress and electric field is not fully consistent
with the conductive model or polarization model [139]. As shown in Figure 13c, the slope of the
Fe2O3/PANI-based ER fluid is 1.97, which is not consistent with the slope of the polarization model or
the conduction model, but it can be considered an approximate polarization model.
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Figure 13d shows the dynamic yield stress results of PMMA/PANI-based ER fluid, in which the
slope changed from 2.0 to 1.5 at the electric field strength turning point, called the critical electric field
strength (Ec). In view of this situation, Choi et al. [140] introduced the universal yield stress equation,
which correlates the yield stress with a wide range of electric field strengths, as shown in Equation (6):

τy(E0) = αE2
0(

tan h
√

E0/Ec√
E0/Ec

) (6)

where α depends on the particle concentration and dielectric properties of the ER fluid and this
equation was normalized by Ec and τy(Ec) = 0.762αE2

c to Equation (7):

τ̂ = 1.313Ê3/2 tan h
√

Ê (7)

where Ê ≡ E0/Ec and τ̂ ≡ τy(E0)/τy(Ec).
As shown in Figure 14, the data obtained from Figure 13d collapsed onto a single curve by

Equation (7). In addition, Choi et al. [141] further introduced the parameter b to obtain a better linear
relationship between the dynamic yield stress and electric field, as follows:

τy(E0) = αE2
0

(
tan h(E0/E0)

0.5+b

(E0/Ec)
0.5+b

)
(8)
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after rescaling τ̂ and Ê with ˆ̂τ = τ̂Ê4b and ˆ̂E = Ê1+2b, Equation (9) can be derived:

ˆ̂τ = 1.313 ˆ̂E
1.5

tan h ˆ̂E
0.5

(9)
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This equation proved to be suitable for many ER fluids or even MR fluids [141,142].

6. Dielectric Analysis

Among the many mechanisms proposed for ER fluids, the polarization model is well recognized
by many researchers, and the dielectric properties of ER fluids, including the dielectric constant (ε′)
and dielectric loss factor (ε′′ ), are believed to be closely related to the ER properties. A well-known
Cole-Cole formula [143] is commonly used to relate the dielectric properties and ER properties,
which can be expressed as

ε∗ = ε′ − ε′′= ε∞ +
ε0 − ε∞

1 + (iωλ)1−α
, 0 ≤ α ≤ 1 (10)

where ε∗ is the complex dielectric constant; ε0 and ε∞ are the dielectric constants at zero frequency
and infinite frequency, respectively; and ∆ε = ε0 − ε∞ is related to the achievable polarizability of
the ER fluid. λ = 1/2π fmax is the dielectric relaxation time of the interfacial polarization of the ER
fluid, where the fmax is the frequency at which the dielectric loss factor is a maximum. A large ∆ε and
short λ have positive effects on the ER performance. Figure 15 shows the dielectric properties for a
PS/PANI-based ER fluid. The data matched well with Equation (10), and the parameters are listed in
Table 1. According to the fitting results, the large ∆ε and short λ indicate that the ER fluid based on
PS/PANI exhibits excellent ER characteristics, as evidenced by the ER test results.

Table 1. Parameters in Equation (10) for a PS/PANI-based ER fluid. (Reprinted from [128], Copyright
The Royal Society of Chemistry, 2015).
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from Equation (10). As shown in Table 2, the ER fluid based on PMMA/PANI showed a lower ∆ࢿ 
than pure PANIbecause the insulating PMMA core counteracts the interfacial polarization. As 
expected, the value of ∆ߝ for the ER fluid based on PMMA/PANI with a PANI shell thickness of 52 
nm is higher than that with a PANI shell thickness of 11 nm. On the other hand, there was no obvious 
rule of λ in this study, which may be because λ	 is also dependent on other factors, such as the 
particle size, etc. Therefore, more extensive research will be needed to summarize the relationship 
between the dielectric and ER properties of ER fluids and the factors that influence the dielectric 
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Cho et al. [120] compared the parameters of Cole-Cole equation for different ER fluids. Figure 16
shows the Cole-Cole fitting results for ER fluids based on PANI (PA) and PMMA/PANI with a PANI
shell thickness of 11 (PA-PMMA4) and 52 nm (PA-PMMA20). Table 2 lists the fitted parameters from
Equation (10). As shown in Table 2, the ER fluid based on PMMA/PANI showed a lower ∆ε than
pure PANIbecause the insulating PMMA core counteracts the interfacial polarization. As expected,
the value of ∆ε for the ER fluid based on PMMA/PANI with a PANI shell thickness of 52 nm is higher
than that with a PANI shell thickness of 11 nm. On the other hand, there was no obvious rule of λ in
this study, which may be because λ is also dependent on other factors, such as the particle size, etc.
Therefore, more extensive research will be needed to summarize the relationship between the dielectric
and ER properties of ER fluids and the factors that influence the dielectric properties.Polymers 2018, 10, x FOR PEER REVIEW  23 of 31 
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7. Conclusions

This paper reviewed various electro-stimuli responsive PANI-coated core-shell-type microspheres,
which were divided into two categories: one with the inorganic materials as the core, including SiO2,
Fe3O4, Fe2O3, and TiO2; and the other using the polymeric materials as the core, including PMMA, PS,
and PGMA. Table 3 the summarize various experimental parameters including the synthetic method,
morphology, particle size and the thickness of PANI shell, in which the thickness of the PANI shell
ranged from 8 nm to 485 nm, depending on the synthetic method, the amount of aniline input, and the
shape and size of the cores. Because high electrical conductivity of the PANI easily leads to electric
breakdown in ER fluids during test, its de-doping process is usually necessary. Therefore based on this
fact, too thick PANI shell could more likely lead to electrical breakdown or make its de-doping process
more complicated, while too thin PANI shell may reduce ER performance. Therefore a proper PANI
thickness needs to be considered.

The use of an inorganic core and PANI shell to form core-shell structured microspheres is a
valuable method for developing excellent hybrid materials, combining the advantages of high hardness,
high mechanical strength, and thermal resistance of the inorganic core and the excellent electrical
properties of the PANI shell. On the other hand, the density of the inorganic core is usually higher
than PANI, making the density of inorganic-PANI microspheres higher than pure PANI, thereby
reducing the dispersion stability of the particles in ER fluids. The polymeric core generally have a low
density compared to inorganic cores, but the synthetic process of polymeric-PANI microspheres is
more complex, such as the need for surface modification for polymeric core.
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Table 3. Summary of PANI coated core-shell typed microspheres reviewed in this work.

Core Synthetic Method Morphology Size Thickness of PANI Shell

Trlica et al. [83] SiO2 in situ polymerization spherical 15 µm -
Hong et al. [85] SiO2 in situ polymerization spherical <30 nm <8 nm
Park et al. [86] SiO2 in situ polymerization spherical 1 µm 50 nm
Tian et al. [98] Fe2O3 in situ polymerization flower-like 1–1.5 µm _
Sim et al. [109] Fe3O4 in situ polymerization spherical 0.7–1.0 µm 100 nm

Wang et al. [116] TiO2 in situ polymerization spherical 400–500 nm 50 nm
Tian et al. [117] TiO2 in situ polymerization peanut-like - -

Cho et al. [57] PMMA in situ polymerization spherical
2 µm

4.5 µm
9 µm

51.7 nm
130.7 nm
261.4 nm

Cho et al. [120] PMMA in situ polymerization spherical 2 µm 52 nm
Lee et al. [121] PMMA grafting polymerization spherical 10 µm -

Fang et al. [122] PMMA grafting polymerization spherical 10.6 µm 485 nm
Zhang et al. [123] PGMA grafting polymerization spherical 1.6 µm 120 nm

Liu et al. [126] PS diffusion-interface polymerization spherical 1–2 µm 50 nm
Piao et al. [127] PS in situ polymerization spherical 50 nm 70 nm

Kim et al. [128] PS seeded swelling emulsion
polymerization urchin-like 1.3 µm 300 nm

In the absence of an external electric field, the shear stress behavior of ER fluids based on different
types of PANI-coated core-shell typed microspheres exhibits Newtonian fluid-like behavior. Under
electric fields, however, the shear stress can reach hundreds or even thousands of times higher than that
in the absence of an electric field and the shear stress curves are in accordance with the Bingham or CCJ
models. On the other hand, the shear stress of the pure PANI-based ER fluid was higher than that if the
PANI-coated core-shell particle-based ER fluid, probably because for pure PANI, polarization occurs
throughout the entire particle, whereas for the PANI coated core-shell-type microspheres, polarization
only occurs in the PANI shell. Even the core will be polarized by the movement of electrons in the
PANI shell and reduce the electrostatic interactions between the PANI-coated core-shell particles,
leading to lower shear stress. In addition, the particle size also has an important effect on the behavior
of the shear stress curve.

The relationship between the dynamic yield stress for the PANI-coated core-shell typed
microsphere-based ER fluid and electric field strength can be expressed by a power law equation,
in which the exponent is usually between 1.0 and 2.0. When the exponent equal to 2.0, the relationship
between dynamic yield stress and electric field strength corresponds to a polarization model, whereas
it corresponds to a conduction model when the exponent equal to 1.5. The exponent is also dependent
on the particle concentration, particle morphology, and size; the applied electric field strength; and
dielectric properties of the ER fluid. Furthermore, in some cases, where the relationship between
the dynamic yield stress and the electric field strength changes from the polarization model to the
conductivity model, a universal yield stress equation was proven that can correlate linearly the
dynamic yield stress with a wide range of electric field strengths.

The dielectric properties are believed to be closely related to the ER properties, and a Cole-Cole
formula is generally used to explain this relationship. Among the many parameters of this formula,
the difference dielectric constants at zero frequency and infinity (∆ε) and the dielectric relaxation time
of the interfacial polarization (λ) are considered to have a significant effect on the ER characteristics.
On the other hand, the relationship between the dielectric and ER properties of ER fluids and the
factors influencing the dielectric properties need to be examined in a future study.

Several mechanisms for ER fluids were proposed, in which the polarization mechanism and
conduction model are considered to be suitable explanations for the ER characteristics of PANI-coated
core-shell typed microsphere-based ER fluids. Nevertheless, different models for theoretical and
experimental research are still needed. Furthermore, in addition to many PANI-coated core-shell typed
materials which have been already adopted as for ER materials, the PANI could be replaced with other
excellent conducting polymers such as poly(diphenylamine) [144], PPy, and PANI-copolymer even
though their reactivity might not be as efficient as PANI.
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