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Abstract: Functional surface active monomers (surfmers) are molecules that combine
the functionalities of surface activity, polymerizability, and reactive groups. This study
presents an improved pathway for the synthesis of the active ester containing surfmer
p-(11-acrylamido)undecanoyloxyphenyl dimethylsulfonium methyl sulfate (AUPDS). Further, the
preparation of poly(methyl methacrylate) and polystyrene nanoparticles (NPs) by mini-emulsion
polymerization using AUPDS is investigated, leading to NPs with active ester groups on their surface.
By systematically varying reaction parameters and reagent concentrations, it was found that AUPDS
feed concentrations between 2–4 mol% yielded narrowly distributed and stable spherical particles
with average sizes between 83 and 134 nm for non-cross-linked NPs, and up to 163 nm for cross-linked
NPs. By basic hydrolysis of the active ester groups in aqueous dispersion, the positive ζ-potential
(ZP) was converted into a negative ZP and charge quantities determined by polyelectrolyte titrations
before and after hydrolysis were in the same range, indicating that the active ester groups were
indeed accessible in aqueous suspension. Increasing cross-linker amounts over 10 mol% also led to
a decrease of ZP of NPs, probably due to internalization of the AUPDS during polymerization. In
conclusion, by using optimized reaction conditions, it is possible to prepare active ester functionalized
NPs in one stage using AUPDS as a surfmer in mini-emulsion polymerization.

Keywords: mini-emulsion polymerization; functional surface active monomer; polyelectrolyte
titration; dynamic light scattering

1. Introduction

Polymeric nanoparticles (NPs) may exhibit unique physical properties that differ from the
properties of their counterparts in the macroscale. The differences are mainly based on the smaller
object size, leading to a higher surface-area-to-volume ratio, a better dispersion stability, a larger
diffusibility, and mobility. This dispersion allows the NPs to be generally more interactive with the
external media than micro- and macroparticles [1–4].

Preparation of polymeric NPs with a narrow distribution allows for reliable and reproducible
results for their applications, and heterophase polymerization of (almost) water-insoluble
monomers through emulsion polymerization (EP) and mini-emulsion polymerization (miniEP) are
widely-employed methods to achieve monodisperse size distributions. Surfactant-based approaches

Polymers 2018, 10, 408; doi:10.3390/polym10040408 www.mdpi.com/journal/polymers

http://www.mdpi.com/journal/polymers
http://www.mdpi.com
http://www.mdpi.com/journal/polymers
http://www.mdpi.com/2073-4360/10/4/408?type=check_update&version=1
http://dx.doi.org/10.3390/polym10040408


Polymers 2018, 10, 408 2 of 16

may be used in both EP and miniEP systems in order to prevent the coalescence of monomer droplets
via electrostatic and/or steric stabilization. In the case for EP, micellar nucleation is prevalent and
the surfactants are usually used above the critical micelle concentration (CMC) [5,6]. In contrast,
in miniEP the surfactant is generally used below its CMC, in order to prevent micellar nucleation,
and the nano-sized droplets are formed by high shear forces, favoring an equal dissemination of
surfactants among the monomer droplets. This mini-emulsification process leads to critically stabilized
droplets, and their size is connected with the type and concentration of the surfactant used, because it
affects the interfacial area between the water and the monomer phase and, consequently, the number
and size of the monomer droplets. In miniEP the particle nucleation takes place in the stabilized
monomer droplets and the particle size characteristics post polymerization are related to the droplet
size characteristics prior to polymerization, hence, they are often referred to as “nanoreactors”. The
uniform density of surfactant molecules at the droplet surfaces achievable via miniEP, results in the
production of NPs with a narrow size distribution and with adjustable average diameters between 50
and 500 nm [7]. Concerning the choice for surfactant, sodium dodecyl sulfate (SDS) has been used
as the standard anionic surfactant in miniEP systems and the use of cationic surfactants, such as
cetyltrimethylammonium bromide (CTAB) is fairly recent, but their efficiency is comparable to that of
SDS [8].

In order to make use of the large surface-area-to-volume ratio of polymer NPs, the NP surface
is often decorated with groups which bear a chemical, physical or biological function. Such NPs
can be regarded as functional NPs. Developing efficient ways to synthesize functional polymer
NPs has been a notable field of study in chemistry and biotechnology [2,9–14]. Such functionalized
particles find use in bioconjugation [15] and bioseparation of selective biomolecules [2], labeling
and immunoassays [2,10,16], and biosensors [12,17–19]. Functionalized polymeric NPs can also
present interesting opto-electrical [2,20] (lenses and colloid crystals) or rheological applications
(coatings, viscosity control, and film-formation) [2,21,22].

The most common approach for the generation of NP surfaces presenting defined functional
groups is chemical modification after NP preparation. However, this post-polymerization approach
often relies on multi-step reactions and a need for rigorous and time-consuming purification [9,12].
These drawbacks of post-polymerization modifications can be overcome if the desired functional
groups are already present at the NP surface during preparation. This can be achieved, e.g., by making
use of the characteristics of the miniEP process. For droplet stabilization in miniEP, different surfactants
can be used. Whereas standard surfactants (e.g., SDS or CTAB) have disadvantages, such as surfactant
migration or desorption from the particles post polymerization, using polymerizable surfactants—often
referred to as surfmers (surface active monomers)—leads to covalent attachment of the surfactant
molecules at the particle surface [23–25]. Surfmers are amphiphilic compounds consisting of a
polymerizable group (usually hydrophobic), and a hydrophilic head group (neutral or charged),
connected by a spacer (usually an alkyl chain with at least six methylene groups) [22]. Surfmers
in which the head group is a functional group are referred to as functional surfmers [22–24,26,27].
An overview on surfmer structures and their applications has been recently presented by Borzenkov
and Hevus (2014) [22].

During polymerization, the surfmers are directly incorporated into the polymeric backbone of the
particles—while predominantly present on the particle surface. Hence, the use of functional surfmers
allows for a controlled display of the functional head groups with a covalent attachment to the surface
of the particles [23,24,27,28]. In this manner, the use of functional surfmers enables the production of
surface functionalized particles through a one-pot synthesis, and the obtained particles may be further
used toward specific applications [22].

As aforementioned, a wide range of surfmer molecules has been developed so far and
polymeric particles have been developed using surfmers bearing cationic [29–31] or anionic
head groups [32–34], as well as non-ionic [35–37]. The positive charge on cationic surfmers is
commonly derived from quaternary ammonium groups [31,38–40] and may include functional
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moieties, for instance in fluorinated surfmers [29,41]. A prominent cationic surfmer example is
the p-(11-acrylamido)undecanoyloxyphenyl dimethylsulfonium methyl sulfate (AUPDS), a water
soluble surfmer that presents an active ester functionality that acts as an anchor group. AUPDS was
synthesized by Herold et al., who used it in the preparation of polymer NPs, but only through the EP
technique [42]. The active ester group offers optimal reactivity under mild reaction conditions with
primary amines, a chemical function widely present in proteins. Consequently, the configured particles
with this customized functional surface are promising candidates for multifunctional platforms suitable
for biomedical applications, as reported previously [43,44]. Surfactants bearing sulfonium head groups
have also been reported [45] and surfmers bearing active ester groups have been described for the
preparation of functionalized PS particles, but via emulsion polymerization and not miniEP [46,47].

Using surfmer molecules to obtain functional particles systems that are both monodisperse and
reproducible is a challenging task and, for a better understanding of the mechanistic approach of
miniEP using surfmers and of the colloidal properties of the obtained particles, a systematic study
of different formulations is necessary. The aim of this work is to investigate the role of AUPDS as a
surfactant and co-monomer in a thermally-initiated miniEP system using either styrene (St) or methyl
methacrylate (MMA) as co-monomers. Cross-linked particles and the effect of varying cross-linker
concentrations in these surfmer-functionalized particle systems were also investigated. The obtained
particle properties, such as particle size, distribution, and surface charge were considered and the
different formulations were compared.

2. Materials and Methods

2.1. Materials

The following reagents were purchased from commercial suppliers and, unless stated
otherwise, were used as received. Acetonitrile, acryloyl chloride 97%, azobisisobutyronitrile
98% (AIBN), chloroform, ethylene glycol dimethacrylate (EGDMA), dichloromethane (DCM);
4-(dimethylamino)pyridine 99% (DMAP), divinylbenzene (DVB), hydrochloric acid 37%, methyl
methacrylate (MMA) 99%, N,N′-diisopropylcarbodiimide 99% (DIC), potassium dihydrogenphosphate,
potassium hydroxide, sodium hydrogen phosphate, sodium hydroxide, and styrene (St) ≥ 99% were
obtained from Sigma-Aldrich (St. Louis, MO, USA). From other suppliers: 11-Aminoundecanoic
acid 97% (Acros Organics, Geel, Belgium); ethyl acetate (J.T.Baker Chemicals, Phillipsburg, NJ, USA);
deuterated dimethyl sulfoxide (DMSO-d6) 99.8% Deutero, Kastellaun, Germany); hexadecane 98%
(HD, Fluka Analytical, Seelze, Germany); (4-hydroxyphenyl)(dimethyl) sulfonium methyl sulfate
(HPDMSMS, TCI Chemicals, Eschborn, Germany); and sodium polystyrene sulfonate (PES, Mütek,
Herrsching, Germany); poly(diallyl dimethyl ammonium chloride) (PDADMAC, Mütek, Herrsching,
Germany). Monomers were distilled under reduced pressure and stored under argon (Ar) at −20 ◦C.
All solvents used were of HPLC grade or higher. Phosphate buffers of pH 7.0 and 7.5 were prepared
using potassium dihydrogenphosphate and sodium hydrogen phosphate solutions. Ultrapure water
(TKA GenPure device, ThermoFisher Scientific, Waltham, MA, USA) was used to prepare all aqueous
solutions and is hereby referred to as water.

2.2. Instrumentation

Proton nuclear magnetic resonance (1H-NMR) spectroscopy was performed using an AVANCE
500 spectrometer (Bruker, Billerica, MA, USA), standardized to 2.50 ppm with DMSO-d6. Attenuated
total reflection Fourier-transform infrared (ATR-FTIR) spectra were measured using an Equinox-55
spectrometer (Bruker, Billerica, MA, USA) equipped with a deuterated triglycine sulfate (DTGS)
detector and the corresponding software OPUS.
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2.3. Synthesis of p-(11-Acrylamido)undecanoyloxyphenyl Dimethylsulfonium Methyl Sulfate
(AUPDS) Surfmer

11-Aminoundecanoic acid (19.2 g, 95 mmol) was dissolved in 150 mL of aqueous KOH solution
(1.3 mol·L−1) in a 4-necked 1 L flask, equipped with mechanical stirrer, argon (Ar) inlet, thermometer,
and dropping funnel. Acryloyl chloride (9.5 g, 105 mmol) was dissolved in 15 mL DCM and slowly
added dropwise into the reaction under Ar atmosphere and ice bath. After the addition was completed,
the reaction was left stirring at room temperature (RT) for 16 h. The reaction was adjusted to pH 7.0 via
dropwise addition of HCl (1 mol·L−1). The colorless and opaque reaction mixture was then filtrated
and the solid filtrate was washed five times with HCl solution (0.1 mol·L−1), followed by five washes
with water. The resulting white powder was dried under vacuum overnight and was used for the next
step without further purification (crude yield: 78%).

The second step of the synthesis consists in the Steglich esterification of the obtained
11-acrylamidoundecanoic acid (AAUA). HPDMSMS (4.7 g, 17.6 mmol) was dissolved in 170 mL
of acetonitrile and added to a solution of 11-acrylamidoundecanoic acid (5 g, 19.6 mmol) in 370 mL
of chloroform under stirring and Ar atmosphere. A solution of DMAP (120 mg, 1.0 mmol) in 5 mL
acetonitrile was added dropwise, followed by dropwise addition of a solution of DIC (2.5 g, 19.6 mmol),
in 15 mL of acetonitrile, under ice bath. The reaction proceeded under stirring at RT for 72 h. A white
precipitate was removed through filtration and the volatile solvents of the filtrate were evaporated,
resulting in a white powder. 50 mL of ethyl acetate were added to the powder and the mixture was
left stirring at room temperature for 15 min, then the solids were filtered. This process was repeated
three times in order to remove the DIC by-product. The white powder was then dried under vacuum
(yield: 89%). 1H-NMR and ATR-FTIR spectra are available in the supplementary information (Figures
S1 and S2).

1H-NMR (DMSO-d6): δ (ppm) = 8.17–8.10 (m, 2 H), 8.07 (m, 1 H), 7.50 (m, 2 H), 6.25–6.16 (m, 1 H),
6.05 (dd, 1 H), 5.55 (dd, 1 H), 3.38 (s, 3 H), 3.27 (s, 6 H), 3.11 (m, 2 H), 2.62 (m, 2 H), 1.64 (m, 2 H),
1.46–1.20 (m, 14 H).

ATR-FTIR: 3308 (s, N–H stretch); 3018 (m, C–H stretch of the phenyl ring); 1587 and 1475 (m, C–H
bend of the phenyl ring); 2918 and 2849 (s, C–H stretch of the alkyl chain); 1759 (s, C=O ester); 1653
(s, C=O acryloyl group); 1626 (s, C=C acryloyl group); 1533 (s, N–H).

2.4. Preparation of PMMA and PS Particles Copolymerized with AUPDS Surfmer Through
Mini-Emulsion Polymerization

For the synthesis of polymeric NPs via mini-emulsion polymerization, a continuous phase (water)
was mixed with a dispersed (monomer) phase, which consisted of monomer (either St or MMA),
AIBN (initiator), HD (hydrophobe), and AUPDS surfmer, which was used as the only surface active
compound. Throughout the formulations, AUPDS surfmer content varied from 0.25 to 8 mol%, AIBN
and HD were fixed at 0.5 and 2 mol%, respectively, and cross-linkers (when present) varied from
0.5 to 80 mol%. The term mol% refers only to the compounds on the dispersed phase. Examples of
amounts of the dispersed phase for non-cross-linked formulations with AUPDS 2 mol%: 0.94 mg
MMA (9.39 mmol), 77 mg AUPDS (0.20 mmol), 8 mg AIBN (0.05 mmol) and 45 mg HD (0.20 mmol); or
0.91 g St (8.74 mmol), 72 mg AUPDS (0.18 mmol), 8 mg AIBN (0.05 mmol), and 41 mg HD (0.18 mmol).
AUPDS was dissolved in the water (continuous phase), which was maintained at 6 mL (15–20 wt %
of dispersed phase). Further examples of reagent amounts can be found in Table S1. The water was
degassed under Ar flow for 30 min prior to use.

The reagent mixture was then homogenized for 3–5 min at RT at approximately 600 rpm and,
afterwards, it was mini-emulsified by ultrasonication using a probe sonicator (S-450D, Branson
Ultrasonics, Danbury, CT, USA) with 60% amplitude, 120 s of total sonication time (pulse set at
10 s on/5 s off) under an ice bath. The mini-emulsion flask was subsequently transferred to an
oil-bath and the polymerization was carried out at 75 ◦C and 400 rpm for 4 h. After reaching RT, the
particles were purified three times with water through centrifugation at 25,000 rpm, for 30 to 60 min
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at 10 ◦C, using an Avanti J-26 XPI centrifuge (Beckman Coulter, Brea, CA, USA). Polystyrene (PS)
particles were first washed once with methanol. After each centrifugation cycle, the precipitates were
redispersed in water and the suspension was finally stored in the fridge. This stored suspension is
hereby referred to as NP stock suspension. For determination of solid content of this stock suspension,
aliquots of each suspension (n = 3) were dried using a drying oven (VDL 115, Binder) at 60 ◦C and
125 mBar for 24 h. In order to achieve the described protocol, preliminary screening experiments were
performed with non-crosslinked particles with 2 mol% surfmer and the aim was to find appropriate
experimental conditions to generate mini-emulsions with the AUPDS surfmer. Reaction conditions,
ultrasonication time, initiation and parameters for the centrifugation rounds were tested and the
outcome was evaluated by observing visible changes (e.g., phase separation) of the mini-emulsions, as
well as by comparing the yield and particle sizes/dispersity after polymerization.

2.5. Particle Characterization: Size, Polydispersity and Surface Charge

The prepared particles were characterized through scanning electron microscopy (SEM) and
dynamic light scattering (DLS), also referred to as photon correlation spectroscopy. The numerical
size distribution is shown in terms of polydispersity index (PI) obtained via DLS. The presence of the
surfmers on the surface of the particles was investigated through electrophoretic light scattering
(ELS, for zeta potential) and polyelectrolyte titration (for charge quantity), in which particles
functionalized with AUPDS were used both unmodified and after a hydrolysis process. Hydrolysis
of the active ester groups was accomplished by dispersing the particles in NaOH solution (0.1 M)
overnight. Particles were recovered through centrifugation and were redispersed in sodium and
potassium phosphate buffer (c = 4 mM, pH 7.5).

DLS and ELS were performed in a Zetasizer Nano ZS device (Malvern Panalytical,
Worcestershire, UK) using the corresponding software Zetasizer Nano ZS Version 7.12. Size
measurements were executed in the non-invasive backscattering mode (NIBS) at a scattering angle of
173◦, using PS disposable cuvettes. Zeta potential (ZP) was determined in ELS mode, using folded
capillary zeta cells (DTS1070, Malvern Panalytical, Worcestershire, UK). All measurements were carried
out in triplicate, at 25 ◦C, with the number of runs, attenuator value, and laser position set to automatic.
Samples were prepared by further diluting the particle stock suspensions in water (1:20 v/v), without
prior use of ultrasonication or filtration processes. The measurements were executed and evaluated
according to the ISO 22412 [48].

SEM measurements were executed using a LEO 1530VP microscope (Zeiss, Oberkochen,
Germany). Samples were prepared in the same manner as for DLS measurements and 5 µL droplets
were placed on clean silicon wafers and left to dry overnight at room temperature.

Polyelectrolyte titrations were carried out via potentiometry using a particle charge detector
(model PCD-03, BTG Mütek, Herrsching, Germany) coupled to a Titrino 702SM (Metrohm AG, Herisau,
Switzerland) using the corresponding BTG Mütek PCD software. All measurements were performed
in triplicate, under agitation at RT, where 0.01 mL of titrant solution (c = 1 mM) was added to the
colloidal suspension every 20 s, until the charge was neutralized. For sample preparation, at least
10 mg of dispersed particles were added to sodium and potassium phosphate buffer (c = 5.2 mM,
pH 7.0) until total volume of 15 mL. PES (anionic) was used to titrate positively-charged particles and
PDADMAC (cationic) for the negatively-charged particles.

3. Results and Discussion

3.1. Synthesis of p-(11-acrylamido)undecanoyloxyphenyl Dimethylsulfonium Methyl Sulfate
(AUPDS) Surfmer

The AUPDS surfmer was synthesized by modifying a previous approach developed by
Herold et al. [42]. For the synthesis of AAUA (first step), the washing process was modified and the
product was washed several times with HCl solution and then with water, instead of extracting with
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ethyl acetate. This approach simplified the procedure, while maintaining the yield (78%, compared
to 76% previously reported in the literature) [49]. In the second step, we chose to use DIC instead of
dicyclohexylcarbodiimide (DCC) because the dicyclohexylurea by-product of the latter could not be
fully removed due to solubility issues. The use of DCC requires a wash with petroleum ether and
a recrystallization step with ethyl acetate, whereas in this new route with DIC the by-product can
be easily washed out. This increased the yield of the reaction from 80% to 89%, while facilitating
the synthesis [42]. 1H-NMR and ATR-FTIR analysis confirmed the AUPDS structure and showed a
conversion of 87% due to the presence of residuals from AAUA, which is comparable to the other
procedure. Residual AAUA could not be reduced further due to the limited stability of AUPDS towards
hydrolysis, excluding further extraction steps or column chromatography. Although the residual
AAUA in the product can act as a surfactant itself, it is not expected to interfere with the particle
synthesis described in the following sections as also supported by the report by Herold et al. [42]. Taken
together, the improved synthesis route reported here gives AUPDS in a higher yield than reported
before with a simpler procedure and a similar purity and therefore was used for synthesizing the
AUPDS in this study.

3.2. Choice of Reagents for Mini-Emulsion Polymerization

The choice of reagents and emulsification parameters play a decisive role in the preparation of
particles through miniEP technique. The formation of mini-emulsion systems requires high mechanical
mixing in order to reach a steady state, given by a rate equilibrium of droplet fission and fusion. The
droplets are then critically stabilized and, during polymerization, the droplets act as “nanoreactors”
because only droplet nucleation occurs [50]. The general process for miniEP used in this work
is displayed in Figure 1. It was not possible to perform DLS of the monomer droplets prior to
polymerization, due to multiple scattering effects that result from the high concentration of droplets in
the mini-emulsion. It was also not advisable to dilute the mini-emulsion in this state, due to possible
displacement of the AUPDS or loss of monomer by diffusion.

Figure 1. Schematic representation of the direct mini-emulsion polymerization process with AUPDS
surfmer. The reaction mixture is composed of a continuous phase (AUPDS dissolved in water) and a
dispersed phase (MMA or St, cross-linker, AIBN, and hexadecane). This mixture is (mini)emulsified
using probe ultrasonication, to form critically stable monomer droplets, which are then polymerized.
Nucleation occurs predominantly in the monomer droplets and this allows for the production of
particles that are a 1:1 copy of the droplets prior to polymerization. Objects shown are not drawn
to scale.

Because the functional active ester group of AUPDS is present in the hydrophilic head group, we
chose to perform direct mini-emulsion experiments with a hydrophobic monomer dispersed phase
and water as the continuous phase. Thus, when using AUPDS as a surfactant in miniEP the active
ester groups should be directed towards the water phase and should be present on the NP surface
after polymerization. We chose the monomers MMA and St for particle synthesis because they are
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known to form monodisperse NPs in miniEP [50,51]. Additionally, we investigated if it was possible
to produce AUPDS-surface functionalized cross-linked NPs by adding the cross-linkers DVB and
EGDMA to St and MMA, respectively. The choice of cross-linker was based on the fact that DVB has
similar polymerizable groups to St, the same is valid for EGDMA with MMA [52].

There are two factors to assure that nucleation only takes place in the monomer droplets: the
type of the initiator and the surfactant concentration. In our formulations, the initiator of choice
was AIBN, due to the fact that it is only soluble in the dispersed organic monomer phase. This is
particularly important to prevent secondary nucleation in the continuous phase (water) for MMA
which is partly soluble in water. The AUPDS molecule, due to its amphiphilic character, acts as
a surfactant substitute while also acting as a co-monomer. By using low AUPDS concentrations
below the critical micelle concentration (CMC), the surfmer does not cover the droplet interface
completely [50,53]. This configuration allows for most of the AUPDS to be positioned on the surface of
the particles, thus producing surface-functionalized particles in one step.

The monomer droplets in mini-emulsion systems are stabilized against the Ostwald ripening
effect via the use of co-stabilizers—the so-called (ultra)hydrophobes [53]. Hexadecane (HD) was added
as a hydrophobe and it is pertinent to emphasize that the HD is not placed on the interface, and thus
its use does not modify the interfacial energy [54].

In our experiments, we produced NPs with AUPDS as the only surface active agent: PS and
PMMA NPs (both non-cross-linked) as well as PS-co-DVB and PMMA-co-EGDMA NPs (both
cross-linked). The objective was to systematically test the effect of varying surfmer and cross-linker
concentration in order to obtain monodisperse functionalized PMMA and PS NPs with reproducible
properties and stability.

3.3. Influence of the Surfmer Concentration on NP Formation

The AUPDS surfmer was used as surfactant replacement and co-monomer in the preparation
of MMA and PS NPs with a surfmer feed concentration between 0.25 and 8 mol% relative to the
dispersed monomer phase. Variations in the values of the hydrodynamic diameters, PI and ZP were
used as parameters to evaluate particle size, distribution and stability and these results are displayed
in Table 1 and Figure 2. The PI is a value (from 0 to 1) calculated from two parameters obtained from
the correlation data (the DLS data cumulant analysis), where values ≤0.1, 0.1–0.2, 0.2–0.4, or ≥0.7
represent samples that are monodisperse, nearly monodisperse, mid-range and not suitable for DLS,
correspondingly [48]. The ZP—or electrokinetic potential—is a qualitative measure of the potential
between the electric double layer of the particles and the dispersion media and it is a well-established
parameter for the evaluation of particle stability in a suspension. The obtained value brings insights
into the electrostatic repulsion between particles, in which the values 0–10 mV, 10–20 mV, 20–30 mV,
and >30 mV conventionally represent highly unstable, relatively stable, moderately stable, and highly
stable particles, respectively [55].

Table 1. Z-average hydrodynamic diameters, polydispersity index (PI), and zeta potential (ZP) values
obtained for PMMA-co-AUPDS and for PS-co-AUPDS particles with different amounts of AUPDS.
Values are presented in average ± standard deviation (n = 3).

AUPDS (mol%) Z-Average (nm) PI ZP (mV) a

PMMA-co-AUPDS particles

0.25 - - -
0.5 - - -
1 - - -
2 118.5 ± 0.3 0.05 ± 0.00 40.1 ± 0.8
3 134.0 ± 0.2 0.10 ± 0.00 42.8 ± 1.2
4 124.5 ± 0.1 0.07 ± 0.02 45.9 ± 1.1
6 129.0 ± 1.1 0.08 ± 0.02 42.9 ± 0.9
8 150.0 ± 1.1 0.13 ± 0.01 44.0 ± 0.2
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Table 1. Cont.

AUPDS (mol%) Z-Average (nm) PI ZP (mV) a

PS-co-AUPDS particles

0.25 - - -
0.5 488.3 ± 19.4 0.16 ± 0.04 8.7 ± 0.5
1 331.2 ± 29.5 0.37 ± 0.02 −4.5 ± 0.2
2 90.5 ± 1.8 0.13 ± 0.01 35.7 ± 0.4
4 82.5 ± 2.9 0.42 ± 0.02 26.1 ± 0.2
6 61.3 ± 0.3 0.23 ± 0.01 35.4 ± 1.7
8 55.5 ± 0.5 0.24 ± 0.00 43.3 ± 1.3

a Measurements were performed in ultrapure water.

Figure 2. Hydrodynamic diameter distribution curves in terms of intensity (%) obtained via DLS
analysis of (a) PS-co-AUPDS NPs and (b) PMMA-co-AUPDS NPs formulated using different amounts
of AUPDS (in mol% relative to the dispersed phase).

When using formulations with low surfmer concentrations of 0.5 and 1 mol% AUPDS, PS particles
presented an increased PI (0.16 and 0.37) and a low ZP (+8.7 to −4.5 mV), whereas PMMA particles
were not even produced at this range. The reason for that is because this amount of surfmer was not
enough to stabilize the mini-emulsion before polymerization. Our results are in agreement with the
results obtained by Landfester et al. for SDS as the surfactant for the miniEP of St: when using less
than 1 mol% of surfactant, there is just not enough coverage of the monomer droplets to stabilize the
system [54].

After the minimum concentration is reached and a stable mini-emulsion is formed, it is possible
to produce stable droplets with as little as 10–30% surface area coverage using miniEP systems [51].
Variation in the AUPDS concentrations ≥ 2 mol% yielded monodisperse PMMA-co-AUPDS particles
with hydrodynamic diameters fluctuating between 118 nm and 150 nm and PI below 0.13. On the
other hand, PS-co-AUPDS particles presented a slight decrease in the hydrodynamic diameter from 90
to 55 nm with increasing surfmer amounts ≥ 2 mol%, but size distributions were broader when using
more than 4 mol% AUPDS (PI ≥ 0.23). An increase in the surfactant concentration usually leads to a
decrease in the particle size due to the increase in the number of droplets in the mini-emulsion, provided
that the droplets are covered with enough surfactant [50,53]. This was observed for PS-co-AUPDS, but
not for PMMA-co-AUPDS particles.

In both mini-emulsions, the AUPDS acts as a stabilizer, replacing the use of surfactant, while also
being a co-monomer to St or MMA. The inherent reactivity of the acryloyl polymerizable end group
of AUPDS certainly has an influence on the surfmer distribution on the surface of the particles post
polymerization, this could be mainly due to different reactivity ratios among the monomers [24]. Ideally,



Polymers 2018, 10, 408 9 of 16

the surfmer should not be polymerized in the initial stages of polymerization, because this might lead
to the surfmer being “buried” inside the particle, decreasing the amount of surfmer molecules on
the surface. Hence, a lower reactivity ratio between the monomer and the surfmer facilitates that the
surfmer is distributed in the interface post-polymerization [24,56]. N-Alkyl acrylamides, for example,
which we expect to have a similar co-polymerization reactivity like AUPDS, on average were reported
to have a higher co-polymerization ratio with St than with MMA [57–60]. With MMA, AUPDS might
be incorporated to a larger extent in the final stages of polymerization, thus increasing the amount
of AUPDS on the surface for PMMA-co-AUPDS particles. The opposite could happen for St, where
AUPDS is incorporated to a larger extent in the earlier stages of polymerization, thus decreasing the
amount of molecules on the surface. It is also pertinent to emphasize that the solubility of the monomer
(St or MMA) in water should not play a significant role in these systems because in the miniEP
mechanism the nucleation takes place in monomer droplets, especially when using a hydrophobic
initiator (AIBN), which particularly avoids the formation of water-soluble oligomers [24,28].

SEM micrographs of PMMA-co-AUPDS and of PS-co-AUPDS using 2 mol% of surfmer are
displayed in Figure 3. It can be observed that the particles are narrowly distributed and spherically
shaped. The particle diameter observed via SEM seems to be smaller when compared to the DLS
data. It is often the case that polymeric particles present a decrease in size when comparing electron
microscopy measurements to DLS data. This comes from the differences in samples preparation and
measurement technique: SEM is performed with dried particles under low pressure, while in DLS the
hydrodynamic diameter is obtained, which accounts for swelling and the solvation layer or possible
particle aggregation assembly in aqueous media.

In regards to the ZP, PS-co-AUPDS NPs varied with AUPDS concentration from 35 up to 43 mV.
In contrast, the measured ZP values for PMMA-co-AUPDS NPs remained constant at about 44 mV
with varying surfmer concentration. Considering the higher yield (at 88% for PMMA-co-AUPDS and
78% for PS-co-AUPDS), along with favorable DLS data, NPs were further synthesized using AUPDS
at 2 mol% as the concentration of choice for both monomers. Among five batches using 2 mol%
AUPDS, PMMA-co-AUPDS showed a Z-average size of 127.6 ± 14.8 nm, a PI of 0.05 ± 0.01 and a ZP
of 42.2 ± 4.1 mV. Among four batches, PS-co-AUPDS particles had an average hydrodynamic diameter
of 109.3 ± 26.4 nm, PI of 0.14 ± 0.05, and ZP of 33.9 ± 5.7 mV. The DLS measurements reporting the
reproducibility of different batches for the optimized formulations are available on Table S2.

Figure 3. SEM images of (a) PMMA-co-AUPDS; (b) PMMA-co-EGDMA-co-AUPDS; (c) PS-co-AUPDS
and (d) PS-co-DVB-co-AUPDS. The particles were formulated using 2 mol% AUPDS surfmer. The
amount of cross-linker for (b,d) was 10 mol%. All scale bars represent 100 nm.

3.4. Variation of the Cross-Linker Concentration On Particle Formulations

The preparation of cross-linked NPs is a common practice in order to provide a fixed structure
that is resistant to different solvents systems and more thermally stable [61] although it is a challenge to
obtain monodisperse cross-linked systems. For the synthesis of cross-linked NPs, DVB, and EGDMA
were used to cross-link St and MMA, respectively. The AUPDS, HD, and AIBN concentrations
remained constant throughout the formulations at 2, 2 and 0.5 mol%, correspondingly, all values
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relative to the monomer phase. The amount of cross-linker was varied from 2.5 to 80 mol% and the
DLS results are displayed in Table 2 and Figure 4.

Increasing cross-linker concentration above 20 mol% did not yield stable mini-emulsions when
using St/DVB and, for MMA/EGDMA the particles precipitated within days and, for that reason,
higher ratios of cross-linker were not further explored. This increase in cross-linker content above
20 mol% for PMMA-co-EGDMA-co-AUPDS promoted an increase in particle size (from 225 to 588 nm)
and in PI from 0.29 to 0.40. The increase of EGDMA also led to a decrease in ZP values, from +15 mV
to −25 mV. Therefore, it can be interpreted that an increase in the cross-linker amount from 20 mol% to
up to 80 mol% leads to less AUPDS on the surface of the NPs. One of the reasons for this could be the
fact that highly crosslinked PMMA-co-EGDMA are often porous particles [62], which would displace
the surfmer from the outer surface.

Table 2. Z-average hydrodynamic diameters, polydispersity index (PI) and zeta potential (ZP) values
obtained for PMMA-co-EGDMA-co-AUPDS and PS-co-DVB-co-AUPDS particles with different amounts
of EGDMA or DVB cross-linker. Values are presented in average ± standard deviation (n = 3).

Cross-Linker (mol%) Z-Average (nm) PI ZP (mV) a

PMMA-co-EGDMA-co-AUPDS particles

2.5 168.7 ± 0.6 0.07 ± 0.03 38.5 ± 8.6
5 162.7 ± 1.0 0.07 ± 0.00 52.2 ± 15.3
10 159.6 ± 1.9 0.10 ± 0.01 30.9 ± 3.5
20 225.3 ± 5.4 0.29 ± 0.04 14.9 ± 4.4
40 297.6 ± 3.0 0.30 ± 0.03 17.5 ± 6.0
60 268.8 ± 3.6 0.23 ± 0.04 8.7 ± 3.2
80 587.6 ± 8.3 0.40 ± 0.07 −24.7 ± 3.9

PS-co-DVB-co-AUPDS particles

2.5 120.3 ± 1.4 0.04 ± 0.02 26.6 ± 0.6
5 98.6 ± 0.5 0.03 ± 0.02 26.4 ± 0.7
10 160.4 ± 1.2 0.03 ± 0.03 26.7 ± 1.0
20 161.7 ± 0.1 0.09 ± 0.01 17.0 ± 3.8

a Measurements were performed in water.

Figure 4. Hydrodynamic diameter distribution curves in terms of intensity (%) obtained via DLS
analysis of (a) PMMA-co-EGDMA-co-AUPDS and (b) PS-co-DVB-co-AUPDS particles formulated using
with different amounts of cross-linker (in mol% in regards to the dispersed phase).

It was possible to produce stable and narrowly distributed NPs with both systems using a
cross-linker range from 2.5 to 10 mol%. For PMMA-co-EGDMA-co-AUPDS particle sizes varied slightly
from 168 to 159 nm and remained monodisperse with PI of 0.07 to 0.10, while the ZP varied from 31
to 52 mV. A similar effect was observed for PS-co-DVB-co-AUPDS particles, in which hydrodynamic
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diameters varied from 99 to 162 nm, PI remained monodisperse at 0.03 to 0.04, and ZP was in the same
range at 26 mV. SEM micrographs of PMMA-co-EGDMA-co-AUPDS and of PS-co-DVB-co-AUPDS
using 10 mol% of cross-linker are displayed in Figure 3. It can be observed that the particles are on
the same size range of non-cross-linked particles, but are slightly more polydisperse. Reproducibility
DLS data on the formulations using 10 mol% cross-linker are displayed in Table S2. On average,
PMMA-co-EGDMA-co-AUPDS had a Z-average size of 166.4 ± 3.1 nm, PI of 0.09 ± 0.01 and ZP of
41.1 ± 8.1 mV, whereas PS-co-DVB-co-AUPDS presented a Z-average size of 147.9 ± 9.7 nm, PI of
0.04± 0.01, and ZP of 29.2± 3.9 mV. All optimized formulations presented a satisfactory reproducibility
with a low standard deviation.

3.5. Characterization of the Surface Charge of Particles Produced Using AUPDS Surfmer

Coalescence of particles can be prevented by means of steric and/or electrostatic stabilization and
the ZP is an indicative of the electrostatic particle stability in a suspension, as previously mentioned.
These values can be positive or negative, depending on the molecular configuration in the surface
of the particles, but it is not quantitative. A quantitative determination of the surface charge can be
achieved via polyelectrolyte titrations. This approach allows for the determination of the effective
dissociated counterion charge for particles and can be used for both positively- or negatively-charged
particles [63].

In order to estimate whether the AUPDS surfmer was responsible for the surface charge and if it
was available for chemical reaction on the surface of the particles we investigated the ZP and the charge
quantity of the NPs before and after a basic hydrolysis process of the AUPDS active ester groups on the
particles. We investigated this for PMMA-co-AUPDS, PS-co-AUPDS, PMMA-co-EGDMA-co-AUPDS,
and PS-co-DVB-co-AUPDS particles using 2 mol% of AUPDS in the formulations, either non- or
cross-linked with 10 mol% of cross-linker. Figure 5a shows the ZP and charge quantities obtained
from the polyelectrolyte titrations and Figure 5b shows the hydrodynamic diameter distributions of
these particles.

Figure 5. (a) Zeta potential and charge quantity distribution histograms obtained for non-cross-linked
PMMA and PS NPs and cross-linked with 10 mol% cross-linker PMMA-co-EGDMA and PS-co-DVB
NPs (all with AUPDS 2 mol%) through electrophoretic light scattering and polyelectrolyte titration.
NPs were analysed before (unmodified) and after hydrolysis of the active ester group of AUPDS.
The positive charge of the unmodified particles was titrated with PES and the negative charge of
particles after hydrolysis was titrated using PDADMAC; and (b) hydrodynamic diameter distribution
curves in terms of intensity (%) obtained via DLS analysis for the respective particles. DLS and PCD
measurements were performed in sodium and potassium phosphate buffer (c = 5.2 mM, pH 7.0).
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Due to the sulfonium group on the AUPDS, the particles should present a positive surface
charge and, after hydrolysis, carboxylate groups should be present and the surface charge should be
negative. As expected, the ZP value was positive for unmodified particles and negative for particles
after hydrolysis, within the same value range. Moreover, the change in ZP for the NPs during basic
hydrolysis also shows that the possible hydrolysis of PMMA side chains to their acid counterparts is
not responsible for the ZP change [64] because such a reaction is not possible for PS NPs. The charge
quantities also remained in the same range before and after hydrolysis for all cases, confirming the
surfmer presence at the NP surface and its importance for the stability of the NPs.

The surface charge of cross-linked PMMA-co-EGDMA-co-AUPDS formulations remained in the
same range as the non-cross-linked PMMA-co-AUPDS particles. On the other hand, the addition
of cross-linker amplified the amount of surface charge from 9.9 µeq·g−1 of PS-co-AUPDS NPs to
48.0 µeq·g−1 of PS-co-DVB-co-AUPDS. This higher amount of surface charge is also consistent to
the fact that these particles did not aggregate after the hydrolysis process and that aggregation after
hydrolysis could have caused the smaller charge quantity found for PS-co-AUPDS particles. It is
pertinent to emphasize that theZP values may also vary according to changes in the pH and in ionic
strength of the dispersion media. The DLS and PCD measurements of Figure 5 were performed in
pH 7.0 buffer, because measurements are required to be in buffer for PCD analysis, while the other
reported DLS values (Tables 1 and 2) were performed in water. This difference illustrates the overall
increase in ZP values observed for Figure 5.

From size measurements, the PS-co-AUPDS are the only formulation that significantly aggregated
(three-fold increase in size and PI) and this could cause a hindering of the charged functional groups
in the polyelectrolyte titrations. Altogether, these results show that the AUPDS active ester groups are
indeed present at the NP surface after preparation and that they are accessible for chemical reactions
in an aqueous NP suspension.

Regarding the stability during storage, aqueous NP suspensions with a neutral pH stored at
4 ◦C maintained their ZP, size and PI for up to three weeks, while for suspensions stored at room
temperature after 72 h the particle characteristics began to change. After this period, the ZP decreased
and turned negative and the DLS and ZP data on stored particles can be found on Table S3. This
temperature dependence of the kinetics of ZP change also is consistent with the assumption that active
ester groups are present on the NP surface because the hydrolysis reaction typically proceeds with
a large activation barrier [49]. Additionally, under these neutral storage conditions, no PMMA side
chain hydrolysis would be expected, again proving the responsibility of the AUPDS active ester group
for the ZP change [64].

4. Conclusions

The purpose of this work was an investigation of the preparation of PMMA, PMMA-co-EGDMA,
PS and PS-co-DVB NPs copolymerized with the p-(11-acrylamido)undecanoyloxyphenyl
dimethylsulfonium methyl sulfate (AUPDS) surfmer molecule via miniEP technique. The
AUPDS surfmer was successfully synthesized and presented a high yield through a modified synthesis
approach. The copolymerization of St or MMA with surfmer feed concentration of 2–4 mol% of
surfmer yielded monodisperse and stable particles. Average hydrodynamic diameters, PI and ZP for
the obtained particles were 127 nm, 0.05 and 42 mV for PMMA-co-AUPDS particles and 109 nm, 0.14
and 34 mV for PS-co-AUPDS particles when using 2 mol% AUPDS. For cross-linked particles, the
results indicated that up to 10 mol% cross-linker yielded particles with low PI, with a slight increase in
size. While maintaining the same AUPDS concentration ratios, increasing the cross-linker amounts
also led to a decrease in the ZP of the obtained NPs, probably due to internalization of the AUPDS
during polymerization. PMMA-co-EGDMA-co-AUPDS showed on average a hydrodynamic diameter
of 166 nm, PI of 0.09 and ZP of 41 mV, whereas for PS-co-DVB-co-AUPDS the average was 148 nm, 0.04
and 29 mV. The presence of the surfmer on the NP surface was confirmed via ZP measurements and
polyelectrolyte titration before (positive charge) and after a basic hydrolysis process (negative charge).
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In conclusion, using the optimized parameters functionalized NPs were produced in one step using
the AUPDS surfmer. Furthermore, the active ester groups should allow to couple a wide range of
amine-containing biomolecules to the particles which will be explored in future studies.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4360/10/4/408/s1.
Figure S1. 1H-NMR spectrum of AUPDS surfmer; Figure S2. ATR-FTIR spectrum of AUPDS surfmer; Table S1.
Example of reagent amounts for the preparation of particles via mini-emulsion polymerization using the AUPDS
surfmer. Table S2. Z-average, PI and ZP values obtained for different particle syntheses using AUPDS 2 mol% and
cross-linker (if present) at 10 mol%. Table S3. Z-average, PI and ZP values obtained for AUPDS-functionalized
particles under different storage conditions.
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