## KnowVolution of the polymer binding peptide LCI for polypropylene binding

Kristin Rübsam<sup>1</sup>, Mehdi D. Davari <sup>1</sup>, Felix Jakob<sup>2</sup>, Ulrich Schwaneberg<sup>1,2\*</sup>

- <sup>1</sup> RWTH Aachen University, Worringerweg 3, D-52074 Aachen, Germany; k.ruebsam@biotec.rwth-aachen.de (K.R.); u.schwaneberg@biotec.rwth-aachen.de (U.S.)
- <sup>2</sup> DWI Leibniz-Institute for Interactive Materials, Forckenbeckstrasse 50 D-52074 Aachen, Germany; jakob@dwi.rwth-aachen.de (F.J.)
- \* Correspondence: u.schwaneberg@biotec.rwth-aachen.de; Tel.: +49 241 80 24170

Academic Editor: name Received: date; Accepted: date; Published: date

| Table S1. | Primer : | sequences. |
|-----------|----------|------------|
|-----------|----------|------------|

| Primer    | Sequence $5' \rightarrow 3'$                     |
|-----------|--------------------------------------------------|
| F-epLCI   | GCCGAAAATCTGTATTTTCAGGGT                         |
| R-epLCI   | GTCGACGGAGCTCGAATTCTTA                           |
| F-K3-SSM  | GTTGCGCCATTNNKCTGGTTCAGAG                        |
| R-K3-SSM  | CTCTGAACCAGMNNAATGGCGCAAC                        |
| F-P8-SSM  | CTGGTTCAGAGCNNKAATGGTAATTTTGCAGC                 |
| R-P8-SSM  | GCTGCAAAATTACCATTMNNGCTCTGAACCAG                 |
| F-N9-SSM  | CTGGTTCAGAGCCCGNNKGGTAATTTTGCAGC                 |
| R-N9-SSM  | GCTGCAAAATTACCMNNCGGGCTCTGAACCAG                 |
| F-D19-SSM | GCAGCAAGCTTTGTTCTGNNKGGCACCAAATGG                |
| R-D19-SSM | CCATTTGGTGCCMNNCAGAACAAAGCTTGCTGC                |
| F-I24-SSM | GGATGGCACCAAATGGNNKTTCAAAAGC                     |
| R-I24-SSM | GCTTTTGAAMNNCCATTTGGTGCCATCC                     |
| F-Y29-SSM | CTTCAAAAGCAAANNKTATGACAGCAGC                     |
| R-Y29-SSM | GCTGCTGTCATAMNNTTTGCTTTTGAAG                     |
| F-D31-SSM | GCAAATACTATNNKAGCAGCAAAGGTTATTGGGTGGGT           |
| R-D31-SSM | ACCCACCCAATAACCTTTGCTGCTMNNATAGTATTTGC           |
| F-S33-SSM | GCAAATACTATGACAGCNNKAAAGGTTATTGGGTGGGT           |
| R-S33-SSM | ACCCACCCAATAACCTTTMNNGCTGTCATAGTATTTGC           |
| F-G35-SSM | CTATGACAGCAGCAAANNKTATTGGGTGGGT                  |
| R-G35-SSM | ACCCACCCAATAMNNTTTGCTGCTGTCATAG                  |
| F-I40-SSM | TGGGTGGGTNNKTATGAAGTGTGG                         |
| R-I40-SSM | CCACACTTCATAMNNACCCACCCA                         |
| F-E42-SSM | TGGGTGGGTATTTATNNKGTGTGGGATCGC                   |
| R-E42-SSM | GCGATCCCACACMNNATAAATACCCACCCA                   |
| F-W44-SSM | GTATTTATGAAGTGNNKGATCGCAAATAAG                   |
| R-W44-SSM | CTTATTTGCGATCMNNCACTTCATAAATAC                   |
| F-D45-SSM | GAAGTGTGGNNKCGCAAATAAGAATTCGAGCTCCG              |
| R-D45-SSM | CGGAGCTCGAATTCTTATTTGCGMNNCCACACTTC              |
| F-Y29R    | CTTCAAAAGCAAACGTTATGACAGCAGC                     |
| R-Y29R    | GCTGCTGTCATAACGTTTGCTTTTGAAG                     |
| F-G35V    | CTATGACAGCAGCAAAGTGTATTGGGTGGGT                  |
| R-G35V    | ACCCACCCAATACACTTTGCTGCTGTCATAG                  |
| F-Y29/G35 | CTTCAAAAGCAAAMVWTATGACAGCAGCAAANNKTATTGGGTGGGT   |
| R-Y29/G35 | ATACCCACCCAATAMNNTTTGCTGCTGTCATAWBKTTTGCTTTTGAAG |

| Variant    | V/WT          | Substitutions                                  |  |
|------------|---------------|------------------------------------------------|--|
| LCI-M1-PP  | $3.4 \pm 0.8$ | I24T Y29H E42K                                 |  |
| LCI-M2-PP  | $2.5 \pm 0.2$ | D31V E42G                                      |  |
| LCI-M3-PP  | $4.1 \pm 0.5$ | D31V S32C D45V                                 |  |
| LCI-M4-PP  | $3.6 \pm 0.2$ | K3R P8Q N9K G10C D19G I24T S27G G35D W44R D45V |  |
| LCI-M5-PP  | $2.9 \pm 0.4$ | Q6H Y29F I40T D45A                             |  |
| LCI-M6-PP  | $2.6 \pm 0.2$ | P8L S15R S27C D45G                             |  |
| LCI-M7-PP  | $2.6 \pm 0.8$ | W23R S33T Y36C                                 |  |
| LCI-M8-PP  | $2.6 \pm 0.4$ | L4Q K34R E42V                                  |  |
| LCI-M9-PP  | $2.6 \pm 0.3$ | I2F K3Q N11S D19G G35C K47R                    |  |
| LCI-M10-PP | $2.5 \pm 0.1$ | F16L I24S I40T D45Y                            |  |

**Table S2.** Summary of binding performance and amino acid substitutions found in improved EGFPepLCI variants screened for improved PP binding in presence of 1 mM Triton X-100. Potential beneficial positions are underlined.

| Position | Variant | V/WT          |
|----------|---------|---------------|
| K3       | K3W     | $1.3 \pm 0.1$ |
| P8       | P8R     | $1.6 \pm 0.3$ |
| D19      | D19V    | $2.5 \pm 0.5$ |
|          | D19T    | $2.5 \pm 0.5$ |
|          | D19R    | $2.4 \pm 0.4$ |
| I24      | I24G    | $1.4 \pm 0.1$ |
|          | I24L    | $1.3 \pm 0.2$ |
| S27      | S27V    | $2.1 \pm 0.2$ |
|          | S27I    | $1.7 \pm 0.2$ |
|          | S27A    | $1.5 \pm 0.2$ |
| Y29      | Y29R    | $3.2 \pm 0.5$ |
|          | Y29C    | $3.0 \pm 0.2$ |
|          | Y29K    | $2.8 \pm 0.4$ |
| D31      | D31R    | $3.1 \pm 0.4$ |
|          | D31T    | $3.0 \pm 0.3$ |
|          | D31A    | $2.9 \pm 0.1$ |
|          | D31L    | $2.9 \pm 0.2$ |
|          | D31S    | $2.7 \pm 0.3$ |
| G35      | G35W    | $3.8 \pm 0.5$ |
|          | G35V    | $3.7 \pm 0.4$ |
|          | G35Y    | $3.1 \pm 0.4$ |
|          | G35C    | $2.4 \pm 0.3$ |
|          | G35R    | $2.2 \pm 0.2$ |
| I40      | I40W    | $2.1 \pm 0.7$ |
|          | I40S    | $2.0 \pm 0.4$ |
| E42      | E42L    | $2.9 \pm 0.5$ |
|          | E42I    | $2.3 \pm 0.3$ |
| D45      | D45F    | $2.3 \pm 0.3$ |
|          | D45L    | $2.3 \pm 0.2$ |
|          | D45H    | $2.1 \pm 0.3$ |

Table S3. LCI key positions and identified amino acid substitutions for improved PP binding.



**Figure S1.** Expression and performance of PP-binding peptide LCI variants. SSM variants LCI Y29R and LCI G35V and generated recombination variants LCI Y29R/G35V were produced in MTP and resulting CFE was used for SDS-PAGE to evaluate expression level (a) and in ABBA screening system to evaluate binding performance (b).



**Figure S2.** Fluorescence of EGFP (grey), EGFP-LCI (white), and EGFP-LCI KR-2 in the protein concentration range of 0.001-0.25 µM. The fluorescence was detected with 96-well MTP reader FLUOstar Omega (BMG LABTECH GmbH, Ortenberg, Germany) (excitation (ex.) 485 nm, emission (em.) 520 nm, gain 750, 35 reads/well).



**Figure S3.** Quantification of fluorescence intensity of EGFP-LCI (concentrations: 0-0.06  $\mu$ M). Detection was performed with FLUOstar Omega (exc. 485 nm, em. 520 nm, gain 1000). Each concentration was determined in triplicates. Error bars indicate the standard deviation.



**Figure S4.** PP-binding of EGFP-LCI WT (white) and EGFP-LCI KR-2 (grey) after selection with nonionic surfactant Triton X-100 (pH 8.0, 0.0001-10 mM).