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Abstract: A new adsorbent was prepared via modified poly(glycidyl methacrylate) with
8-aminoquinoline (AQ-PGMA) for the recovery of Pd(II) from solution. The practical application
values of AQ-PGMA, including efficiency, selectivity and reusability for the recovery of Pd(II),
are proved by the various experiment parameters. The parameters include HCl concentration,
adsorption time, initial Pd(II) concentration, coexisting ions and reused cycles. The prepared
AQ-PGMA showed a high adsorbing capacity for Pd(II) (up to 267.90 mg/g) when the concentration
of HCl is higher than 0.4 mol/L. The analysis of the adsorption process indicated that the adsorption
kinetics followed a pseudo-second-order kinetic model and the adsorption isotherms obeyed the
Hill model. The Hill model showed that one adsorption site on the AQ-PGMA could combine
1.45 Pd(II). In addition, the obtained adsorbent demonstrated good regenerative ability and satisfying
selectivity for the recovery of Pd(II). The adsorption mechanism was dominated by the chelation and
ion exchange reactions between amines/hydroxyl groups and Pd(II). The experiments confirmed
that AQ-PGMA was efficient for recovery of Pd(II) from highly acidic aqueous solutions.

Keywords: adsorption; palladium; efficiency; selectivity; reusability

1. Introduction

Palladium has been widely utilized in various fields, including electronics, fuel cells, catalysts and
medicine, due to its attractive phy-chemical characteristics [1,2]. In recent years, the demand for
palladium has been increasing while the high-quality natural reserves continue to be exhausted [3].
In addition, it will inevitably lead to an increase of palladium waste-water with the expansive
application of palladium. So, it is necessary to develop a new technique for the recovery of palladium
from the waste-water for the perspective of resource recovery and sustainable chemical industries.

Many techniques, including co-precipitation [4], ion exchange [5,6], solvent extraction [7],
liquid membranes separation [8] and adsorption [9,10], have been used to recover palladium(II)
from leachates, plating wastewaters and other aqueous solutions. Among these techniques,
adsorption has attracted more and more attention in recent years because it is low cost and relatively
simple. Generally, the adsorbents include metal-organic frameworks [11], active carbon [12,13],
minerals [14], ion exchange resin [15], microcapsules containing a metal ligand [16–19], and so on.
However, many adsorbents have the low capacity and poor selectivity in acidic media because
leachates, plating wastewaters and other aqueous solutions containing palladium are very acidic.
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Therefore, it is very important to explore new adsorbents to apply directly to wastewaters without
chemical neutralization.

Poly(glycidyl methacrylate) (PGMA) has received more attention due to its distinctive acid and
base resistance and mechanical strength [20,21]. In addition, PGMA can be directly functionalized with
other groups for a variety of applications because it has the abundant reactive epoxy group [22,23].
Hence, PGMA based adsorbents show a good prospect in the industrial application.

In this work, a novel adsorbent (AQ-PGMA) was prepared via functionalizing poly(glycidyl
methacrylate) (PGMA) with 8-aminoquinoline for the recovery of Pd(II) from solution. In order to
evaluate the practical application value of AQ-PGMA, the experimental parameters, including HCl
concentration, adsorption time, initial Pd(II) concentration, coexisting ions and reused cycles, were
investigated. Moreover, kinetics, isothermal process and mechanism of adsorption have also been studied.

2. Experimental

2.1. Materials

Glycidyl methacrylate (GMA), azobisisobutyronitrile (ABIN), polyvinyl pyrrolidone (PVP),
anhydrous ethanol (99%), 8-aminoquinoline and acetic acid were purchased from Aladdin Chemistry
Co. Ltd., Shanghai China. ZnCl2 (99.5%), CoSO4·7H2O (99.5%), NiSO4·6H2O (98.5%) and PbCl2
(99.5%) were obtained from Tianjin Chemical Reagent Co. Ltd., Tianjin, China. Palladium(II) solution
is prepared using PdCl2 dissolved in 12 mol/L HCl. The acidity of the solution is controlled by HCl.

2.2. Synthesis of 8-Aminoquinoline-Grafted Poly(Glycidyl Methacrylate) (AQ-PGMA)

The synthesis route of 8-aminoquinoline-grafted poly(glycidyl methacrylate) (AQ-PGMA) is
shown in Scheme 1. Firstly, GMA (10.0 g), PVP (3.0 g) and ABIN (0.12 g) were added to 150 mL ethanol
in flask and reacted for 5 h at 70 ◦C with continuous stirring under N2. After being washed with ethanol
several times, the solid product (PGMA) was dried under vacuum at 50 ◦C for 24 h. Secondly, a mixture
of PGMA (5.0 g), 8-aminoquinoline (5.0 g), acetic acid (2 mL) and ethanol (100 mL) was reacted for 15 h
at 70 ◦C with continuous stirring. After being washed, filtered and dried, the AQ-PGMA was obtained.

Scheme 1. The synthesis route of 8-aminoquinoline-grafted poly(glycidyl methacrylate).

2.3. Adsorption Experiments

Experimental parameters including HCl concentration, adsorption time, initial Pd(II)
concentration and reused cycles, were used to investigate the adsorption process and evaluate the
practical application value of AQ-PGMA. In a typical adsorption experiment, 10 mg of AQ-PGMA
was added to Pd(II) solution with a certain concentration and shaken for a certain time at 298 K and
250 rpm in an orbital shaker. After being separated by centrifuge, the supernatant and solid products
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were analyzed. The mathematical expression of the adsorption rate R (%) and equilibrium adsorption
capacity qe (mg/g) are defined as Equations (1) and (2), respectively.

R% =
(C0 − Ce)

C0
× 100% (1)

qe =
(C0 − Ce)

m
V (2)

where C0 (mg/L) stands for the initial concentration of Pd(II), Ce (mg/L) is the concentration of Pd(II)
after the process of adsorption. V (L) is the volume, and m (g) is the mass of AQ-PGMA.

2.4. Characterization

Fourier transform-infrared (FT-IR) spectroscopy was recorded with a Nicolet iS50 (Thermo
Scientific Co., Waltham, MA, USA). The X-ray photoelectron spectroscopy (XPS) was detected with a
VG Scientific ESCALab220I-XL (Thermo Scientific Co., Waltham, MA, USA). The microstructure of
the samples was characterized by scanning electron microscope (SEM, Phenom ProX, Royal Dutch
Philips Electronics Ltd., Amsterdam, The Netherlands). The concentrations of metal ions were detected
with an inductively coupled plasma optical emission spectrometer (ICP-OES, Leeman Labs Prodigy7,
Hudson, NH, USA). The surface characteristics are analyzed with a surface and porosity analyzer
(Micromeritics, ASAP 2020, Micromeritics Instrument Corp., Norcross, GA, USA).

3. Results and Discussion

3.1. Characterization of AQ-PGMA

Figure 1 presents the FT-IR spectra of GMA, PGMA and AQ-PGMA. For PGMA, some peaks
appear at 2946, 1726 and 908 cm−1, which are related to the –CH2 vibration peak, the C=O vibration
peak and the epoxy group vibration peak, respectively [24,25]. After grafting 8-aminoquinoline,
the peak of the epoxy group at 908 cm−1 disappeared and a new peak of pyridine at 1522 cm−1

appeared [17].

Figure 1. Fourier transform-infrared (FT-IR) spectra of glycidyl methacrylate (GMA), poly(glycidyl
methacrylate) (PGMA) and 8-aminoquinoline-grafted poly(glycidyl methacrylate) (AQ-PGMA).

Figure 2a presents the XPS survey scan of PGMA and AQ-PGMA. A new peak of N 1s
appears in AQ-PGMA compared to the PGMA. Figure 2b shows the C 1s spectra of PGMA and



Polymers 2018, 10, 437 4 of 14

AQ-PGMA. In PGMA, the functional groups of C–O–C and O=C–O are located at 286.1 and 288.5 eV,
respectively [26–28]. After being modified by 8-aminoquinoline, the peak of C–O–C in PGMA
disappears. Meanwhile the new peaks of C–O (285.2 eV), C–N (285.9 eV) and C=N (286.3 eV) are
found in AQ-PGMA [26–28]. Thus, 8-aminoquinoline was introduced onto PGMA and the AQ-PGMA
was successfully prepared.

Figure 2. X-ray photoelectron spectroscopy (XPS) survey scan (a) and C 1s spectra (b) of PGMA
and AQ-PGMA.

3.2. Effect of Experimental Parameters on Pd(II) Adsorption by AQ-PGMA

In order to investigate the adsorption process and evaluate the practical application value of
AQ-PGMA in the recovery of palladium(II) from solution, the effects of HCl concentration, adsorption
time, initial Pd(II) concentration, coexisting ions and reused cycles were investigated.

3.2.1. Effect of the HCL Concentration on Pd(II) Adsorption

It has been demonstrated that the electrostatic adsorption or complexation reactions are observably
affected by the acid concentration [29–32]. In order to investigate the effect of the acid concentration
on the adsorption of Pd(II) by AQ-PGMA, the mixtures of 10 mg of AQ-PGMA and 15 mL Pd(II)
(150 mg/L) solution in different concentrations of HCl were stirred for 60 min at 250 rpm, and the
results are shown in Figure 3. The adsorption percent of Pd(II) obviously increases from 2.14% to
65.67% with an HCl concentration range from 0 to 0.4 mol/L. In addition, when the HCl concentration
is higher than 0.4 mol/L, the adsorption percentage is still higher than 65.67%. Previous studies have
confirmed that the adsorption percent of palladium onto the resin particles depend on the distribution
of the Pd(II) species [33]. The dominating species of Pd are PdCl3− or PdCl42− when the concentration
of Cl− is 0.01 mol/L or over. Moreover, the enhancement of the HCl concentration promotes the
protonation of AQ-PGMA and the positive charge on the surface. So, the ion exchange is one of the
mechanisms of adsorption. The leaching solution of palladium is strongly acidic. The AQ-PGMA
can be applied to the recovery of palladium ions from highly acidic solutions with a low spend of
chemical agent.
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Figure 3. Effect of the HCl concentration on the adsorption of Pd(II) by AQ-PGMA.

3.2.2. Effect of Adsorption Time on Pd(II) Adsorption and Adsorption Kinetics

Figure 4a shows the effect of adsorption time on Pd(II) adsorption when the initial concentration
of Pd(II) is 150 mg/L, AQ-PGMA is 10 mg and HCl concentration is 0.4 mol/L. The absorption rate of
Pd(II) by AQ-PGMA is augmented with the lapses of the adsorption time. The increase of qt for Pd(II)
is quick in the initial phase and slows down with the lapses of the adsorption time. The result shows
that the adsorption process can reach equilibrium within 60 min.

Figure 4. Effect of adsorption time on the adsorption of Pd(II) by AQ-PGMA (a) and kinetic models
(Pseudo-first-order (b), Pseudo-second-order (c), Intra-particle diffusion (d)).

The kinetic models of Pseudo-first-order, Pseudo-second-order and Intra-particle diffusion were
used to analyse the kinetics process of adsorption of Pd(II) by AQ-PGMA. The required data for fitting
are taken from Figure 4a and the equations of kinetic models are expressed in Table 1 [34–36].
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Table 1. Equations of adsorption kinetic models.

Kinetic models Equations

Pseudo-first-order ln (qe,1 − qt,1 ) = −k1t + lnqe,1

Pseudo-second-order t
qt,2

= t
qe,2

+ 1
k2q2

e,2

Intra-particle diffusion qt = kit1/2 + C

Where, qe,1 and qe,2 (mg/g) stand for the adsorbed capacity of Pd(II) by AQ-PGMA for
Pseudo-first-order and Pseudo-second-order models at equilibrium. qt,1 and qt,2 (mg/g) are the
adsorbed amounts at time t (min) for the Pseudo-first-order and Pseudo-second-order model.
k1, k2 (g/(mg·min)) and ki (mg/(g·min1/2)) are the rate constants of the Pseudo-first-order,
Pseudo-second-order and Intra-particle diffusion models, respectively. C is a constant relative to
the thickness of the liquid film.

The fitting results and parameters of the kinetic models on the adsorption of Pd(II) by AQ-PGMA
are shown in Figure 4b–d and Table 2. Obviously, compared to the Pseudo-first-order model,
the Pseudo-second-order model is the most suitable model for explaining the adsorption process,
since the R2 value is closest to the unity and the calculated qe,2 value (151.29 mg/g) is approximate
to the experimental data qe value (148.60 mg/g). The results of the experiment demonstrate that the
adsorptive behavior of Pd(II) on AQ-PGMA is analogous to the chemical adsorption, incorporating the
interaction between the captured Pd(II) and the exposed functional groups of AQ-PGMA. Two linear
regions in the fitting result of the intra-particle diffusion model divide the adsorption process into
2 stages. The slope in the first stage is the largest, and is ascribed to the move of Pd(II) from
the solution to the surface of AQ-PGMA under film diffusion. The slope of the second stage is
smaller, corresponding to the equilibrium stage. Both lines of regions 1 and 2 do not go through
the point (0,0) and C1, C2 6= 0 indicates the adsorption process is co-limited by the liquid film and
intraparticle diffusion.

Table 2. Parameters of kinetic models on the adsorption of Pd(II) by AQ-PGMA.

Pseudo-first-order
k1 (g/(mg·min)) qe,1 (mg/g) R2

0.01 14.88 0.5125

Pseudo-second-order
k2 (g/(mg·min)) qe,2 (mg/g) R2

1.54 × 10−3 151.29 0.9993

Intra-particle diffusion

Stage 1 ki1 (mg/(g·min1/2)) C1 R1
2

12.71 52.69 0.9495

Stage 2 ki2 (mg/(g·min1/2)) C2 R2
2

−0.19 151.26 0.7828

Experimental data qe (mg/g)
148.60

Table 3 shows the equilibrium time and kinetic models rate constant (k) of AQ-PGMA and other
adsorbents in the literature. It can be found that AQ-PGMA has a high absorption rate and rate
constant, which indicate that the AQ-PGMA possesses good adsorption properties.

Table 3. The equilibrium time and kinetic models rate constant of AQ-PGMA and other adsorbents
in literature.

Adsorbents Equilibrium time/h Kinetic rate constant (k2)/g/(mg·min) References

TCS 5 5.05 × 10−4 [30]
PAN-TU-GA 6 2.10 × 10−6 [31]

GCC 5 1.364 × 10−5 [32]
Diaion WA21J 10 1.17 × 10−5 [34]

AQ-PGMA 1 1.54 × 10−3 This work
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3.2.3. Effect of Initial Pd(II) Concentration on Pd(II) Adsorption and Adsorption Isotherms

To study the effect of the initial concentration of Pd(II) on the adsorption of Pd(II) by AQ-PGMA,
10 mg of AQ-PGMA was added to the different initial concentration of Pd(II) solution when the
HCl concentration was 0.4 mol/L. The mixture was shaken for 60 min at 150 rpm and 298 K and
the result is shown in Figure 5a. It is well known that the higher initial concentration of Pd(II) is a
favorable condition for mass transfer [37]. The adsorption capacity (qe) of Pd(II) increased sharply to
260.11 mg/g when the initial concentration of Pd(II) reached to 600 mg/L. The qe increases slowly
with the further enhancement of initial Pd(II) concentration. The prepared AQ-PGMA possesses a
high adsorbing capacity for palladium(II) (up to (267.90 mg/g). This result shows that the AQ-PGMA
can be used for the sorption of Pd(II) from solutions.

Figure 5. Effect of initial Pd(II) concentration on the adsorption of Pd(II) by AQ-PGMA (a) and
adsorption isotherm models (Freundlich (b), Langmuir (c), Hill (d)).

The adsorption isotherm models, such as Freundlich, Langmuir and Hill, are employed to explore
the reason for the adsorption of Pd(II) by AQ-PGMA. The Freundlich model is an empirical model and
depicts the heterogeneous adsorption system and the equation is given by: [38]

qe = KFC1/nF
e (3)

where, qe (mg/g) and Ce (mg/L) represent adsorption capacity and concentration of Pd(II) at
equilibrium time, respectively. KF and nF are constants without any significance of physical chemistry.

The Langmuir model assumes that the adsorption is monolayer adsorption, all the adsorption sites
are similar and that there is no interaction effect between adsorbates. The equation of the Langmuir
model is expressed by: [39,40]

qe =
qmKLCe

1 + KLCe
(4)
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where, qm (mg/g) is the maximum adsorption capacity of Pd(II), KL is a constant relevant to binding
energy in the process of adsorption.

The Hill model is based on the grand canonical ensemble and assumes that the adsorbates form a
layer on the surface of the adsorbent. The Hill model can be expressed by: [41,42]

qe =
nNMCn

e
Cn

e + Cn
1/2

=
q0

1 +
(

C1/2
Ce

)n (5)

where, NM (mg/g) stands for the density of the receptor sites on the adsorbent and n is the number of
Pd(II) on per site, q0 is the saturated adsorption quantity of Pd(II) and C1/2 represents the adsorption
concentration of Pd(II) at half saturation.

The fitting results and relevant parameters are shown in Figure 5b–d and Table 4. Figure 5b–d
shows that the adsorption isotherms follow the Hill model, because the correlation coefficient (R2)
is closest to 1. The saturated adsorption quantity can be reached to 273.28 mg/g according to the
calculated q0 in Hill model, which is close to the experiment data (267.90 mg/g). The n is 1.45,
suggesting that the number of Pd(II) on per site is 1.45, which also can explain why the adsorption of
Pd(II) by AQ-PGMA is efficient. The comparison of AQ-PGMA with other adsorbents is shown in
Table 5, it can be seen that the maximum adsorption capacity of AQ-PGMA exceeded many adsorbents
in the literature.

Table 4. Parameters of isotherm models on the adsorption of Pd(II) by AQ-PGMA.

Freundlich
KF nF R2

79.24 5.06 0.829

Langmuir KL qm (mg/g) R2

0.02 292.14 0.9807

Hill
C1/2 (mg/L) NM (mg/g) n q0 (mg/g) R2

45.88 188.469 1.45 273.28 0.9988

Experimental data q0 (mg/g)
267.90

Table 5. Sorption capacity of AQ-PGMA against other sorbents reported in the literature.

Adsorbents qm (mg/g) References

polyethylene fibers 221.8 [43]
macroporous resins XAD-7 HP 52.77 [44]

Racomitrium lanuginosum biomass 37.2 [45]
Biopolymer modified activated carbon 43.5 [46]

Chitosan 5.88 [47]
Cross-linked chitosan modified with l-lysine 109.47 [48]

AQ-PGMA 267.90 This work

3.2.4. Effect of Coexisting Ions on Pd(II) Adsorption

Adsorption of Pd(II) from coexisting ions solution, including Co.(II), Zn(II), Pb(II) and Ni(II),
was studied at fixed adsorption conditions: HCl concentration was 0.4 mol/L; adsorption time was
60 min and the initial concentration of Pd(II), Co.(II), Zn(II), Pb(II) and Ni(II) was 150 mg/L. Figure 6
shows that the adsorption percentages of Co.(II), Zn(II), Pb(II) and Ni(II) were 1.35%, 1.81%, 2.02%
and 1.42%, respectively, while the adsorption percentage of Pd(II) was 65.67%. This indicates that
AQ-PGMA has selectivity for Pd(II).
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Figure 6. Effect of coexisting ions on the adsorption of Pd(II) by AQ-PGMA.

3.2.5. Effect of Reused Cycles Of AQ-PGMA on Pd(II) Adsorption

The desorption experiments were carried out with a 1 mol/L thiourea solution containing
0.1 mol/L HCl. After desorption, the AQ-PGMA is reused for the adsorption experiment. Figure 7
shows the reused results after 5 successive cycles. Obviously, the effect of the reused cycles on the
adsorption percentage of Pd(II) on AQ-PGMA is very small and the maximum desorption rate of
98% can be reached. This indicates that the AQ-PGMA can be reused in the recovery of Pd(II) from
aqueous solution for several cycles. Table 6 shows the regeneration efficiency of AQ-PGMA against
other sorbents reported in the literature. AQ-PGMA has a higher regeneration efficiency compared to
many adsorbents in the literature.

Figure 7. Effect of reused cycles on the recovery of Pd(II) after successive cycles of adsorption/desorption.

Table 6. Regeneration efficiency of AQ-PGMA against other sorbents reported in the literature.

Adsorbents Desorption efficiency/% References

TCS 95 [30]
PAN-TU-GA 93 [31]

GCC 42.35 [32]
AQ-PGMA 98 This work



Polymers 2018, 10, 437 10 of 14

3.3. Adsorption Mechanism of Pd(II) Onto AQ-PGMA

Figure 8 shows the XPS spectra of AQ-PGMA before and after adsorption of Pd(II)
(AQ-PGMA-Pd). The survey scan of AQ-PGMA-Pd presents the Pd 3d peak, due to the adsorption of
Pd(II) on AQ-PGMA (Figure 8a). Figure 8b shows the N 1s peaks of AQ-PGMA and AQ-PGMA-Pd.
For AQ-PGMA, the N 1s peaks at 398.5, 399.3 and 400.5 eV were attributed to the C=N, –NH and
–NH2

+ bonds, respectively. The N 1s peaks moved to 398.9, 399.8 and 401.0 eV after adsorption of Pd(II),
which came from the chelation interaction of Pd(II) with the amines/hydroxyl groups [19]. In addition,
the peak of –NH2

+ is broadened in AQ-PGMA-Pd compared to the AQ-PGMA, which indicates that
the amino groups are protonated and interact with Pd(II) by ion exchange [19]. Figure 8c shows the
O 1s peaks of AQ-PGMA and AQ-PGMA-Pd. The peaks of 531.18 and 532.08 eV correspond to the
O–C=O and C–O–H bonds in AQ-PGMA. The C–O–H peaks moved to 532.38 eV after adsorbed Pd(II)
because the C–O–H was coordinated with Pd [19]. Figure 8d shows the Pd 3d peaks of AQ-PGMA-Pd.
The Pd 3d peaks are located at 337.1 and 342.4 eV, which are higher than those of free Pd(II) (335.9 and
341.1 eV) in solution, suggesting that Pd(II) received electrons and transformed into PdCl42− during
the adsorption process [32].

Figure 8. XPS survey scan (a), N 1s spectra (b), O 1s spectra (c) of AQ-PGMA and AQ-PGMA-Pd and
Pd 3d spectra (d) of AQ-PGMA-Pd.

In order to further investigate the adsorption mechanism of Pd(II) onto AQ-PGMA, scanning
electron microscopy with energy dispersive spectroscopy (SEM-EDS) was used to analyze the
AQ-PGMA and AQ-PGMA-Pd, the results are shown in Figure 9a–d. It can be seen from Figure 9a,b
that the morphology of AQ-PGMA and AQ-PGMA-Pd are microspheres and the diameters are in
the range of 0.1 to 1 nm. In addition, the specific surface area and pore volume of AQ-PGMA are
1.969 × 104 and 0.007 cm3/g, respectively, which indicates that AQ-PGMA has a great specific surface
area. Combined with Figure 4a–d, it can be seen that the high absorption rate of Pd(II) on AQ-PGMA
is caused by the great specific surface area of AQ-PGMA so that more Pd(II) can easily access the
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adsorption site [45]. Figure 9c shows that C, O and N appear on the surface of the AQ-PGMA. The
new elements of Cl and Pd appear in AQ-PGMA-Pd after adsorption of the Pd(II) (Figure 9d).

Figure 9. Scanning electron microscopy with energy dispersive spectroscopy (SEM-EDS) analysis of
AQ-PGMA and AQ-PGMA-Pd: (a) and (b) SEM micrographs; (c) and (d) EDS spectrums.

Based on the analysis of the effect of the HCl concentration and adsorption kinetics, it can be
found that the adsorption of Pd(II) is related to the ion exchange and chemical action. The adsorption
mechanism of Pd(II) onto AQ-PGMA is summarized in Scheme 2. For the chemical action, the amines
and hydroxyl groups on the AQ-PGMA chelated directly with PdCl42– by providing electrons. For the
ion exchange, the protonated amino group adsorbed PdCl42–.

Scheme 2. Mechanism of the adsorption of Pd(II) onto AQ-PGMA.
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4. Conclusions

The 8-aminoquinoline-grafted poly(glycidyl methacrylate) has been successfully synthesized
for the efficient recovery of Pd(II) from highly acidic aqueous solutions. The recovery of Pd(II) by
AQ-PGMA was researched by batch test and the sorption results disclosed that the recovery of Pd(II)
was closely related to the concentration of hydrochloric acid. The highest adsorbing capacity of Pd(II) is
267.90 mg/g on AQ-PGMA when the concentration of Cl– is 0.4 mol/L or over. The findings indicated
that Pd(II) adsorption occurred mainly through the pseudo-second-order model. Sorption isotherm
followed the Hill model and the number of Pd(II) per site was 1.45. AQ-PGMA can be simultaneously
revived into its initial form for the next procedure and has no significant loss of its adsorption
performance. AQ-PGMA presented the highest selectivity for Pd(II) from the coexisting ions solution
including Co(II), Zn(II), Pb(II) and Ni(II). The chelation and ion exchange between PdCl42– and
amines/hydroxyl groups are the main driving force of adsorption. So, AQ-PGMA has great potential
for the efficient recovery of Pd(II) from highly acidic aqueous solutions.
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