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Abstract: The main objective of this work was to study the release of cinnamaldehyde (CIN) from
electrospun poly lactic acid (e-PLA) mats obtained through two techniques: (i) direct incorporation
of active compound during the electrospinning process (e-PLA-CIN); and (ii) supercritical
carbon dioxide (scCO2) impregnation of CIN within electrospun PLA mats (e-PLA/CINimp).
The development and characterization of both of these active electrospun mats were investigated with
the main purpose of modifying the release kinetic of this active compound. Morphological, structural,
and thermal properties of these materials were also studied, and control mats e-PLA and e-PLACO2

were developed in order to understand the effect of electrospinning and scCO2 impregnation,
respectively, on PLA properties. Both strategies of incorporation of this active compound into
PLA matrix resulted in different morphologies that influenced chemical and physical properties of
these composites and in different release kinetics of CIN. The electrospinning and scCO2 impregnation
processes and the presence of CIN altered PLA thermal and structural properties when compared to
an extruded PLA material. The incorporation of CIN through scCO2 impregnation resulted in higher
release rate and lower diffusion coefficients when compared to active electrospun mats with CIN
incorporated during the electrospinning process.

Keywords: electrospinning; poly (acid lactic), cinnamaldehyde; supercritical impregnation;
release kinetic

1. Introduction

Nanomaterials and their composites are recognized as optimal candidates for several applications
because of their reduced dimensions and the effect of enhanced surface properties that provide
better interfaces and chemical reaction rates [1,2]. Within these nanomaterials, it is possible to
find nanofibers, nanotubes, nanorods, and nanowires, which have been researched due to their
special physical and chemical properties [3]. Specifically, the nanofibers are characterized by offering
unique physical, mechanical, and electrical properties associated with their very high surface area,
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light weight, and small pores [4]. These nanofibers can be produced by many methods, such as
vapor-phase methods, solution-liquid-solid methods, template-directed methods, and self-assembly
and hydrothermal synthesis methods [3], but compared to these above methods, electrospinning
is characterized as a remarkably simple, low-cost, and environment-friendly technique. A typical
electrospinning system consists of a high-voltage power supply, a syringe pump with a metal needle,
and a grounded collector. An electric field is applied between the needle tip and the grounded
collector and distorts the hemispherical surface of a droplet into a conical shape through the action
of electrostatic forces. When the applied electrical force overcomes the critical surface tension of the
polymer liquid, an electrically charged jet of the polymer is ejected from the tip of the Taylor cone,
stretched, and finally deposited on the collector as a randomly oriented nonwoven mat of fibers ranging
from micrometers to nanometers in diameter. Moreover, electrospinning is an industry-viable process
that allows us to obtain a high ratio of length/diameter in a continuous process with controllable
morphology and components [5,6].

Poly lactic acid (PLA) is a synthetic thermoplastic biopolymer that has attracted considerable
attention in biomedical and packaging applications owing to its excellent biodegradability and
non-toxicity [7,8]. PLA nanofibers have been obtained by several methods highlighting the
electrospinning method [9]. Electrospun PLA nanofibers have been characterized structurally and
mechanically, and the effect of the use of different solvents on their morphology and diameter has
been also studied for biomedical applications [10–12]. Although PLA nanofibers have been designed
with different purposes, over the last few years, the encapsulation of sensitive bioactive compounds
has attracted special attention [13,14].

During the last few years, micro- and nano-encapsulation has been regarded as an
attractive method to entrap bioactive compounds within a polymer material for the purpose
of protecting and delivering active compounds at the right time and to a targeted site [15].
Various techniques have been developed to encapsulate active compounds, such as spray drying [16],
freeze drying [17], emulsification [18], inclusion complexation [19], and nano-precipitation [20],
but recently, electrospinning has been proposed as a feasible route to encapsulate active compounds
because it is a straightforward, facile, and versatile method to produce fibers with a high
surface-to-volume ratio and high porosity. Compared to the traditional encapsulation techniques,
the key advantage of the electrospinning process is the absence of heat, which is important for
preserving the structure and achieving high encapsulation efficacy of the active substances upon
processing storage [21,22]. Specifically, nanostructured systems containing essential oils (EOs) have
gained a lot of attention. EOs and their active compounds have already been used as food additives
in food packaging and the cosmetic industry [23]. Cinnamaldehyde (CIN) is a biologically active
compound present in the essential oil of the genus Cinnamomun, which is responsible for the distinctive
aroma and flavor of cinnamon [24,25]. This compound is categorized as a GRAS (Generally Recognized
as Safe) substance by the U.S. Food and Drug Administration and it has been already recognized due
to its antioxidant and antimicrobial activity against both Gram-positive and Gram-negative bacteria,
including organisms that are of concern for food safety [26–28]. Rieger and Schiffman have already
successfully incorporated cinnamaldehyde into chitosan/poly (ethylene oxide) nanofiber mats through
electrospinning for antibacterial applications [29].

Nevertheless, although the electrospinning method is relatively convenient and versatile,
difficulties may be encountered in aspects of the encapsulation of sensitive bioactive compounds
into fibers. The major disadvantage of conventional electrospinning is that the blend formulations
often give rise to a burst release of some encapsulated compounds due to the deposition of the
active components on or near the surface of the fibers [30,31]. Thus, the main objective of this study
was to slow down the release kinetic of CIN, as a model of an active component, by modifying the
incorporation method of this chemical compound within electrospun nanofibers. In this respect,
supercritical fluid impregnation has arisen as an innovative alternative. Supercritical impregnation
has been cataloged as a green process and it is basically the reverse process to supercritical extraction,
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where a substance is dissolved in a supercritical fluid and the high diffusivity and low surface tension
of the fluid allows the polymer to swell and deposit or promote the absorption of a compound within
a polymeric matrix [32,33]. Carbon dioxide is one of the most interesting supercritical fluids due to its
high solvent capacity, low cost, non-toxicity, and non-flammability [34]. Villegas and coworkers have
already incorporated CIN into biopolymer-based films by supercritical impregnation to develop active
food packaging materials [25]. Nevertheless, the incorporation of CIN into electrospun polymeric mats
and the study of its kinetic release have never been developed. In this context, this work was focused on
the combination of both techniques, electrospinning and supercritical impregnation, with the purpose
of developing active mats. The development of PLA nanofibers through electrospinning followed by
CIN incorporation through supercritical impregnation was carried out. The PLA nanofibers’ structural
and thermal properties and the CIN release kinetic assays were studied and compared with active
PLA mats obtained directly through electrospinning.

2. Materials and Methods

2.1. Materials

Poly (lactic acid) (PLA), 2003D (specific gravity 1
4 1.24; Melt Flow Rate, MFR, g/10 min

(210 ◦C, 2.16 kg)), was purchased in pellet form from Natureworks® Co. (Minnetonka, MN, USA).
Cinnamaldehyde (CIN) (≥99.5%) was supplied by Aldrich® Chemistry (St. Louis, MO, USA).
Chloroform, methanol, ethanol, dimethyl formamide (DMF), and acetonitrile of HPLC grade were
supplied by Merck. Carbon dioxide was supplied by Linde (Santiago, Chile).

2.2. Electrospinning of e-PLA and e-PLACIN Nanofibers

The PLA fibers were obtained according to the methodology described by Arrieta et al. (2015)
with some modifications [35] using an electrospinning system (Spraybase®power Supply Unit,
Maynooth, Ireland). The effect of parameters on the electrospinning process, such as solvent effect,
PLA concentration, flow rate, and working distance, were studied (shown in Supplementary
Material 2S.1). Two grams of poly (lactic acid) (PLA) was added to 20 mL chloroform (CH3Cl):DMF
(1:1) and stirred at 20 ◦C until the polymer was dissolved. Solutions were transferred to 5 mL plastic
syringes and connected through a PTFE (polytetrafluoroethylene) tube to an 18-gauge blunt stainless
steel needle charged by a high-voltage power supply with a range of 0–30 kV. The collector plate was
fixed at a working distance of 14 cm below the needle tip and connected to the grounded counter
electrode of the power supply. A voltage of approximately 10 kV and a flow rate of 2 mL/h were used.
Electrospun PLA mat was obtained after one hour of exposure and this sample was named e-PLA.

In order to compare active PLA mats obtained through supercritical impregnation of CIN with
active CIN-containing mats obtained through electrospinning, active e-PLA nanofibers were obtained
by electrospinning at the same conditions a PLA solution incorporating CIN at 5% (w/w) with respect
to the PLA. This active electrospun mat was named e-PLACIN.

2.3. Supercritical Fluid Impregnation of CIN in e-PLA Mats

e-PLA/CINimp was obtained through supercritical fluid impregnation using the apparatus
schematically described in Figure 1. This impregnation process was carried out in a high-pressure cell
with a volume of 100 mL.

CIN100 µL of CIN was loaded in the cell in a 5 mL flask in order to obtain saturation in the
dense supercritical carbon dioxide (scCO2) phase. Subsequently, e-PLA mats with a surface area
of 152.1 ± 1.8 cm2 were placed into the cell and separated by a metal support, which was used
to avoid direct contact between them and ensure a homogeneous impregnation for both sides.
The temperature of the high-pressure cell was controlled using a thermostatic electric resistance
around the cell. scCO2 was loaded in the system by means of an ISCO 500D syringe pump, which was
operated in a constant pressure regime during the impregnation runs. Impregnation experiments were
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repeated for each migration experiment in turns to verify the reproducibility and reliability of this
procedure. Supercritical impregnation runs were done at 12 MPa and at a constant temperature of
40 ◦C during 3 h. Subsequently, the cell was depressurized at 1 MPa/min and the plastic films were
recovered for characterization and migrations tests. To study the effect of scCO2 conditions on polymer
properties, a sample was exposed to the same conditions as the impregnation process without CIN,
and it was named e-PLACO2 .
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Figure 1. Outline of the experimental setup for the supercritical impregnation process: (a) Temperature
controller; (b) High-pressure stainless steel impregnation cell; (c) Pressure transducer; (d) Syringe pump;
(e) Air-driven pump; (f) Air compressor; (g) CO2 reservoir, (V) Valves, (MMV) Micrometering valve.

2.4. Characterization of Active Electrospun PLA Mats

2.4.1. Quantification of CIN in e-PLA Mats

The effective concentrations of CIN in the e-PLA-CIN and e-PLA/CINimp mats were determined
immediately after each obtaining process. The analysis was performed using a method of dissolution
and precipitation of the modified polymer [36] followed by a detection and quantification of the active
compound carried out through high-performance liquid chromatography.

An amount of 0.2 g of each mat was dissolved into a centrifuge tube with 20 mL of chloroform
at room temperature. After that, 30 mL of methanol were added to produce the precipitation of the
polymer. Subsequently, the polymer was insolated by centrifugation (4500 rpm for 10 min) and the
liquid phase was analyzed by high-performance liquid chromatography (HPLC). Chromatographic
analysis was performed in a Hitachi LaChrom Elite HPLC (Dallas, TX, USA) equipped with a Hitachi
L-2455 diode array detector and a Hitachi L-2200 autosampler. The chromatographic column used
was an Inertsil ODS-3 C18, 5 µm, 4.6 mm × 250 mm. The mobile phase consisted of a mixture of
acetonitrile and distilled water (40:60) at a flow rate of 2 mL min−1 with an injection volume of 5 µL.
The oven temperature was constant at 40 ◦C. The detection of CIN was performed at 275 nm.

2.4.2. Scanning Electronic Microscopy (SEM) Analysis

The morphologies of the electrospun mats e-PLA, e-PLACO2 , e-PLA-CIN, and e-PLA/CINimp were
studied using a scanning electron microscope (SEM) JSM-5410 Jeol (Tokyo, Japan) with the accelerating
voltage at 10 kV. Samples were coated with gold palladium using a Sputtering System Hummer 6.2,
and SEM micrographs of the surface were taken. Average e-PLA fiber diameters were analyzed with
image analyzer software (Image J v1.37) (Bethesda, MD, USA).
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2.4.3. Fourier Transform Infrared (FTIR)–Attenuated Total Reflectance (ATR) Spectroscopy

FTIR-ATR spectroscopy was used to characterize the presence of specific chemical groups in the
materials. FTIR spectra were performed in ATR mode with a Bruker IFS 66V spectrometer. The spectra
were the results of 64 co-added interferograms at 4 cm−1 and resolutions in the wavenumber range
from 4000 to 400 cm−1. The spectra analyses were performed using OPUS Software Version 7 (Ettlingen,
Karlsruhe, Germany).

2.4.4. Thermal Properties

Thermogravimetric analyses (TGA) of active PLA electrospun fibers and the PLA electrospun
fibers control were carried out using a Mettler Toledo Gas Controller GC20 Stare System TGA/DCS
(Schwerzenbach, Switzerland). Samples (ca. 9 mg) were heated from 20 to 600 ◦C at 10 ◦C min−1

under a nitrogen atmosphere (flow rate 50 mL min−1).
Differential Scanning Calorimetry (DSC) analyses were also performed with a Mettler Toledo

DSC-822e calorimeter (Schwerzenbach, Switzerland) according to ASTM D1238. Commercial
samples of indium (99.999% purity) with a melting point of Tm = 156.68 ◦C and a melting enthalpy
of ∆Hm = 38.4 J g−1 were used as a calibration standard. An amount of 8–10 mg of PLA sample weight
was heated in scanning from 25 to 200 ◦C at a rate of 10 ◦C min−1. All experiments were done under a
purge of dry nitrogen. Glass transition (Tg), cold crystallization (Tcc), and melting (Tm) temperatures,
as well as the cold crystallization (∆Hcc) and melting (∆Hm) enthalpies, were determined from the
second heating process. The degree of crystallinity (Xc) of the materials was deduced from the DSC
data using the following equation:

Xc = % crystallinity of PLA = 100 × [(∆Hm − ∆Hcc)/∆H0
m] (1)

where ∆Hm is the specific melting enthalpy of the sample (J g−1); ∆Hcc is the specific cold crystallization
enthalpy of the sample (J g−1); and ∆H0

m is the specific melting enthalpy of a wholly crystalline PLA
(93.6 J g−1) [37].

2.5. Study of the Release Kinetic of CIN from Active e-PLA Electrospun Mats

2.5.1. Experimental Procedure for CIN Release Rate Quantification in e-PLA Mats

The release of the active compound CIN from e-PLA-CIN and e-PLA/CINimp was carried out by
immersion of the developed material into a food simulant following European Regulations: simulant
D1 (50% w/w ethanolic solution) as a lipophilic food simulant. The release experiments were conducted
at 40 ◦C. Double-sided, total immersion release tests were performed as follows: a 3 cm2 piece of
each sample and 5 mL of simulant (with an area-to-volume ratio of 6 dm2/L) were placed in a glass
vial [38]. Samples (1 mL) were periodically collected and analyzed by HPLC in order to quantify the
CIN concentration in the simulant solution as a function of time. Chromatographic analyses were
carried out following the same methodology explained in Section 2.4.1.

2.6. Statistical Analysis

A randomized experimental design was considered for the experiments. Data analysis was
carried out using Statgraphics Plus 5.1 (StatPoint Inc., Herndon, VA, USA). This software was used to
implement variance analysis and Fisher’s LSD test. Differences were considered significant at p < 0.05.

3. Results and Discussion

3.1. Incorporation of CIN in e-PLA Mats by the scCO2 Impregnation Process

Impregnated e-PLA mats were prepared by supercritical impregnation using scCO2 at 12 MPa,
40 ◦C, and a depressurization rate of 1 MPa min−1 during 3 h of impregnation. These process
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conditions were selected based on CIN’s reported solubility in scCO2 [39] with the aim to operate under
complete miscibility between both components. Previous works in our lab have already shown that
the conditions used in this work were the optimal conditions to achieve the highest impregnation rate
of CIN. As Table 1 shows, the cinnamaldehyde incorporation percentage through scCO2 impregnation
in the e-PLA mats reached a value of (3.29 ± 0.26)% (CIN weight/polymer weight), a lower value
compared to the value obtained by Villegas et al. for extruded PLA films through a similar scCO2

impregnation process [25]. In that study, the incorporation percentage of CIN reached values of up to
(13 ± 4)% (w/w). Although similar operational conditions were used, a CO2 phase was maintained
saturated with CIN using an excess of this active compound (1 mL), 10 times higher than in this study,
establishing a two-phase behavior along the impregnation runs. This condition generated a constant
CIN concentration in the CO2 phase that was certainly positive for its partition towards the PLA film.
Meanwhile, in this study, the CIN concentration in the CO2 phase decreased as the impregnation
process progressed, being negative for its partition coefficient and its absorption into the e-PLA mat
structure through the formation of hydrogen bonds between the hydrogen of the hydroxyl groups
of PLA and the oxygen of the aldehyde belonging to the CIN. This interaction has been previously
identified as responsible for the great affinity between PLA and CIN and also explains the higher
incorporation percentage of this active compound in PLA-based materials than that obtained in
other polymers, such as starch films, by means of the scCO2-assisted impregnation process [40].

Table 1. Fiber diameter of electrospun poly lactic acid (e-PLA) mats and cinnamaldehyde (CIN) content
of active materials.

e-Mats Fiber Diameter (nm) CIN Content (%)

e-PLA 495 ± 147 0
e-PLACO2 609 ± 218 0

e-PLA/CINimp 384 ± 149 3.29 ± 0.26
e-PLA-CIN 362 ± 102 1.78 ± 0.03

e-PLACO2 = electrospun PLA mat after scCO2 impregnation conditions; PLA/CINimp = PLA mat impregnated
with CIN; e-PLA-CINn = electrospun PLA with CIN.

On the other hand, the quantification of e-PLA-CIN mats obtained from the electrospinning
process of a PLA solution with 5% CIN resulted in lower values, presenting a final percentage of
(1.78 ± 0.03)% (w/w). Since electrospinning is based on a solvent evaporation process thanks to the
application of an electrical field, losses of this compound due to the enhanced partial evaporation of
the initial concentration of this natural volatile were expected.

3.2. Morphological Results of e-PLA Mats

SEM microscopies of the electrospun nanofibers are depicted in Figure 2 and the average fiber
diameters (n = 50) for the electrospun PLA mats are displayed in Figure 3. Both PLA polymeric
solutions (with and without CIN, Figure 2a,d, respectively) rendered continuous fibers without
the presence of beads. The incorporation of CIN during the electrospinning process did not cause
detectable changes in fiber morphology, and, as Figure 3 shows, e-PLA-CIN fibers were thinner than
those of e-PLA. Probably, the addition of CIN decreased the viscosity of the solution, and the molecular
entanglement among the components and the stretching properties of the solution resulted in the
decrease of electrospun fiber diameters.

Figure 2b,c show the SEM images of electrospun PLA fibers post supercritical CO2 exposure, and it
is possible to observe that the scCO2 impregnation process affected considerably the morphology
of electrospun nanofibers and increased the variability of the fiber diameter range (Figure 3b,c).
The microstructure of the fibers changed due to the CO2 pressure applied. The unique work based
on scCO2 impregnation without active compounds on electrospun fibers called this effect “structural
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relaxation” [41]. In the case of e-PLACO2 , there was a notable enhancement in fiber diameter and the
variability of fiber diameters was high as Figure 3 shows.Polymers 2018, 10, x FOR PEER REVIEW  7 of 17 

 

 

 
Figure 2. SEM micrographs at 5 and 10kx and fiber diameter distribution of electrospun PLA mats: 
(a) e-PLA; (b) e-

2COPLA ; (c) e-PLA/CINimp; and (d) e-PLA-CIN. 
Figure 2. SEM micrographs at 5 and 10kx and fiber diameter distribution of electrospun PLA mats:
(a) e-PLA; (b) e-PLACO2 ; (c) e-PLA/CINimp; and (d) e-PLA-CIN.



Polymers 2018, 10, 479 8 of 17
Polymers 2018, 10, x FOR PEER REVIEW  8 of 17 

 

 
Figure 3. Fiber diameter distribution of electrospun PLA mats: (a) e-PLA; (b) e-

2COPLA ; (c) e-

PLA/CINimp; and (d) e-PLA-CIN. 

3.3. FTIR Analysis Results 

Information on the nature of the molecular interactions between CIN and the electrospun PLA 
polymeric matrix incorporated through both processes was monitored using infrared spectroscopy. 
The effect of the electrospinning process on PLA FTIR spectra was also evaluated by comparison with 
an extruded PLA material. Thus, FTIR spectra for extruded PLA, e-PLA, e-

2COPLA , e-PLA/CINimp, 

and e-PLA-CIN mats are shown in Figure 4, and Table 2 summarizes the assignments of the principal 
characteristic PLA and CIN bands found in the studied materials [25,42,43]. Band displacements, 
changes in intensity, or broadening of signals can indicate specific interactions between the 
components. 

Table 2. Characteristic wavenumbers expressed in (cm-1) assigned to FTIR absorption bands of PLA 
mats. 

Peaks PLA ext e-PLA e-
2COPLA  e-PLA/CINimp e-PLA-CIN Assignment 

a - - - 691 691 CH=CH bending in alkene of CIN 
b 867 867 870 870 867 PLA amorphous zone 
c 1040 1044 - - - C-O stretching 
d 1080 1085 - - - C=O and C-O symmetric stretching 
e 1180 1182 - - - C-O-C stretching 
f - - - 1681 1679 aromatic ring and aldehyde group of CIN 
g 1747 1751 1752 1754 1753 C=O carbonyl stretching 
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3.3. FTIR Analysis Results

Information on the nature of the molecular interactions between CIN and the electrospun PLA
polymeric matrix incorporated through both processes was monitored using infrared spectroscopy.
The effect of the electrospinning process on PLA FTIR spectra was also evaluated by comparison with
an extruded PLA material. Thus, FTIR spectra for extruded PLA, e-PLA, e-PLACO2 , e-PLA/CINimp,
and e-PLA-CIN mats are shown in Figure 4, and Table 2 summarizes the assignments of the principal
characteristic PLA and CIN bands found in the studied materials [25,42,43]. Band displacements,
changes in intensity, or broadening of signals can indicate specific interactions between the components.

Table 2. Characteristic wavenumbers expressed in (cm-1) assigned to FTIR absorption bands of
PLA mats.

Peaks PLA ext e-PLA e-PLACO2 e-PLA/CINimp e-PLA-CIN Assignment

a - - - 691 691 CH=CH bending in alkene of CIN
b 867 867 870 870 867 PLA amorphous zone
c 1040 1044 - - - C-O stretching
d 1080 1085 - - - C=O and C-O symmetric stretching
e 1180 1182 - - - C-O-C stretching
f - - - 1681 1679 aromatic ring and aldehyde group of CIN
g 1747 1751 1752 1754 1753 C=O carbonyl stretching
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All spectra exhibited some characteristic peaks related to the typical absorptions of the
PLA polymer, but when compared to extruded PLA material, electrospun PLA mats showed
several slight displacements principally regarding those bands corresponding to C=O and C-O
symmetric and asymmetric stretching. Table 2 shows the differences in wavenumber band absorptions
between samples. Specifically, the carbonyl vibration of PLA when extruded showed its maximum
at 1747 cm−1, while the electrospun mats and also the impregnated samples showed peak shifts
towards higher wavenumbers (shown in Table 2), and this enhancement increased with both effects
impregnation and CIN incorporation. These displacements can be clearly associated to changes in
the crystallization behavior and morphology as was already observed through SEM micrographies.
These band displacements were surely due to the electrospinning process and interactions between
PLA chains with scCO2 and functional groups of cinnamaldehyde. Besides the displacement of peaks,
the samples that suffered scCO2 impregnation also presented new peaks at 1209 cm−1 and 920 cm−1

that were associated to alkyl-ketone chain vibration and flexural C-H bond vibration, respectively.
Surprisingly, these absorption bands are representative of the crystalline structure of PLA [43].
The scCO2 impregnation involved in the processing seems to induce the rearrangement of the chain
polymer into a crystalline structure.

On the other hand, both active materials presented new characteristic bands near 1600–1700 cm−1

that were attributed to the vibrations of the aromatic ring and to the aldehyde group of CIN [40],
and a new peak at 691 cm−1 corresponding to the phenyl group of CIN, specifically the CH=CH
bending out-of-plane in alkenes. As Table 2 shows, the incorporation of CIN within an electrospun
PLA mat through electrospinning resulted in a lower displacement of peak frequency, indicating that
the encapsulation process was more a physical incorporation than a chemical interaction [44].

3.4. Thermal Characterization of e-PLA Mats

Thermal analyses of electrospun mats were performed to study the effect of the
impregnation process, and the incorporation of the active agent, on the thermal stability and
morphology of the polymer. Moreover, a sample of extruded PLA was also analyzed in order to
observe the influence of the electrospinning process. Figure 5 shows the weight loss and the derivative
of the weight loss with temperature. All PLA-based materials presented a single band of degradation.
As Figure 5 shows and Table 3 indicates, the electrospinning process decreased the thermal stability of
the PLA polymer. The maximum degradation of all e-PLA mats occurred at lower temperatures than
those of the extruded PLA. This fact was already seen in previous works based on polyvinyl alcohol
nanofibers [45]. The electrospinning process induced a change in the polymer nanoscale structure
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that involved an increase in specific area, and, hence, the heat penetrated faster. Regarding scCO2

impregnation, although the morphology of the nanofibers was altered (shown in Figure 2), this process
did not present an important effect.
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As was expected due to the antioxidant character of this compound, the presence of CIN increased
the polymer’s thermal stability at a similar rate when incorporated by both methods [28].

Table 3 summarizes the main thermal properties of PLA mats obtained from DSC thermograms
compared also with an extruded PLA material. As can be seen, the type of processing resulted in a
significant change in the thermal properties of PLA materials. As the glass transition temperature (Tg)
values show, electrospinning resulted in a more plasticized material and this effect was enhanced by
the incorporation of CIN between the polymer chains, which increased their mobility. Although mats
were rigorously dried under vacuum before analysis, the presence of residual solvent from the
electrospinning process decreased the intermolecular and intramolecular interaction between the
polymeric chains. Lopez de Dicastillo et al. have already observed this feature in a previous
study based on the comparison of materials obtained through casting (dissolution-evaporation) with
extruded polymers [46]. Regarding the effect of CIN, this plasticizing effect is common with the
incorporation of essential oils and other active components, such as ascorbic acid, α-tocopherol,
butylated hydroxytoluene (BHT), and marigold flower extract, into polymeric matrixes and results
in a more flexible and ductile material [46–48]. Moreover, the lower chemical interaction between
PLA groups with CIN in the case of e-PLACIN mats induced the highest decrease in these values.
This plasticizing effect and increase in PLA chains’ mobility also turned into a great decrease of
Tcc values caused by the incorporation of CIN between polymeric chains, which promoted the
crystallization of PLA in less stable α’crystals at lower temperatures [49]. e-PLA mats also presented a
lower melting temperature compared to the extruded PLA material. All of these experimental results
pointed to a decreased crystalline structure.

Xc’ values were also clearly influenced by the electrospinning process and incorporation of CIN.
The electrospinning process decreased PLA crystallinity. Probably, the fast solvent evaporation
(chloroform and DMF) during the electrospinning process implied the generation of a lower rate
of PLA crystals. On the other hand, the presence of CIN increased the formation of PLA crystals,
principally in the case of e-PLACIN.

The incorporation of CIN during the electrospinning process induced the rearrangement of the
chains and showed some nucleating effect. Other works have already mentioned that the influence of
active compounds on the Xc’ values depends on the compound’s nature [50,51].



Polymers 2018, 10, 479 11 of 17

Table 3. Thermal properties of e-PLA-based mats.

Materials Tdeg Tg (◦C) Tcc (◦C) ∆Hcc (J/g) Tm (◦C) ∆Hm (J/g) Xc’ (%)

PLA ext 365.1 ± 1.5 b 63.2 ± 0.7 d 117.2 ± 0.3 b 22.3 ± 0.1 b 155.6 ± 1.7 c 26.5 ± 0.5 b 4.6 ± 0.4 b
e-PLA 334.0 ± 11.1 a 53.1 ± 0.2 c 113.8 ± 0.2 b 24.7 ± 4.5 b 153.2 ± 0.3 bc 25.8 ± 4.2 b 1.1 ± 0.4 a

e-PLACO2 334.6 ± 8.3 a 56.7 ± 0.1 c 122.9 ± 0.5 b 8.0 ± 1.6 a 150.9 ± 0.8 b 9.3 ± 2.3 a 1.4 ± 0.8 a
e-PLA/CINimp 350.8 ± 8.2 ab 46.5 ± 2.7 b 103.7 ± 7.2 a 24.8 ± 0.2 b 151.2 ± 0.4 b 27.0 ± 0.4 b 2.4 ± 0.2 a
e-PLA-CIN 349.8 ± 5.9 ab 38.2 ± 3.9 a 100.3 ± 4.1 a 25.3 ± 0.8 b 147.3 ± 1.5 a 30.3 ± 0.2 b 5.4 ± 0.6 b

Lower case letters a–d indicate significant differences in a thermal parameter among the materials.

3.5. Study of the Release Kinetic of CIN from e-PLA-CIN and e-PLA/CINimp Mats

The mass transfer during CIN release from e-PLA mats was experimentally studied by means of
the specific migration tests previously described in Section 2.5.1 Experimental release kinetics of CIN
from e-PLA/CINimp and e-PLA-CIN mats were carried out using 50% (w/w) ethanolic solution, as a
fatty food simulant, at 40 ◦C. These tests allowed for us to observe the dependence of the CIN release
on the type of active compound incorporation process. Figure 6 shows the CIN concentration change
as a function of time obtained from the release experiments as well as the theoretical curves generated
by means of the transfer model with the correlated diffusion coefficient of CIN in e-PLA-CIN and
e-PLA/CINimp mats.
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Figure 6. Release kinetic of cinnamaldehyde from e-PLA/CINimp (blue dots) and e-PLA-CIN (red dots)
in EtOH 50%, as a food simulant, at 40 ◦C.

These experiments were conducted until a plateau of CIN concentration in the solutions as
a function of time was achieved. Thus, the last concentration registered was considered to be
measured under an equilibrium condition; meanwhile, the instantaneous average active compound
concentration value in the polymer film was estimated by mass balance from its initial concentration
value. After the estimation of the CIN equilibrium concentrations in the sample and in the simulant
solution (SS), the partition coefficient of CIN between the polymer phase and the simulant solution,
KPLA/SS, was calculated and subsequently used as input data in the mathematical model [23].

Determination of Partition and Diffusion Coefficients of CIN in e-PLA Mats

The mass transfer description of the migration process through e-PLA-CIN and e-PLA/CINimp

can be achieved by means of Fick’s law. Distribution coefficients between the polymer layer and the
food simulant were directly calculated from the equilibrium concentration in the food simulant and
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the mass balance in the plastic films [52]. The mass transfer of the active compound from the PLA
nanofibers mat to a liquid phase was described by a one-dimensional simplification of the Fick’s Law.
In this way, the instantaneous mass transfer of CIN occurs in a symmetrical process on both sides of
the plastic film, which is completely immersed in the receiving solution. In this way, the symmetrical
transfer rate of CIN through the polymer film can be quantified by the following Equation (2):

JI =
DCin
L/2

·
(

CPLA
Cin (x = 0, t)− CPLA

Cin (x = L/2, t)
)

(2)

where JI is the mass transfer flux (kg m−2 s−1) of CIN through the impregnated and electrospun PLA
nanofibers mat, DCin (m−2 s−1) is the diffusion coefficient of CIN in the polymer, L represents the
film thickness (m), and CPLA

Cin is the highest concentration value of CIN (kg m−3) in the middle of the
polymer thickness (x = 0) and in the polymer interface in contact with the receiving phase (x = L/2).

The thermodynamic equilibrium established at the polymer–solution interface can be quantified
by the partition coefficient KPLA/SS. This parameter was calculated according to Equation (3):

KPLA/SS =
CPLA

Cin (x = L/2, t)
CSS

Cin (x = L/2, t)
. (3)

The last transfer step in the CIN release is represented by the transfer through the boundary layer
of the solution simulant phase, which can be described by Equation (4):

JI I = k·
(

CSS
Cin(x = L/2, t)− CSS

Cin(x = ∞, t)
)

(4)

where CSS
Cin is the concentration of CIN (kg m−3) at the interface (x = L/2) and in the bulk of the

simulant solution (x = ∞). Meanwhile, k (m s−1) represents the mass transfer coefficient under natural
convection transport in the solution and its value was calculated by means of the correlation reported
by Galotto and coworkers [53] where the coefficient is obtained from the Sherwood number, which is
calculated as a function of the Grashof and Schmidt numbers.

The equation system can be solved considering the initial conditions and other assumptions
related to the interactions between the polymer and the receiving solution. These considerations
are listed below: (1) The initial concentration of CIN in the impregnated PLA nanofibers mat is
known and homogeneous in the whole phase; (2) The simulant solution is initially CIN-free and no
mass transfer limitations are considered in the solution. Thus, the active compound is considered to
be homogeneously distributed in the whole receiving phase; and (3) Physicochemical interactions
between the PLA nanofibers mat and the receiving phase are considered negligible. In this way,
these phases are considered immiscible. The mass transfer equations were solved under a steady-state
condition for an instantaneous time. The Regula Falsi algorithm was applied to reduce the number of
iterative calculations, which have been achieved by means of a script developed in MatLab® according
to a routine that considers the income of the structural parameters of the system and the initial
experimental conditions in which migration testing is performed. Thus, concentrations of CIN in
the bulk of the polymer and in the simulant solution were recalculated after each time step by mass
balance using the instantaneous value of the CIN transfer flux.

The value of KPLA/SS calculated from Equation (3) was used as the input parameter, which was
fed into the model. Thus, the mathematical model was used to simulate different release kinetics using
different values for the diffusion coefficient of CIN in a PLA nanofibers mat, DCin. The chosen value
of the diffusion coefficient is that which shows the closest values to the simulated and experimental
release kinetics. This procedure was conducted from the lowest values of the root of the mean
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square error (RMSE) between the experimental data and predicted values of CIN concentration in the
simulants as a function of time [54]. RMSE was calculated as follows:

RMSE =
1

MP,0
·

√√√√( 1
N

)
·

N

∑
t=1

(
(MSS,t)exp erimental,t − (MSS,t)predicted,t

)2
(5)

where N is the experimental points number for each migration curve, i is the observations number,
MP,0 is the initial amount of the active compound in the polymer (µg), and MSS,t is the active compound
amount in the simulant at time t (µg).

Thus, at equilibrium, the remaining concentration of CIN in e-PLA mats was quantified and
the partition coefficients of CIN, KPLA/SS, were calculated according to Equation (3). This coefficient
compares the relative affinity of the active compound between the polymeric phase (e-PLA) and the
liquid phase (50% ethanolic solution) [23]. As Table 4 shows, the lowest value of KPLA/SS was obtained
for the impregnated PLA films, indicating that the higher affinity of the active compound was for
the food simulant phase rather than for the polymeric phase. The main reason is because scCO2 was
able to diffuse into the polymeric mat and swelled it, which favored both the incorporation of active
substances previously dissolved and the release afterwards. In this way, solute loading was not limited
to the surface, but it was also located deeper inside the polymeric matrix [55]. In general, this behavior
of swelling and/or plasticizing of the polymer favored additive incorporation and yielded higher
loadings and a more uniform distribution of the additives or compounds in the polymer phase [56].

Table 4. Partition and diffusion coefficients and root mean square error (RMSE) values of
cinnamaldehyde from different active mats in EtOH 50% at 40 ◦C.

e-Mats KPLA/SS DCin (m−2 s−1) RMSE (%)

e-PLACIN 470 1 × 10−12 0.65
e-PLA/CINimp 133 6 × 10−14 0.71

Once KPLA/SS was obtained for the CIN release process, the mathematical model previously
developed was used to simulate the release kinetic correlating the diffusion coefficient of the active
compound for both systems analyzed, DCin. This value was obtained by correlation of the experimental
data using the mass transfer model. In the last column of Table 4, the value of the root mean square error
(RMSE) of the model solution related to the experimental data was reported for each migration test.
From these results, it was possible to observe that the migration equilibrium was reached after
approximately 20 h in the case of impregnated mats e-PLA/CINimp. Meanwhile, the migration
equilibrium was obtained after 1 h for the electrospun mats e-PLA-CIN. This behavior can be explained
because the impregnation process allowed for a better chemical interaction between the CIN and the
polymeric matrix mainly though the formation of hydrogen bonds between the hydrogen of PLA
hydroxyl groups and the oxygen of the aldehyde belonging to the active compound. Furthermore,
the changes in the polymer’s morphology that occurred due to the scCO2 impregnation, clearly shown
though SEM microscopy, resulted in the slowdown of the release process. Calculations with the MatLab
script revealed that the diffusion coefficient values of CIN strongly depended on the incorporation
process of the active compound. Thus, the diffusion coefficient values were equal to 1 × 10−12 (m2 s−1)
and 6 × 10−14 (m2 s−1) for the e-PLA-CIN and e-PLA/CINimp mats, respectively. This behavior
can be explained by two main factors: (i) the high porosity (large surface area) of the fiber mats
which increased the mass transfer rate [57]; and (ii) a short diffusion passage length provided by
small diameters of the fibers [58]. Another reason to explain this behavior could be the plasticizing
effect that caused a decrease of Tg and an increase in the mobility of polymeric chains allowing for a
rapid diffusion.
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Generally, electrospun fibers with a lower diameter display more superficial area, which increases
the distribution of the active compound. Since both fibers have similar diameters, the differences in
kinetic release were only due to the changes in morphology caused by the scCO2 impregnation process.

On the other hand, during the preparation of the fibers through electrospinning and due to a
high ionic strength, the rapid evaporation of the solvent in the mixture induced the localization of
the active compound predominantly on the surface of the fiber [6]. Torres and coworkers [23] have
studied the release of thymol from PLA films in a different simulant (EtOH 10–95%) and obtained
diffusion coefficient values in the same order of magnitude. These authors also indicated that the
greater affinity for the ethanol content in the solutions is due to the non-polar character of both
thymol and the simulant solution. The release properties of tetracycline hydrochloride from poly
(ethylene-covinylacetate) and poly-L-lactic acid (PLLA) electrospun mats have also been investigated
by Kenawy et al. [59]. In all of the cases, a burst release occurred during the first 10–12 h. A similar
phenomenon was also observed by Zong et al., where Mefoxin was found to have a high burst release
from poly-D,L-lactic acid (PDLLA) electrospun fibrous mats in the first 3 h [60]. This type of release
rate is characteristic for medicines and drugs because electrospinning can provide fiber carriers for
drug delivery with outstanding features at diverse levels. For example, drugs can be conveniently
incorporated into the carrier polymers without structural and bioactive alteration by a simple process
that provides a fast mass transfer rate and an efficient drug release rate [61].

In this study, it is important to highlight that the release kinetic was strongly affected by the
CIN incorporation process, and as Table 4 and Figure 6 show, important differences in the release
kinetic parameters were found. These results show the possible potential use of these materials in
different areas, such as food packaging or the pharmaceutical and medical industries.
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