Supplementary Materials

Reactive energetic plasticizers utilizing Cu-free azide-alkyne 1,3dipolar cycloaddition for in-situ preparation of poly(THF-co-GAP)-based polyurethane energetic binders

Mingyang Ma¹ and Younghwan Kwon^{2,*}

¹Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing Devices, East China University of Technology, Nanchang 330013, People's Republic of China; mmy861201@163.com (M.M.)
²Department of Chemical Engineering, Daegu University, Gyeongsan, Gyeongbuk 38453, Republic of Korea

* Correspondence: y_kwon@daegu.ac.kr; Tel: +82-53-850-6569

Fig. S1. ¹H (top) and ¹³C NMR (bottom) spectra of (a) poly(ECH-co-THF) and (b) poly(GAP-co-THF).

Fig. S2. DSC thermograms of (a) PGT:PDNP, (b) PGT:BDNP, (c) PGT:BDNPF/A, and (d) PGT:BDNPF/BF.

Fig. S3. Viscosity reduction of (a) PDNP : PGT, and (b) BDNP : PGT

Fig. S4. Viscosity reduction of PGT prepolymer plasticized with 50 wt% of conventional EPs.

Fig. S5. ¹H NMR spectra as a function of reaction time of Cu-free azide-alkyne 1,3dipolar cycloaddition reaction of BDNP (n=2) and PGT prepolymer carried out in bulk condition at 60 °C. The R group in the reaction scheme above is the backbone of PGT prepolymer.

Fig. S6. FT-IR spectra of the BDNP/PGT-based PUs in terms of $[C \equiv C]/[N_3]$ (mol/mol): a) 0/0.5, b) 0.1/0.5, c) 0.3/0.5 and d) 0.5/0.5.

Fig. S7. TGA (top) and DTG (bottom) curves of the PDNP/PGT-based PUs.

Fig. S8. TGA (top) and DTG (bottom) curves of the BDNP/PGT-based PUs.