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Abstract: Sulfonated poly(arylene ether sulfone) (SPAES) and perfluorosulfonic acid (PFSA)
composite membranes were prepared using perfluoropolyether grafted graphene oxide (PFPE-GO)
as a reinforcing filler for polymer electrolyte membrane fuel cell (PEMFC) applications. PFPE-GO
was obtained by grafting poly(hexafluoropropylene oxide) having a carboxylic acid end group
onto the surface of GO via ring opening reaction between the carboxylic acid group in
poly(hexafluoropropylene oxide) and the epoxide groups in GO, using 4-dimethylaminopyridine as
a base catalyst. Both SPAES and PFSA composite membranes containing PFPE-GO showed much
improved mechanical strength and dimensional stability, compared to each linear SPAES and PFSA
membrane, respectively. The enhanced mechanical strength and dimensional stability of composite
membranes can be ascribed to the homogeneous dispersion of rigid conjugated carbon units in GO
through the increased interfacial interactions between PFPE-GO and SPAES/PFSA matrices.

Keywords: sulfonated poly(arylene ether sulfone); perfluorosulfonic acid; perfluoropolyether grafted
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1. Introduction

Due to their high energy conversion efficiency and lower environment cost, polymer electrolyte
membrane fuel cells (PEMFCs) have received much attention for portable devices, automotives,
and residential applications [1]. Among the various components of the PEMFC, the polymer electrolyte
membrane (PEM) is regarded as a key component, as it can separate the reactant gases, and provide
a pathway for immediate proton transportation [2]. It is generally known that interconnected
hydrophilic channels formed by phase separation between hydrophilic and hydrophobic domains
in PEMs provide pathways for proton conduction [3]. The most utilized perfluorosulfonic acid
(PFSA) membranes, such as Nafion, are composed of a very hydrophobic perfluoro backbone
and polar side chains having sulfonic acid groups; the interconnected hydrophilic channels are,
therefore, well developed, and can maintain high proton conductivity [4]. However, these PEMs have
inherent drawbacks, which include high fuel permeability, low glass transition temperature, and poor
thermomechanical properties above 80 ◦C [5,6]. These drawbacks have prompted the development
of alternative PEMs using hydrocarbon-based polymers, including sulfonated poly(arylene ether
sulfone)s (SPAES)s, because of their advantages, such as low gas permeability, high thermal stability,
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and structural diversity [7,8]. However, the high proton conductivity of these PEMs can only be
achieved when hydrocarbon-based polymers have a high degree of sulfonation (DS). High DS can
develop the interconnected hydrophilic channels, resulting in high proton conductivity [9]. However,
the hydrocarbon-based PEMs with high DS do not have high enough dimensional stability for PEMFC
operation [10]. One of the effective approaches to improve the dimensional stability of PEMs without
much deterioration of the proton conductivity is to incorporate reinforcing inorganic/organic fillers
into the polymer matrix [11–13].

Recently, carbon nanomaterials, such as carbon nanotube, graphene, and graphene oxide (GO),
in the polymer matrix, and their effect on the ion conductivity, mechanical strength, and dimensional
stability of the polymer composites, have drawn much attention for scientific research and practical
industrial applications [14–16]. For example, Jiang et al. presented the construction of tunable
ion-conducting nanochannels via direct assembly of GO/poly(phosphonic acid) core–shell nanosheets
prepared by surface-initiated precipitation polymerization [17]. The resulting solid electrolyte showed
better proton conductivity than commercial Nafion 117 membrane [17]. The remarkable improvement
in the mechanical strength and dimensional stability of the polymer composites containing carbon
nanomaterials with very small contents is also possible by good interfacial interaction between the
fillers and the polymer matrix and well-dispersed state of the fillers. Guiver et al. reported remarkably
increased mechanical properties of polymer composites by tuning interfacial interactions between 2D
materials (GO and montmorillonite) and polymer matrix [18]. Wang et al. reported an improvement
in the mechanical properties and low methanol permeability of hydrocarbon-based PEM by the
incorporation of flexible alkylsulfonated grafted GO [19]. Therefore, designing and fine tuning of
carbon nanomaterials should be considered to achieve high performances of the polymer composite
membranes [20–24].

In this study, we attempted to improve the mechanical and dimensional stability of both
hydrocarbon and PFSA-based PEMs without much deterioration of the proton conductivity by using
perfluoropolyether grafted GO (PFPE-GO) as a reinforcing filler for the SPAES and Nafion membranes.
This paper discusses the detailed preparation methods for the PFPE-GO and composite membranes,
including their properties, such as mechanical properties, water absorption behavior, dimensional
stability, and proton conductivity.

2. Experimental

2.1. Materials

Poly(hexafluoropropylene oxide) having a carboxylic acid group located on one chain terminus
(DuPont™ Krytox®, 157 FSL, F–(CF(CF3)CF2O)n–CF(CF3) –COOH, n = 17, 2500 g/mol) was obtained
from DuPont (Wilmington, NC, USA). Graphite powder (Graphite UF 99.5) was received from BASF.
4-Dimethylaminopyridine (DMAP) from Sigma-Aldrich Co., Ltd. (St. Louis, MO, USA) was used as
received. Dimethylformamide (DMF), trichlorotrifluoroethane, and ethanol were obtained from Daejung
Chemicals & Metals Co., Ltd (Gyeonggi-do, Korea). Nafion (DE 2021, DuPont), a representative ionomer
of PFSA, was obtained from Nano Getters Co. (Gyeonggi-do, Korea), as a 20 wt % solution in a mixture
of aliphatic alcohols and water. 4,4′-Dichlorodiphenylsulfone (DCDPS, 98.0%, Sigma-Aldrich Co., Ltd.),
and 4,4′-dihydroxybiphenyl (BP, 97.0%, Sigma-Aldrich Co., Ltd.) were recrystallized from toluene and
methanol, respectively. 3,3′-Disulfonate-4,4′-dichlorodiphenylsulfone (SDCDPS) was synthesized from
DCDPS as described by Ueda et al. [25]. The yield of SDCDPS after recrystallization using a mixture of
isopropylalcohol and deionized water (7:3, v/v) was 83%. All other reagents and solvents were from
standard vendors and used as received.

2.2. Preparation of GO

Graphene oxide (GO) was synthesized from graphite according to the modified Hummer’s
method [20,26], which was described in detail in a previous study [21]. Briefly, a mixture of 1.0 g of
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graphite powder, 0.5 g of P2O5, and 6 mL of concentrated sulfuric acid (98.0%) in a reactor was stirred
at 80 ◦C for 6 h, and then 200 mL of deionized water was added into the mixture. The mixture was
filtered and washed with deionized water several times. The obtained solid (preoxidized graphite)
was dried in a 60 ◦C vacuum oven for 24 h. The dried solid and 0.5 g of NaNO3 were added into
a reactor in an ice bath, and 23 mL of concentrated sulfuric acid was added, dropwise, into the reactor
without stirring. KMnO4 (6.0 g) was added into the mixture, and stirring was maintained at 0–5 ◦C.
The mixture was heated to 35 ◦C and stirred for 18 h, and then deionized water (200 mL) and H2O2

(30%, 10 mL) were added. The mixture was centrifuged at 10,000 rpm for 30 min, and the supernatant
was decanted. Then, the mixture was filtered through 0.2 µm anodic aluminum oxide membrane filter,
and the solid was washed with 250 mL of 10.0% HCl (aq) followed by excessive deionized water until
the pH value was 7.0. The resulting product, GO, was dried in an 80 ◦C vacuum oven for 24 h.

2.3. Preparation of Perfluoropolyether-Functionalized GO (PFPE-GO)

GO (0.05 g) was added to 50 mL of DMF and sonicated for 30 min. Krytox® 157 FSL (2.0 g,
0.8 mmol) and DMAP (0.1 g, 0.8 mmol) were added to the GO solution and the reaction mixture was
stirred under nitrogen (N2) atmosphere at 120 ◦C for 18 h. The product was obtained by filtering through
an anodic aluminum oxide (AAO) membrane filter of 0.2 µm pore size, followed by washing with
DMF several times. Then, the product was further purified by dissolving in trichlorotrifluoroethane,
filtering, and washing using ethanol to remove any remaining reagents, including Krytox® 157 FSL.
The resulting solid (PFPE-GO) was dried overnight in a vacuum oven at 35 ◦C.

2.4. Preparation of Sulfonated Poly(Arylene Ether Sulfone) (SPAES)

SPAES was synthesized by the condensation polymerization of the dihydroxy monomer (BP)
with the mixture of DCDPS and SDCDPS as described in our previous report [5]. A 250 mL three-neck
round bottom flask equipped with a nitrogen inlet and outlet, a Dean-Stark trap, a condenser, and an
overhead mechanical stirrer, was charged with 5.00 g (26.9 mmol) of BP, 3.86 g (13.4 mmol) of DCDPS,
6.60 g (13.4 mmol) of SDCDPS, and 4.27 g (30.9 mmol) of K2CO3 in 45.2 mL of NMP. Then, 22.6 mL
of toluene (NMP/toluene = 2:1, v/v) was added as an azeotroping agent. The solution mixture was
heated at 145 ◦C for 4 h to ensure the complete dehydration, and then the temperature was raised to
190 ◦C for the complete removal of toluene. The reaction was continued for 48 h until the solution
became very viscous. The viscous solution was cooled down to room temperature and 10.0 mL of
NMP was added to dilute the solution. The solution was filtered to remove the salts and poured into
isopropylalcohol (1000 mL) to precipitate the polymer, and then the precipitate was washed several
times with isopropylalcohol. The off-white product polymer was obtained in 93% of yield after being
dried in a vacuum oven at 60 ◦C for 24 h. SPAES: 1H NMR (DMSO-d6, 500 MHz): δ 8.31 (br, 2H, ArH),
7.96 (br, 4H, ArH), 7.87 (br, 2H, ArH), 7.73 (br, 8H, ArH), 7.21 (br, 8H, ArH), 7.12 (br, 4H, ArH), 7.03 (br,
2H, ArH).

2.5. Preparation of Composite Membranes

The SPAES and Nafion (a representative ionomer of PFSA) composite membranes were fabricated
by a typical solution casting method [21]. The following procedure was used for the preparation
of SPAES/PFPE-GO-0.1, where 0.1 indicates the weight percent of PFPE-GO to SPAES. The mixture
containing 0.5 mg of PFPE-GO in 3.3 g of DMF was sonicated for 30 min and stirred at 60 ◦C for 1 h
to make a homogeneous dispersion of PFPE-GO in DMF. Then, 0.5 g of SPAES powder was mixed
with the DMF solution, and the mixture was cast onto a glass plate. The thickness of the cast solution
could be controlled using a doctor blade film applicator. The cast solution was then heated in an
80 ◦C vacuum oven for 12 h. The membrane could be detached by immersing the glass plate in
deionized water. The obtained membrane was dried in an 80 ◦C vacuum oven for 24 h and named as
SPAES/PFPE-GO-0.1. Other SPAES/PFPE-GO membranes containing 0.5, 1.0, and 2.0 wt % of PFPE-GO
to SPAES were also fabricated, and they were named as SPAES/PFPE-GO-0.5, SPAES/PFPE-GO-1.0,
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and SPAES/PFPE-GO-2.0, respectively. Nafion composite membranes containing PFPE-GO were also
fabricated using the same procedure used for the preparation of the SPAES/PFPE-GO membranes,
except for using Nafion instead of SPAES. The Nafion powder was obtained from commercial Nafion
solution (20 wt % in a mixture of aliphatic alcohols and water) by evaporating the solvents using
rotary evaporator. When 0.1, 0.5, 1.0, and 2.0 wt % of PFPE-GO were incorporated, they were named
as Nafion/PFPE-GO-0.1, Nafion/PFPE-GO-0.5, Nafion/PFPE-GO-1.0, and Nafion/PFPE-GO-2.0,
respectively. The membranes in salt form were transformed to their respective acid form by soaking
in 1 M H2SO4 aqueous solution at 30 ◦C for 24 h, and washing with deionized water several times.
For comparison, linear SPAES and Nafion membranes were also prepared by the same procedure.
The thicknesses of all the membranes were in the range of 30–40 µm.

2.6. Characterization

Fourier-transform infrared (FT-IR) spectra of the films were recorded on Cary 660 FT-IR
spectrometry (Agilent Technology, Santa Clara, CA, USA) at ambient temperature. Data were collected
over 32 scans at 4 cm−1 resolution. X-ray photoelectron spectroscopy (XPS) was recorded on a KRATOS
AXIS-His (Manchester, UK) using MgKα (1254.0 eV) as the radiation source. Spectra were collected over
a range of 0–1200 eV, followed by high resolution scan of the C 1s and F 1s regions. Raman spectra were
collected on a T64000 Triple Raman spectrometer (HORIBA, Kyoto, Japan) equipped with a 514.5 nm
Ar laser source. Thermal gravimetric analysis (TGA) was performed in a Q-5000 IR (TA Instruments,
New Castle, DE, USA). The sample was heated from 25 to 700 ◦C with a heating rate of 10 ◦C min−1

under a nitrogen atmosphere. The 1H NMR spectrum was collected by Varian INOVA-500 NMR
spectrometer (Palo Alto, CA, USA) with a proton frequency of 500 MHz. Deuterated dimethylsulfoxide
and tetramethylsilane were used as the solvent and the internal standard, respectively. Molecular
weights (Mn and Mw) were measured by gel permeation chromatography (GPC, Agilent Technology,
Santa Clara, CA, USA), consisting of a Waters 510 HPLC pump at 35 ◦C, three columns (PLgel 5 µm
guard, MIXED-C, MIXED-D), and a Viscoter T60A dual detector. HPLC grade DMF with LiBr was
used as the eluent, and the flow rate was 1.0 mL min−1. Calibration was conducted by polystyrene
standards. Mechanical properties of the membranes were measured using a universal testing machine
(Lloyd-LS1, West Sussex, UK). The ASTM standard D638 (Type V specimens) was used for the
preparation of dumbbell shape specimens. The measurement was conducted at 25 ◦C and 40% relative
humidity (RH) conditions with a gauge length and cross head speed of 15 mm and 5 mm min−1,
respectively. For each measurement, at least seven specimens were tested and their average value
was calculated. Stress–strain measurements of membranes at different humidity conditions were
performed by dynamic mechanical thermal analyzer (TA Q800-RH, TA Instruments, New Castle, DE,
USA). Temperature and humidity were controlled in an environmental chamber. The cell temperature
and humidity were equilibrated at 50 ◦C and 50% RH for 40–60 min. Tensile test was conducted using
rectangular test strips with membranes. A load ramp 0.5 MPa/min was employed, and each sample
was tested twice. The further measurement at 50 ◦C and 90% RH conditions was conducted by the same
methods. The water uptake and dimensional change of the membranes were calculated by measuring
their change in weight and volume between the dry and swollen membranes. The dry membranes
were cut into 1 cm × 5 cm rectangles, and their weights and volumes were obtained. The membranes
were then immersed in deionized water at temperature of 30 ◦C for 4 h. After the membranes were
taken out and wiped with tissue paper, their weights were measured. The change in volume of
the membranes was calculated after the membranes immersed in deionized water at 30 ◦C for 4 h.
The water uptake and volume based dimensional change was calculated by the following equations:

Water uptake
[%] = [(Wwet −Wdry)/Wdry] × 100, (1)

Volume based dimensional change

[%] = [(1 + ∆L)(1 + ∆W)(1+ ∆T) − 1]× 100, (2)



Polymers 2018, 10, 569 5 of 14

where, Wwet and Wdry are the weights of the wet and dry membranes, and ∆L, ∆W, and ∆T are the
change of the length, width, and thickness of the membranes, respectively. The oxidative stability of
the SPAES composite membranes was estimated by Fenton’s test by calculating the weight change
of the samples after being exposed to a Fenton’s reagent (3 wt % H2O2 aqueous solution containing
4 ppm Fe2+). Pre-weighed dry membranes were soaked in a 50 mL of Fenton solution at 80 ◦C.
After 1 h, the membranes were taken out, washed thoroughly with distilled water, and dried in a 60 ◦C
vacuum oven for 24 h before the weight was measured. Hydrolytic stability of the SPAES composite
membranes was investigated using a high-pressure chamber filled with deionized water at 100 ◦C for
24 h. The stability was also evaluated by changes in weight of the membranes. Proton conductivities
of the membranes were measured at 80 ◦C under different relative humidity (RH) conditions using
a conductivity measurement system (BekkTech BT-552MX, Loveland, CO, USA) with a H2 flow rate
of 500 cm3 min−1. The samples were pre-equilibrated at 80 ◦C and 70% RH for 2 h, and then the
conductivity measurements were performed. The equilibrium RH was obtained after about 15 min of
stabilization time.

3. Results and Discussion

3.1. Preparation and Characterization of PFPE-GO

Perfluoropolyether-functionalized GO, named as PFPE-GO, was prepared from the reaction of
GO with a commercially available poly(hexafluoropropylene oxide) having a carboxylic acid group,
Krytox® 157 FSL (Figure 1a), in the presence of a base catalyst, DMAP, as shown in Figure 1b;
the carboxylic acid group in Krytox® 157 FSL was reacted with the epoxide groups in GO via
a base-catalyzed ring opening reaction [27,28].
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Figure 1. Chemical structure of (a) Krytox® 157 FSL and schematic diagram of (b) the preparation of
perfluoropolyether grafted graphene oxide (PFPE-GO).

Figure 2a shows the FT-IR spectra of GO, Krytox® 157 FSL, and PFPE-GO. In the spectrum of GO,
a broad O–H stretching peak from the hydroxyl groups and the water adsorbed in GO at 3450 cm−1,
a C=O peak from the ketone and carboxyl acid groups at 1740 cm−1, aromatic C=C and O–H bending
peaks from phenolic groups at 1620 cm−1, a C–O peak from the epoxy groups at 1240 cm−1, and a C–O
peak in the alkoxy groups at 1050 cm−1 are observed [15,21]. On the contrary, the IR spectrum
of PFPE-GO shows characteristic absorption peaks at 1153, 1200, and 1230 cm−1 corresponding to
–CF2– stretching, and a weak absorption peak at 980 cm−1 corresponding to –CF3 stretching from the
fluoropropylene oxide groups in the PFPE backbone, indicating the incorporation of the PFPE moieties
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in GO [29]. The C1s XPS spectrum of PFPE-GO also indicates the incorporation of the PFPE moieties
in GO to form PFPE-GO (Figure 2b). The C1s XPS spectrum of GO shows four peaks from C–C, C–O,
C=O, and O–C=O at 284.5, 286.5, 287.5, and 288.5 eV, respectively [30–32], while that of PFPE-GO
shows new peaks at higher boding energies, such as 293.3 eV, 291.8 eV, and 291.3 eV attributed to
carbon in –CF3, –CF2–, and –CF groups of PFPE, indicating the successful incorporation of the PFPE
group into GO to form PFPE-GO [25,33]. The existence of grafted PFPE moieties on GO sheets could
be also confirmed by the F1s XPS spectrum of PFPE-GO (Figure S1). The F1s peak at 689.0 eV clearly
indicates the existence of fluorine element in PFPE-GO.

The amount of the grafted PFPE moiety on GO was estimated from the TGA curves for GO and
PFPE-GO as shown in Figure 2c. It is well known that the weight change below 300 ◦C is due to the
thermal reduction of the oxygen functional groups in GO, and that between 300 and 500 ◦C is due to the
thermal decomposition of the other organic moieties in GO [20,34,35]. Therefore, 8 wt % of the weight
loss between 300–500 ◦C for PFPE-GO indicates the approximate amount of the PFPE moiety grafted
on GO. The smaller weight loss of PFPE-GO below 300 ◦C than that of GO indicates that PFPE-GO
contains less oxygen functional groups than GO. Since PFPE-GO was prepared at high temperature
(120 ◦C), it is possible that the oxygen functional groups in GO could be reduced. The reduction was
further confirmed by the red shift of 10 cm−1 in Raman spectra from 1603 cm−1 of the G band for GO to
1593 cm−1 for PFPE-GO (Figure 2d), as reported previously [36,37]. Moreover, the C1s XPS spectrum
of PFPE-GO also indicates that PFPE-GO is reduced; the relative peak intensity of the C–O groups in
the C1s XPS spectrum of PFPE-GO is considerably smaller than that of GO because the epoxide groups
in GO were removed by the reaction with the carboxylic acid group in Krytox® 157 FSL.
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3.2. Synthesis of Sulfonated Poly(Arylene Ether Sulfone) (SPAES)

Figure 3a shows that SPAES in potassium salt form (K+) was synthesized via nucleophilic
step-growth polymerization using the monomer mixture of BP, DCDPS, and SDCDPS [38].
The chemical structure and composition of the obtained SPAES were confirmed by 1H NMR
spectroscopy (Figure 3a). Since the feed monomer ratio of sulfonated (SDCDPS) and non-sulfonated
(DCDPS) dichloro monomers is 1:1, degree of sulfonation (DS, mol %) of 50 was expected, while the
DS of SPAES measured by the peak integration from the 1H NMR spectrum was about 47. It is
possible a slightly different reactivity between SDCDPS and DCDPS induced by different chemical
structure caused this result [39]. SPAES with DS of about 50 was intentionally prepared to fabricate
linear and composite membranes in this study, because SPAES with a DS larger than 50 has been
known to not have sufficient dimensional stability to provide membrane stability for intermediate
temperature PEMFCs, based on our previous studies [4,5]. The number average molecular weight (Mn)
and weight-average molecular weight (Mw) calculated from the result of GPC measurement using
polystyrene standards were 169,000 and 343,000, respectively (Figure 3b).
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3.3. Mechanical Properties

During the fuel cell operation, cracks and pinholes of the PEMs resulted in increased fuel crossover,
which reduces cell performance and accelerates degradation. Mechanical degradation of the membrane
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electrode assemblies can be mitigated through the use of high tensile strength membranes with high
elongation at break [40,41]. Figure 4 and Table 1 show the mechanical properties of the membranes,
such as tensile strength, and elongation at break, estimated by a universal testing machine (UTM) under
room temperature and 45% relative humidity (RH) conditions. It is well known that the incorporation
of inorganic fillers in polymer matrix can enhance the mechanical strength (i.e., tensile strength) by
the reinforcement effect of the fillers, if the fillers are not phase-separated [42,43]. The addition of
PFPE-GO was found to improve the mechanical strength of the SPAES and Nafion membranes. For
example, the tensile strength value of SPAES increased from 60.8 to 72.4 MPa by adding 1.0 wt % of
PFPE-GO and that of Nafion also increased from 14.2 to 30.6 MPa by adding 2.0 wt % of PFPE-GO.
The mechanical reinforcement of the composite membranes can be ascribed to 1) the incorporation
of rigid conjugated carbon units by adding PFPE-GO, and 2) the increase in the stiffness of the
polymer chain, because the PFPE-GO sheets can restrict the stretching of the polymer chain through
the interaction between the oxygen functional groups in GO and the sulfonic acid groups in both
SPAES and Nafion [21,44,45]. Although the tensile strength values of the SPAES/PFPE-GO membranes
are larger than those of the Nafion/PFPE-GO membranes, the reinforcing efficiency of PFPE-GO in
Nafion is better than that in SPAES, due to the better dispersion state of PFPE-GO having perfluoro
moieties. Since the phase separation of the PFPE-GO domains in the polymer matrix can deteriorate
the mechanical properties [12,15,46], the tensile strength of the SPAES/PFPE-GO decreases when
the PFPE-GO content is 2.0 wt %. The dispersion state of PFPE-GO in SPAES matrix was confirmed
by the cross-sectional SEM image of the cryo-fractured SPAES/PFPE-GO membranes (Figure S2).
Meanwhile, the elongation at break values of all the composite membranes are lower than those of
each linear SPAES and Nafion membrane, and the values are decreased with the increase in PFPE-GO
contents, as reported by the other composite membranes containing reinforcing fillers, such as carbon
nanomaterials [20,47,48]. It is generally known that mechanical properties of hydrocarbon-based
PEMs are prone to humidity change, due to their inadequate phase-separated structure between
hydrophilic and hydrophobic domains, compared to the PFSA membranes [9]. Therefore, it is desirable
to confirm the change of mechanical properties under different humidity conditions. The mechanical
properties of SPAES and SPAES/PFPE-GO-1.0, a representative sample of the SPAES-based composite
membranes, were measured using DMA at 50 ◦C and different RH conditions of 50% and 90% RH.
As shown in Figure S3, the difference of both stress and elongation at break between SPAES and
SPAES/PFPE-GO-1.0 membranes is increased by the increase of RH, due to the reinforcing effect of
PFPE-GO and low water absorption behavior of the SPAES/PFPE-GO-1.0 membrane compared to the
SPAES membrane, as described in next section.

Table 1. Mechanical properties, water uptake and swelling ratio of membranes.

Membrane Tensile Strength (MPa) Elongation at Break (%) Water Uptake (%)
Swelling Ratio (%)

∆Area ∆Volume

SPAES 60.8 ± 1.7 27.8 ± 5.1 66.7 32.6 63.0
SPAES/PFPE-GO-0.1 63.6 ± 3.2 27.0 ± 6.7 66.0 27.7 56.2
SPAES/PFPE-GO-0.5 67.2 ± 3.7 23.0 ± 3.5 64.3 27.3 53.0
SPAES/PFPE-GO-1.0 72.4 ± 4.6 18.2 ± 4.2 55.4 21.7 45.7
SPAES/PFPE-GO-2.0 68.4 ± 4.6 9.2 ± 4.7 56.7 24.3 48.6

Nafion 14.2 ± 2.1 67.2 ± 5.3 35.6 25.4 47.1
Nafion/PFPE-GO-0.1 15.1 ± 2.3 65.2 ± 2.5 34.2 23.5 45.0
Nafion/PFPE-GO-0.5 17.4 ± 1.1 53.0 ± 5.5 30.8 21.6 40.1
Nafion/PFPE-GO-1.0 21.4 ± 2.5 43.2 ± 6.7 27.3 17.3 34.8
Nafion/PFPE-GO-2.0 30.6 ± 1.7 30.2 ± 3.4 23.3 15.2 30.2
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3.4. Water Uptake and Dimensional Change

The water absorption and dimensional stability behaviors of the membranes were estimated by
measuring their water uptake and dimensional change after being soaked in deionized water at 30 ◦C
for 24 h, respectively (Table 1). The water uptakes of the SPAES/PFPE-GO and Nafion/PFPE-GO
membranes were found to be lower than those of the linear SPAES and Nafion membranes, respectively,
and the values decreased with the increase in the PFPE-GO content. For example, the water uptake
values of the SPAES/PFPE-GO-0.5 and Nafion/PFPE-GO-0.5 membranes were 64.3% and 30.8%,
respectively, while those of the linear SPAES and Nafion membranes were 66.7% and 35.6%, respectively.
The increase in the PFPE-GO content from 0.1 to 2.0 wt % further decreased the water uptake
values from 66.0% to 55.4% for the SPAES/PFPE-GO membranes and from 34.2 to 23.3% for the
Nafion/PFPE-GO membranes, because the increase in the interfacial area between the polymer matrix
(SPAES or Nafion) and the PFPE-GO having perfluoro polymer chains further restricts the chain motion
and the free volume of polymer for water storage [49]. For example, in the case of SPAES/PFPE-GO,
the entanglement interaction between the flexible perfluoroalkyl chains grafted in PFPE-GO and the
SPAES backbone as well as the interaction between oxygen functional groups in GO and the sulfonic
acid groups in SPAES affect the water absorption behavior [19].

The dimensional change behavior of the membranes is similar to the water absorption behavior,
because it is strongly associated with water content of the membrane [8,50]. Table 1 shows the
dimensional change values of the membranes after being immersed in deionized water at 30 ◦C for
24 h. The SPAES/PFPE-GO and Nafion/PFPE-GO membranes exhibit much improved dimensional
stability and the values were found to be affected by the content of PFPE-GO; the volume change
values of the SPAES/PFPE-GO-0.1 and−1.0 membranes were 56.2% and 45.7%, respectively, and those
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of the Nafion/PFPE-GO-0.1 and −1.0 membranes were 45.0% and 34.8%, respectively, while those
of the linear SPAES and Nafion were 63.0% and 47.1%, respectively. Although the decrement of
the dimensional change and water uptake values of each SPAES/PFPE-GO and Nafion/PFPE-GO
membranes were different because Nafion and SPAES have different polymer structures and
ion exchange capacities, these results clearly indicate that the incorporation of PFPE-GO having
hydrophobic perfluoro chain can effectively suppress the excessive water absorption, and improve
the dimensional stability of both hydrocarbon and PFSA-based PEMs. Oxidative and hydrolytic
stabilities of PEMs are useful parameters that can be estimate the long-term durability of PEMFCs [19].
The oxidative and hydrolytic stabilities of the SPAES/PFPE-GO membranes are also shown in Table S1.

3.5. Proton Conductivity

Figure 5a,b show the proton conductivities of the membranes measured at 80 ◦C under different
RH conditions from 20% to 90%. As the RH increases, the proton conductivity of all the membranes
increases, because the amount of absorbed water by the hydrophilic channels increases [1]. The proton
conductivity values of all the SPAES and Nafion composite membranes were found to be comparable
to, or slightly lower than those of each linear SPAES and Nafion membranes. This is possibly because
the PFPE-GO sheets work as a barrier that can disconnect the hydrophilic channels and consequently
restrict the proton conduction. Although some studies reported that hydrophilic oxygen functional
groups in graphene oxide participate in proton conduction by forming a hydrogen-bonded network
using absorbed water, which increase the proton conductivity [21,51], our composite membranes
exhibit slightly lower proton conductivities because lots of oxygen functional groups in GO were
reduced during the preparation of PFPE-GO, as described in previous part. Therefore, the barrier effect
of the PFPE-GO sheets more dominantly affected the proton transfer through the hydrophilic channels,
even though a small amount of oxygen functional groups remained in PFPE-GO. Others also reported
that reduced graphene oxide and graphene sheets can disconnect the hydrophilic channels of proton
exchange membranes [52–54]. However, the proton conductivity values of the Nafion/PFPE-GO
membranes were found to be almost comparable to those of the Nafion membrane, even though in
high RH conditions (RH 70–95%), as shown in Figure 5b. This result could be ascribed to the combined
effect of good dispersion of PFPE-GO in the Nafion matrix having similar perfluoro structure that
could possibly minimize the barrier effect of the filler by aggregation, and also decrease the dissolution
of ionic concentration of the membranes by preventing excessive swelling in high RH conditions.
Similar proton conducting behavior of the SPAES/PFPE-GO membranes could be observed when the
PFPE-GO content was smaller than 1.0 wt % (Figure 5a). However, when the PFPE-GO content was
larger than 1.0 wt %, the proton conductivity difference between the SPAES and SPAES/PFPE-GO
membranes increase because the PFPE-GO was not effectively dispersed by the phase separation,
which normally deteriorates the membrane properties [12].
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as a function of relative humidity.

4. Conclusions

Sulfonated poly(arylene ether sulfone) (SPAES) and Nafion (a representative ionomer of
perfluorosulfonic acid (PFSA)) composite membranes containing perfluoropolyether grafted graphene
oxide (PFPE-GO) were prepared for polymer electrolyte membrane fuel cell applications. Although the
proton conductivity of the SPAES and Nafion composite membranes are comparable to, or slightly
lower than each linear Nafion and SPAES membrane, due to the combined effect of hydrophobic
nature of PFPE and reduced GO, the incorporation of PFPE-GO having perfluoropolyether groups is
found to be an effective strategy to improve both mechanical strength and dimensional stability of the
membranes. Adding a small amount of PFPE-GO was found to improve the mechanical strength and
dimensional stability of the SPAES/PFPE-GO and Nafion/PFPE-GO composite membranes. This could
be ascribed to the organic (perfluoropolyether) moieties in GO increasing the interfacial interactions
between the fillers and the polymer matrices (SPAES/Nafion), then the homogeneously-dispersed
rigid conjugated carbon units in GOs are able to increase the mechanical strength and dimensional
stability of the membranes. We believe that PFPE-GO was an effective filler material to increase the
interactions with both hydrocarbon and PFSA-based PEMs, to simultaneously improve the mechanical
strength and dimensional stability without much deterioration of their proton conductivity.
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