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Abstract: This article demonstrates that ionizing radiation induces simultaneous crosslinking
and scission in poly(trimethylene carbonate-co-d-lactide) diblock and random copolymers.
Copolymer films were electron-beam (EB) irradiated up to 300 kGy under anaerobic conditions and
subsequently examined by evaluation of their structure (FT-IR, NMR), molecular weight, intrinsic
viscosities, and thermal properties. Radiation chemistry of the copolymers is strongly influenced by
the content of ester linkages of the lactide component. At low lactide content, crosslinking reaction is
the dominant one; however, as the lactide ratio increases, the ester linkages scission becomes more
competent and exceeds the crosslinking. Electron paramagnetic resonance (EPR) measurements
indicate that higher content of amorphous carbonate units in copolymers leads to a reduction in free
radical yield and faster radical decay as compared to lactide-rich compositions. The domination of
scission of ester bonds was confirmed by identifying the radiolytically produced alkoxyl and acetyl
radicals, the latter being more stable due to its conjugated structure.

Keywords: electron beam irradiation; crosslinking; scission; PLA; PTMC; poly(trimethylene
carbonate-co-d-lactide); diblock copolymers; random copolymers; EPR; alkoxyl radicals; acetyl radicals

1. Introduction

Biodegradable polymers are excellent solutions for a wide range of applications, including those
in biomedical and pharmaceutical fields. Among medical polymers, aliphatic polyesters of lactides
and poly(trimethylene carbonate) (PTMC) have been extensively investigated due to their favorable
properties, such as toxicological safety, controlled biodegradability and, if blended or copolymerized,
tailorable mechanical properties [1–3].

Poly(lactic acid) (PLA) is a well-known typical biodegradable and biocompatible polymer,
which is commonly produced from renewable resources [4]. This rigid polymer is utilized in
load-bearing implantable medical devices and drug release matrices. It is investigated towards
applications as disposable primary commodities or environmentally friendly packaging materials [5,6].
Biodegradation of lactides occurs through hydrolysis of ester linkages in the main chain, yielding
naturally occurring lactic acid. Nevertheless, its poor thermal stability and deficient mechanical
properties (high stiffness) limit the area of PLA application [7,8]. To improve heat stability and
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mechanical properties, various methods such as annealing, adding nucleating agents, fillers in form of
fibers or nanoparticles were applied [9–12]. Alternatively, specific chemical and physical treatments
were also applied to introduce crosslinking between PLA macromolecules to alter disadvantageous
properties [13–15].

Opposite to PLA, PTMC is a flexible, biodegradable, and biocompatible synthetic polymer,
showing attractive surface erosion behavior in vivo. Compared to the relatively rigid polyesters
based on glycolide or lactides, materials with lower modulus might have advantageous properties for
medical applications in soft tissue engineering or drug delivery systems [16–18]. However, PTMC has
not been widely used in medical applications, mainly because its unsatisfactory low tensile strength
and creeping tendency that significantly limits its application for other uses. For this reason, TMC
monomer is often used in copolymers with different lactones, for instance to manufacture surgical
sutures, e.g., lactide [19], ε-caprolatone [20], glycolide [21].

Combination of the two components of different properties, the lactide and PTMC, results in a
material more flexible than pure PLA, but with much improved mechanical properties as compared to
PTMC. Therefore, introducing PTMC into PLA through copolymerization, i.e., synthesis of poly(lactic
acid)-co-poly(trimethylene carbonate), becomes an important way to fine-tune important properties of
PLA. Such copolymers may be utilized in variety of current and emerging applications, e.g., resorbable
sutures, long or short term implantable devices, microparticles for drug delivery systems, bone graft
substitutes, etc. [22–25].

Response of the organism to the implanted biodegradable material, besides its assumed
biocompatibility, depends on numerous factors, such as place of implantation and the surrounding
tissue, chemistry of the material, mechanical, morphological, and surface properties of the implant,
mechanism, and kinetics of biodegradation along with metabolism or resorption of degradation
products. One of the important issues in the manufacturing of medical devices is providing sterility.
Several procedures can be employed for sterilization of PLA or PTMC polymers, such as sterilization
with ethylene oxide gas [26], low-temperature plasma, injection molding process, steam [27,28].
On the other hand, radiation processing and the commercially dominating sterilization process by
high-energy radiation have been reported for modification and sterilization of PLA [29–31] and
poly(d-lactic acid) (PDLA)-based composite materials [32], yet with severe restrictions. Because of
high efficiency, excellent penetration characteristics and financial benefits of using ionizing radiation,
radiation sterilization technique is widely applicable and eliminates problems which may appear with
other sterilization methods, such as for instance high temperature, penetration of ethylene oxide gas
or hydrogen peroxide (for cold plasma sterilization method), toxic residuals and need for quarantine
period, surface chemistry change, or non-uniformity of sterilization.

Nevertheless, radiation sterilization of polymers may also be problematic due to the damaging
effects of radiation on some polymeric materials. Radiation can modify the physical and chemical
properties of polymers through main-chain scission and crosslinking. Upon irradiation, free radicals
are formed randomly along polymer chains. They can react with each other or initiate other reactions,
mainly chain scission (degradation). This in turn gives rise to changes in chemistry and material
properties. A recombination of two macroradicals leads to crosslinking, which generally results in
enhancement of physical properties, whereas degradation, manifesting itself by reduction in molecular
weight, typically leads to detrimental changes of mechanical properties. In many polymers both
processes take place simultaneously and the final results of irradiation depend on the ratio of their
efficiencies, which can be quantified as radiation-chemical yields of intermolecular crosslinking and
chain scission, thus chemical changes and yields should be always determined prior to further physical
properties testing [33,34].

The behavior of both PLA and PTMC homopolymers under irradiation is relatively well known.
Poly(lactic acid) has high mechanical strength, but in the pure form, without additives, it cannot be
effectively modified or sterilized using ionizing radiation because it degrades readily while irradiated,
leading subsequently to a polymer of lower molecular weight and lesser properties [35]. There are
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some reports concerning radiation-induced crosslinking of PLA using an added crosslinking agent, for
instance triallyl isocyanurate, but the additive is biologically unsafe [35,36]. PTMC undergoes simultaneous
degradation and cross-linking initiated by radiation, nevertheless the latter process predominates, which
results in an increase in the molecular weight. Therefore, PTMC can be sterilized by radiation technique [37].

Although some data on the effects of electron-beam (EB) irradiation on PLA and its copolymers have
been published [38–40], no studies have been reported so far regarding the effects of radiation on the
properties of PLA-co-PTMC copolymers. In the present work, chemical changes occurring upon irradiation
of diblock and random copolymers of various molar compositions were investigated. Molecular weight,
intrinsic viscosity and thermal properties were examined as a function of electron beam irradiation.
Subsequently, radiation chemical yields of chain scission and crosslinking in copolymers were evaluated,
thus copolymers of compositions and microstructure that are prone to scission or crosslinking were
identified. Yield and decay of radicals formed in irradiated systems were examined as a function of
copolymer molecular structure by electron paramagnetic resonance spectroscopy (EPR).

Ionizing radiation induces several reactions in polymers, of which those leading to main chain
scission and to crosslinking of macromolecules are the most important from the point of view of polymer
physical properties and of its suitability for particular applications. Scission of only a few bonds in the
polymer backbone may cause tremendous alternation of mechanical properties due to reduction of polymer
molecular weight. On the contrary, intermolecular crosslinking results in an increase of molecular weight
of the polymer, therefore one may expect improvement of physical properties of the material. In some
cases, when crosslinking predominates over degradation, a chemical (covalent) gel may be formed and the
polymer becomes insoluble. It is anticipated that modification of physical and chemical properties may be
accompanied by only minor changes in chemical composition of the polymers.

2. Materials and Methods

2.1. Materials and Polymers Synthesis

Homopolymers of PTMC and PDLA were used as reference in physicochemical characterization.
Commercially available poly(-lactic acid) (Dow-Cargill PLLA, Minneapolis, MN, USA, Mn of 79 kg·mol−1)
was used without further purification. For PTMC synthesis polymer-grade 1,3-trimethylene carbonate
(TMC) (Boehringer Ingelheim, Ingelheim am Rhein, Germany) and stannous octoate (SnOct2) (stannous
2-ethylhexanoate) (Sigma, San Jose, CA, USA) were used as received. Poly(trimethylene carbonate) (PTMC)
was synthesized in dried, freshly silanized (Serva solution, Boehringer Ingelheim, Ingelheim am Rhein,
Germany) glass ampoules. The ampoules were purged with dry argon, charged with monomer and
catalyst (2× 10−4 mol SnOct2 per mol TMC), and heat-sealed under vacuum. The polymerizations were
conducted at 130± 1 ◦C for 3 d. The polymers were purified by precipitating their chloroform solutions
into methanol and then dried [2].

For synthesis of copolymers lactide and carbonate were used. Lactide monomer of DLA (Boehringer
Ingelheim, Ingelheim am Rhein, Germany) was crystallized from dry 2-propanol and then purified by
sublimation in vacuum (10−3 mbar, 90 ◦C). TMC (Boehringer Ingelheim, Ingelheim am Rhein, Germany,
>99%) was crystallized from dry tetrahydrofuran/ethyl ether mixture (3/1) and sublimed (10−3 mbar,
45 ◦C). THF (Sigma-Aldrich, Darmstadt, Germany) solvent was purified as described previously [41].
Aluminum tris-isopropoxide (Al(OiPr)3) used in a form of its trimer ({Al[OCH(CH3)2]3}3 was prepared
from the commercial alkoxide (Sigma-Aldrich, Saint Louis, MO, USA, 98%) as described elsewhere [42].
Bidendate ligand, (R)-(−)-2,2′-[1,1′-binaphtyl-2,2′-diylbis(nitrylomethilidyne)] diphenolate (SB(OH)2), was
prepared as described in ref. [43].

Synthesis of copolymers followed the procedure given below [44]. Reacting mixtures were prepared
in sealed glass vessels using a standard high vacuum technique. Breakseals equipped with glass
hammers, which separately contained Al(OiPr)3 and monomers, were sealed in the reaction glass vessel.
Tetrahydrofuran (THF) was distilled into this vessel under vacuum. The SBO2Al-OiPr initiator is formed
in situ from the equimolar quantities of SB(OH)2 and Al(OiPr)3, kept for 24 h in THF as solvent at 80 ◦C
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just before use. The breakseals that contained monomers then were broken and all components were
mixed at room temperature. The resulting reaction mixture was distributed into a several glass vials,
and placed into a thermostat at 80 ◦C. The random copolymers of DLA and TMC were obtained via
simultaneous ring-opening polymerization (ROP) initiated with Al(OiPr)3, with segmental exchange side
reaction. The diblock copolymers were synthetized via sequential ROP in the presence of (R)-SBO2Al-OiPr,
proceeding with suppression of segmental exchange. The resulting copolymers were precipitated into cold
methanol, separated, and dried in vacuum at room temperature to a constant weight.

2.2. Preparation of Samples and Irradiation

The copolymers were dissolved in chloroform at 20 wt % and solutions were drop-casted to form
films of ca. 50 µm thickness. The films were dried to constant weight at room temperature under
vacuum. The film samples were vacuum-sealed in plastic bags making barrier to limit air contact
and irradiated by electron beam (6 MeV linear accelerator) at room temperature. The dose rate was
5 kGy·min−1 (as determined by alanine dosimetry) and the applied absorbed doses were up to 300 kGy.
Alternatively, for EPR investigations, the copolymers were irradiated with an electron beam (7 MeV
linear accelerator) to 30 kGy at the dose rate of 10 kGy·min−1 (determined by alanine dosimetry)
in plastic pouches without air access at dry-ice temperature and transferred to EPR quartz capillary
immediately after irradiation under neutral gas atmosphere (Ar).

2.3. Analytical Procedures

Infrared spectra were obtained on an Nicolet Avatar TM 330 FT-IR Spectrometer (Thermo Electron
Corporation, Waltham, MA, USA) in the HATR mode. Approximately 0.4 ml of 0.1% polymer solution
in chloroform was casted onto the IR transmitting window (80 mm × 10 mm ZnSe plate) to form a
uniform layer. The plates were dried for 24 h to remove traces of solvent before spectra acquisition.
Spectra were collected with a resolution of 4 cm−1 and with 64 scans per sample over the range of
4000–500 cm−1.

The polymer samples were analyzed by proton nuclear magnetic resonance (1H-NMR)
spectroscopy using a 500 MHz Bruker spectrometer (Billerica, MA, USA) with dichloromethane-d2 as
the solvent.

Intrinsic viscosities ([η]) of copolymers were determined in chloroform at 25.0 ◦C with an
AVS-310 automatic viscometry system (Schott Geräte, Mainz, Germany) equipped with a 01/0a
type Ubbelohde viscometer (Schott Geräte, Mainz, Germany). Prior to the analysis, the non-irradiated
samples were filtered through 0.45 µm pore size filters (Sartorius), while the irradiated samples were
analyzed without prior filtration.

Gel permeation chromatography (GPC) measurements were conducted using the system equipped
with a P580 pump (Dionex, Sunnyvale, CA, USA), two columns of 10 µm and 5 µm pore size (Knauer,
Biberach/Baden, Germany) and three detectors: Viscotec Ralls Detector (static light scattering at 90◦ at
a wavelength of 670 nm) and Viscotec Dual Detector 250 (refractometer/viscometer, Houston, TX, USA).
Dichloromethane was used as the eluent at 30 ◦C at a flow rate of 0.8 ml·min−1. Sample concentrations
in the range 5–10 g/L and injection volumes of 100 µL were used. All solutions were filtered prior to
injection into the GPC through 5 µm PTFE membrane filters (Sartorius).

Thermal properties of copolymers were determined by differential scanning calorimetry
(Q200 M-DSC, TA Instruments, New Castle, DE, USA). Samples of ca. 5 mg sealed in aluminum
pans were analyzed in the temperature range from −60 to 210 ◦C at a heating rate of 10 ◦C·min−1

under nitrogen atmosphere. The degree of crystallinity of lactide component (χc) was calculated using
the following formula:

χc =
∆H
∆Ho

(lactide wt %) (1)
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where ∆H is enthalpy of fusion of examined sample, ∆Ho denotes the enthalpy of fusion of
100% crystalline polylactide sample of 93.6 J·g−1 [45]. Correction on cold crystallization was used
whenever necessary.

EPR spectra of free radicals in poly(TMC-co-DLA) copolymers were collected at room temperature
using an ESP300 spectrometer (Bruker Biospin, Billerica, MA, USA) with the following instrument
parameters: microwave frequency of 9.42 GHz, microwave power 0.5 mW, frequency modulation
100 kHz, modulation amplitude 3.12 G, receiver gain 6.32 × 103, center field at 3350 G, sweep width
500 G, conversion time 40.96 ms, and time constant 20.48 ms. It was verified that the modulation
amplitude, as well as the ratio of the conversion time to time constant, did not distort the signal.
The relative concentration of radicals was determined by double integration of signals recorded
directly upon irradiation and after different time. The spin concentration in irradiated samples was
determined following procedures described in [46].

3. Results and Discussion

3.1. Synthesis of Copolymers

A series of diblock and random copolymers of PTMC and PDLA was synthesized according to
procedures described above (for details see Socka et al. [44]). The polymerization was monitored with
NMR and GPC to evaluate the progress and the outcome of the synthesis. Targeted molecular composition
is presented in Table 1 together with actual composition of the obtained copolymers, as determined by
NMR, degree of monomer conversion and average molecular weights evaluated by GPC.

The molecular composition of the copolymers synthesized with high yield was in good agreement
with the targeted one. The microstructure of polymers resulted from simultaneous polymerization
of two monomers, in terms of average lengths of DLA and TMC microblocks revealed average, yet
satisfactorily randomness [44]. Molecular weights of diblock copolymers were of standard level that
can be obtained by sequential polymerization, therefore the anticipated molecular weights of random
copolymers were at similar level.

Table 1. Characteristics of trimethylene carbonate (TMC) and d-lactide (DLA) copolymers used in the study.

Type of Copolymer
TMC Fraction [mol %]

Conv. [%] LDLA
a LTMC

a Mn Mw Mw/Mn
Feed Actual

Poly(TMC-b-DLA) 36 36 98 - - 19 31 1.63
Poly(TMC-b-DLA) 59 59 99 - - 24 47 1.96
Poly(TMC-b-DLA) 81 81 99 - - 18 35 1.94

Poly(TMC-rand-DLA) 59 58 100 13.0 6.6 18 20 1.11
Poly(TMC-rand-DLA) 81 81 100 3.8 14.0 17 19 1.12

a Average length of the LA and TMC microblocks calculated with 13C NMR [44].

3.2. Irradiation Effects on the Structure of Copolymers

To confirm the incorporation of the monomers in the synthesized copolymers, a series of FT-IR
measurements were conducted. FT-IR spectra of PLA and PTMC homopolymers and their copolymers
of various compositions are presented in Figure 1 (black lines). Spectra of PLA are characterized by
bands at 1750 and 1180 cm−1 assigned to carbonyl and ether bonds, respectively [47]. Similarly, the
carbonyl and ether bonds of PTMC are detected at 1741 and 1242 cm−1 [48]. In the spectra of the
poly(TMC-b-DLA) copolymers the vibration of the ether bonds can be seen as two bands at 1184 and
1244 or 1242 cm−1 for copolymers containing 36% and 59% of PTMC, respectively. These bands
correspond to those observed in individual homopolymers. For block copolymer of the highest
PTMC content the band at 1242 cm−1 dominates and the ether band of PDLA cannot be discerned.
Due to the overlapping of the carbonyl bands in both homopolymers, in block copolymers we observe
only one signal at 1744–1748 cm−1. Also, the spectra of random copolymers look similar, with two
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discernible ether bands for 59% PTMC and only one visible for 81% PTMC, and a single carbonyl band
at 1742–1750 cm−1.

Figure 1 shows the FT-IR spectra of the irradiated copolymers and polymers at dose level of
100 kGy. Figure 2, however, shows the FT-IR spectra of the irradiated poly(TMC-rand-DLA) (41/59)
copolymer with e-beam, at dose levels of 10, 25, 50, 200, and 300 kGy. Additionally, comparison
of spectra recorded for the initial sample and samples subjected to EB irradiation up to 300 kGy is
presented in Figure 2 for an example of the random copolymer containing 59% PTMC. The FT-IR
spectra of all irradiated and un-irradiated poly(TMC-b-DLA) and poly(TMC-rand-DLA) copolymers,
and PTMC, PDLA polymers exhibit similar absorption bands up to 300 kGy, demonstrating that
irradiation does not significantly alter their chemical structures.
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Figure 1. FT-IR spectra of PDLA (a), PTMC (b), poly(TMC-b-DLA) diblock copolymers of different 

PTMC content ((c)-36%, (d)-59%, (e)-81%) and poly(TMC-rand-DLA) random copolymers of different 

PTMC content ((f)-59%, (g)-81%) before irradiation (black and lower lines) and after irradiation at 

100 kGy (red and upper lines). 

Figure 1. FT-IR spectra of PDLA (a), PTMC (b), poly(TMC-b-DLA) diblock copolymers of different
PTMC content ((c)-36%, (d)-59%, (e)-81%) and poly(TMC-rand-DLA) random copolymers of different
PTMC content ((f)-59%, (g)-81%) before irradiation (black and lower lines) and after irradiation at
100 kGy (red and upper lines).
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Figure 2. FT-IR spectra of poly(TMC-rand-DLA) (59/41) copolymers after irradiation at 0–300 kGy.

1H NMR spectrum of the exemplary block copolymer poly(TMC-b-DLA) 59/41 is shown in
Figure 3. The spectrum is characterized by typical signals of PDLA main chain methine protons
at 5.12 ppm (–CH–), main chain methyl protons at 1.6 ppm (–CH3), PTMC main chain methylene
protons adjacent to the carbonate group at δ 4.22 (–CH2–CO–) and PTMC main chain methylene
protons at δ = 2.03 (quintet, –CH2–). The minor but well-defined signal at about 1.29 ppm
corresponds to the tail-end-initiator residue (-CH(CH3)2). Figure 3 shows the 1H NMR spectra for
irradiated poly(TMC-b-DLA) 59/41 with 300 kGy. The NMR spectra of all copolymers irradiated and
un-irradiated exhibit similar bands (data not presented here). Similarly, to the FT-IR results, the 1H
NMR results also demonstrated that there are no significant changes in the chemical structures of the
irradiated and un-irradiated homo- and copolymers. Irradiation with a sterilization dose (25 kGy)
does not influence the structure of the polymers to an extent which would compromise their chemistry.
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Figure 3. 1H NMR spectra of the poly(TMC-b-DLA) 59/41 diblock copolymer, unirradiated and
irradiated with a dose of 300 kGy.

3.3. Intrinsic Viscosity

In this work intrinsic viscosity measurements were carried out to qualitatively investigate
the presence and the absence of the crosslinking and degradation reactions in the homo- and
copolymers as a function of dose. Figure 4 shows PTMC’s [η] increases sharply with increasing
dose. These data demonstrate that in the case of homopolymers, PTMC undergo mainly crosslinking
reactions. On the other hand, radiation induces degradation in PDLA. In the case of copolymers,
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however, crosslinking and scissions take place as a function of their compositions. Figure 4 also shows
that the copolymers which contain 36% and 59% poly(TMC-b-DLA) undergo degradation. On the
contrary, 81% poly(TMC-rand-DLA) undergoes crosslinking as evidenced by the increase in the [η]
Slight increase in [η] can also be detected in the 81% poly(TMC-b-DLA).
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3.4. Molecular Weight

The initial molecular weights of the synthesized copolymers were relatively low, in the order
of a few tens of kDa, as compared to the homopolymers. It should be mentioned, that the main
radiation-induced effects in polymers irradiated in solid state are not dependent on the molecular
weight, except for short oligomers where end-groups comprise significant part of the main chain [34].
Tables 2–4 show number- and weight-average molecular weights of unirradiated and irradiated
homopolymers and copolymers.

As demonstrated earlier by viscosity measurements, radiation-induced degradation is predominant
for PDLA, while crosslinking reaction mainly takes place in PTMC. Copolymers of high PDLA content
poly(TMC-b-DLA) (35/65), poly(TMC-b-DLA) (59/41) and poly(TMC-rand-DLA) (59/41)) undergo
degradation. These results show that molecular weight dispersion (Mw/Mn) increases in all cases. While for
the random copolymer it does not exceed 2, it becomes higher than 2 for the block copolymers. Should only
random scissions take place in these samples, one would expect that (Mw/Mn) would approach value
of 2 [49], but not to exceed this value. The observed increase of Mw/Mn higher than 2 indicates that
scissions are accompanied by less probable crosslinking reactions, which leads to significant broadening of
molecular weight distribution. Since Mw/Mn does not exceed 2 in the dose range of 10–300 kGy, it is still
not clear, if poly(TMC-rand-DLA) (59/41) scission and crosslinking occur simultaneously.

An increase in the average molecular weight is observed for both copolymers of the highest PTMC
content — poly(TMC-b-DLA) (81/19) and poly(TMC-rand-DLA) (81/19). Similar to the viscosity results,
a relative increase in molecular weights is higher for the random copolymer.

Attention should be paid to the effects of irradiation with the dose of 25 kGy which is regarded as
typical sterilization dose. While it is evident that application of radiation as a sterilization method of
biomaterials and medical devices comprising pure polylactides or copolymers containing a majority
of polylactides is rather unfeasible, it is demonstrated that poly(TMC-co-DLA)copolymers of high
PTMC content do not degrade or even can be crosslinked by electron beam when irradiated with
25 kGy and higher doses. In irradiated copolymers intermolecular crosslinking and chain scission
occur simultaneously, however the crosslinking of PTMC segments or monomer units dominates at
high PTMC content. The observed effect of increase in molecular weight for PTMC-rich copolymer
resembles, but it is not that pronounced, that occurring in PTMC homopolymer. In the case of
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neat PTMC an increase in molecular weight eventually leads to formation of insoluble fraction.
Macromolecules become chemically crosslinked to form stable gel, which in turn enhances mechanical
properties of materials based on PTMC [37]. It is anticipated that lactide biomaterials can withstand
radiation sterilization when combined with crosslinking-type co-component. As compared to blending
of two polymers, copolymerization seems to be better solution to obtain mixture at molecular level.

Table 2. Number-average and weight-average molecular weights [kg·mol−1] and molecular weight
dispersion of PTMC and PDLA homopolymers as a function of dose.

Dose [kGy]
PTMC PLA

Mn Mw Mw/Mn Mn Mw Mw/Mn

0 108.9 270 2.48 215 260 1.21
10 124.4 260 2.09 - - -
25 136.5 277 2.03 90 105 1.17
50 142.6 290 2.03 62 96 1.55

100 162.3 308 1.90 45 70 1.56
200 202.5 336 1.66 30 68 2.27

Table 3. Number-average and weight-average molecular weights [kg·mol−1] and molecular weight
dispersion of poly(TMC-b-DLA) diblock copolymers of various composition (in mol %).

Dose [kGy]

Poly(TMC-b-DLA)

81/19 59/41 36/64

Mn Mw Mw/Mn Mn Mw Mw/Mn Mn Mw Mw/Mn

0 19 31 1.63 24 47 1.96 18 35 1.94
10 - - - 23 45 1.96 17 32 1.88
25 30 56 1.87 21 44 2.10 15 31 2.07
50 28 43 1.54 18 37 2.06 14 30 2.14
100 29 41 1.41 16 39 2.44 12 27 2.25
200 50 78 1.56 13 29 2.23 9 19 2.11
300 65 82 1.26 10 23 2.30 7 19 2.71

Table 4. Number-average and weight-average molecular weights [kg·mol−1] and molecular weight
dispersion of poly(TMC-rand-DLA) random copolymers, of various composition (in mol %).

Dose [kGy]

Poly(TMC-rand-DLA)

81/19 59/41

Mn Mw Mw/Mn Mn Mw Mw/Mn

0 18 20 1.11 17 19 1.12
10 19 21 1.11 14 16 1.14
25 - - - 12 15 1.25
50 28 30 1.07 12 15 1.25

100 31 35 1.13 10 13 1.30
200 39 46 1.18 7 10 1.43
300 43 49 1.14 6 9 1.50

To characterize crosslinking and scission processes occurring in the irradiated polymers, the
respective radiation-chemical yields were determined. These important parameters of radiation
sensitivity of a particular polymer, radiation chemical yields of chain scission Gs and intermolecular
cross-linking Gx, are defined as the number of moles of scission events or formed crosslinks per
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unit of absorbed energy. In the polymeric systems where chain scission and crosslinking take place
simultaneously, radiation yields can be calculated from the following equations [50]

1
Mw

=
1

Mw0
+ (

Gs

2
− 2Gx)·D (2)

1
Mn

=
1

Mn0
+ (Gs − Gx)·D (3)

where: Mw0 and Mn0 are the initial weight- and number-average molecular weights of the polymer, Mw

and Mn are the weight- and number-average molecular weights of irradiated samples (all in kg/mol),
D is the absorbed dose, Gx is the yield of crosslinking, Gs is the yield of chain scission (both in mol·J−1).
While Equation (3) can be used for any molecular-weight distribution of the initial samples, Equation (2) is
strictly true only if Mw0/Mn0 = 2. Since this condition is not fulfilled for majority of our samples, we limit
the analysis to calculating the value of Gx-Gs, which can be taken as an indication whether in the polymeric
system subjected to irradiation crosslinking predominates over scission. The results for homopolymers
and poly(TMC-co-DLA) copolymers are illustrated in Figure 5. The dominance of crosslinking over chain
scission reactions in irradiated samples of copolymers containing higher content of the carbonate blocks is
ascertained. The average Gx-Gs values, the difference of radiation yields of cross-linking and scission, for
PTMC-rich (81 mol %) copolymers were calculated to be 0.27× 107 mol·J−1 and 0.22× 10−7 mol·J−1,
respectively, for diblock and random copolymers, whereas for the PTMC homopolymer the yields
difference was over 0.35 × 10−7 mol·J−1 within investigated absorbed dose range. The average Gx-Gs

values for copolymers with lower content of PTMC, 59 mol %, are negative, and were determined to
be −0.21 × 10−7 mol·J−1 and −0.26 × 10−7 mol·J−1 for diblock and random copolymers, respectively.
Naturally, they are still somewhat higher than that obtained for neat PLA, −0.32 × 10−7 mol·J−1, since
crosslinking is minor for poly(lactic acid).
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Figure 5. Difference radiation yields of crosslinking and scission (Gx-Gs) for homo- and co-polymers of
PTMC and PDLA as a function of dose.

3.5. Thermal Properties

DSC heating thermograms of neat PDLA and PTMC and their copolymers with different content
of monomers are shown in Figure 6, the first heating, and Figure 7 the second heating, respectively.
Two heat effects at temperatures corresponding to the glass transition temperature (Tg) and melting
temperature (Tm) can be observed the PDLA and block copolymers. PTMC homopolymer and random
copolymer of 81/19 are amorphous, whereas that of 59/41 molar composition displays some crystalline
phase. Depending on the composition, the glass transition temperatures of the copolymers vary
between the Tg of PTMC (approximately −21 ◦C) [41] and the Tg of PDLA (approximately 61 ◦C) [51].
Glass transition of both blocks is observed in the first heating thermograms at temperatures of ca.
−19 ÷ −13 ◦C for PTMC segments and at temperatures of 45–50 ◦C for PDLA segments, (Figure 6
black line). The Tg of both segments slightly increased with an increase in lactide content. In random
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copolymer of the molar percentage ratio poly(TMC-rand-DLA) 59/41 two glass transitions at −6.3 and
44.5 ◦C were also detected, but for poly(TMC-rand-DLA) (81/19) only a single glass transition was
observed at −8.8 ◦C. Lower randomness of 59/41 copolymer (0.19; in the scale where 0 is block and
1 is fully random copolymer) resulted in occurrence of two glass transitions representing separated
phases of PTMC and PDLA segments [44]. The randomness of the copolymer chain has a value of 0 in
the case of block copolymer and 1 in the case of a completely random distribution of the copolymer
repeating units.

Concerning the second heating the only one Tg transition for all the copolymers (Figure 7) was
detected. It relates to stresses generated due to difference in thermal expansion of both constituents.
The first heating thermograms for the diblock and random copolymers shows only one endothermal
transition of melting (at Tm), whereas second heating of the diblock copolymer thermogram shows,
along with melting, additional cold crystallization (at Tc). Cold crystallization is an exothermic
crystallization process. It is observed on heating a sample that has previously been cooled very quickly
and has had no time to crystallize. Below the glass transition, molecular mobility is severely restricted
and cold crystallization does not occur; above the glass transition, small crystallites are formed at
relatively low temperatures. Depending of the composition of copolymers a heat transfer resulting
from melting of the PDLA indicates its crystalline phase. Detailed comparison of thermal parameters
for copolymers of PTMC and PDLA was presented in our previous work [44].

Thermograms of the irradiated diblock copolymers (red lines in Figures 6 and 7 for first and
second heating, respectively) show some difference in shapes of the peaks related to their melting
temperatures. However, there is no alternation of the shapes of the random copolymers thermograms.
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Figure 7. DSC second heating thermograms of homopolymers (a), diblock copolymers (b) and random
copolymers (c) with different content of comonomers TMC/DLA.

The data in Figure 8 show the glass transition temperature (Tg) of diblock and random copolymers
of various compositions irradiated to doses of up to 300 kGy. A general observation is that after
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irradiation all glass transitions exist at very similar level as for non-irradiated samples. Tg of TMC
component in either block and random copolymers does not change after irradiation. Even if the
transition point of the non-irradiated random copolymers is shifted towards higher temperatures
due to presence of the co-component segments, it remains at the same level. The observation is
consistent with the literature data for neat PTMC for which Tg is constant through wide range of
absorbed doses [37]. Degradation of lactide blocks or segments however, does not result in reduction
of glass transition temperature of the PDLA component, as could be expected. It was reported that
extensive degradation of the PLA is reflected in the decrease in the Tg [40]. This may happen if ability
of segmental motion is altered due to extensive degradation — short chains formation and creation of
end-groups in large number, thus disruption of polymer chemistry. Apparently, in the present case
the degradation of already relatively short lactide chains does not change the lability of segments.
This is partially related to presence of the carbonate component that absorbs a part of energy which is
proportional to its weight fraction.
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Figure 8. Glass transition temperature of PDLA and PTMC as a function of radiation dose; (a) diblock
and (b) random copolymers.

PDLA is an intrinsically semicrystalline polymer which exhibits a melting peak at 170–195 ◦C [52]
depending on its isomeric purity, thus it was expected that its block copolymers would be also
semicrystalline. A continuous decrease in melting temperature of PLA segments with respect to
increasing radiation dose is due to polylactide degradation. The effect is strong and visible in the
first and second heating scans (Figure 9). It is preceded by the cold crystallization in the latter case
(longer chains of lactide blocks crystallize at lower temperature — lower temperature (lesser energy) is
required to re-orientate the shorter chains). Shorter chains possess better movement ability, therefore
partially degraded PLA can adjust into ordered configuration earlier, that is at lower temperature while
heating over the Tg. Even over 5 ◦C decrease in the Tm was recorded for samples irradiated with a
relatively high dose of 300 kGy. However, up to ca. 50 kGy the Tm remains unchanged, showing that a
specific quantity of chains which are degraded is required to result in Tm decrease. One may expect that
plastification effect of newly created shorter chains plays its role, even though it is not demonstrated in
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the alternation of the Tg. Random copolymer of the higher lactide content (59/41 TMC/DLA) also
exhibited presence of regular segmental arrangement, with relatively low Tm of ca. 126 ◦C which was
further decreasing of about 4 degrees after irradiation with the highest applied dose.Polymers 2018, 10, x FOR PEER REVIEW  13 of 21 
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Figure 9. Melting temperature of diblock (a) and random (b) copolymers as a function of absorbed dose.

The crystallization ability of these DLA-based copolymers is affected by DLA content and its
average sequence length; however, this does not change with dose as identified in the first heating.
Figure 10 shows heat of fusion related to melting of crystalline phase of the lactide, which in the case
of block copolymers is preceded by cold crystallization. Exothermic peak of cold crystallization was
not observed for random copolymers of 59/41 TMC/DLA. Surprisingly, the degree of crystallinity, as
represented only by the DLA fraction, does not change significantly with even high absorbed dose.
It is known that poly(lactic acid) slightly increases its degree of crystallinity upon irradiation [30].
Degradation usually facilitates crystallization to larger extent because of easier organization of shorter
chains. In the copolymer with flexible segments as provided by TMC, crystallization of DLA part is
intrinsically high — of ca. 50–65%, thus appearance of shorter chains does not further increase the χc.

For diblock copolymers with 81% TMC a slight increase in the degree of crystallinity was detected
during first heating (Figure 11). The initial increase in degree of crystallinity is due to the re-orientation
of the shorter chains of PDLA. In the case of a diblock copolymer with 59% PTMC it was found that
the degree of crystallinity does not change at initial radiation doses, then over 50 kGy a slight decrease
was observed.

The DSC measurements demonstrated that, even while degradation and crosslinking occur in
the copolymers, the overall thermal properties are controlled rather by the molar composition and
microstructure of copolymers but not by the irradiation.
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3.6. Radiolytically Produced Free Radicals

Based on the chemical structure of the poly(TMC-b-DLA), it is expected that ionizing radiation
induces ester bonds scission giving rise to alkoxyl and acetyl radicals, and simultaneously the alkyl
radicals are formed in the PTMC segments, as shown below (Figure 12).
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3.6. Radiolytically Produced Free Radicals 

Based on the chemical structure of the poly(TMC-b-DLA), it is expected that ionizing radiation 

induces ester bonds scission giving rise to alkoxyl and acetyl radicals, and simultaneously the alkyl 

radicals are formed in the PTMC segments, as shown below (Figure 12). 
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As demonstrated in Figure 12, while the probability of the ester bonds scission is proportional
to the DLA component with the production of alkoxyl and alkyl radicals, the cleavage of C–H bonds
along the backbone of the chains becomes more prevailing as the TMC component increases.

The EPR spectra of the irradiated diblock and random copolymers are presented in Figure 13
together with the spectrum obtained for PLA homopolymer. In every case, these samples were
irradiated with electron beam at total dose of 30 kGy, in the absence of oxygen and in the presence of
dry ice (−78.5 ◦C). PTMC homopolymer displayed no measurable spectra, since at room temperature
radical created upon irradiation decayed immediately in this amorphous polymer. The time evolution
of the spectra of the irradiated diblock copolymers poly(TMC-b-DLA) with TMC/DLA 36/64 and
TMC/DLA 81/19 are shown in Figure 14 respectively. The changes of the spectra were monitored in
the absence of oxygen and at room temperature. It is clear that the EPR spectra of TMC/DLA 36/64 and
TMC/DLA 81/19, which were measured immediately after irradiation, are different. For TMC/DLA
36/64, where the formation of the alkoxyl is relatively high as a result of the cleavage of the ether
bonds in the lactide, the EPR spectra of the irradiated samples exhibit spectrum very similar to the
alkoxyl radical [53]. The hyperfine splitting of the EPR spectrum can be calculated by the following
general formula: (2M1I1 + 1) = number of the signals, where M is the number of the adjacent H atoms,
and I is spin 1 = 1/2 [54].
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Figure 13. EPR spectra of diblock and random copolymers of various compositions irradiated by EB to
dose of 30 kGy at dry ice temperature and recorded at room temperature immediately after irradiation.
Spectrum of PLA radicals is shown for comparison.
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36/64 irradiated by EB to dose of 30 kGy at dry ice temperature.

As expected, the EPR spectrum of the irradiated block copolymers TMC/DLA 36/64, exhibit
singlet, which attributes to the acetyl radical, and a doublet, which can be assigned to the alkoxyl
radical. It is well known that, similar to the peroxyl radical, alkoxyl radical EPR signals are relatively
week, and very broad. Other contributing factor resides in the fact that alkoxyl radicals undergo
relative fast decay via abstraction of H-atoms from the neighboring chains producing hydroxide and
alkyl radicals as follows, as presented in Figure 15.
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The EPR spectra of the irradiated TMC/DLA 81/19 are shown in Figure 14. Since the TMC
content is very high, as mentioned, it is expected that the EPR spectrum present sextet for the alkyl
radical in the TMC segment, similar to the free radical in polyethylene, in addition to the contribution
from alkoxyl radicals. However, the spectrum, which was measured immediately after irradiation,
exhibits a weak quadruplet, in addition to the singlet of the acetyl, and very weak doublet of the
alkoxyl radical. The exhibit of the weak quadruplet rather than sextet may be contributed to the
fast transformation of the TMC-located alkyl to allyl radicals [55,56]. Another contribution to the
quadruplet may be the tertiary alkyl radical located at the PLA segment (which is known to be formed
in PLA homopolymer [55]). The weakness of the quadruplet may also contribute to the fact that alkyl
radical undergoes bimolecular crosslinking — as explained earlier, and disproportionation reactions.
As also shown in Figure 15 the evidence of the crosslinking and disproportionation can be seen in the
relatively fast disappearance of the quadruplet.

It should also be mentioned that, as expected, the singlet of the acetyl radical stays relatively
stable in comparison with the other free radicals. The relative stability of acetyl radical can clearly be
explained by the presence of conjugated system. The presence of the carbonyl system C=O on the
same C atom of the free radical provides an excellent conjugated system that decreases the density
of the negativity leading to less reactive free radicals. However, the main factor of the stability of the
acetyl and alkoxyl radicals is that they are in the DLA component, which is the crystal part of the
TMC-DLA copolymer.

Figure 16 shows the effects of the copolymers composition and the microstructure the on the
immediate free radical concentration. As the DLA/TMC ratio increases, the immediate free radical
concentration, in number of spin per gram, increases. This is clearly related to the content of ester
linkages, since DLA contains in its chemical structure more ester groups than TMC, and to the increase
in crystalline fraction.

The overall decays of theses free radicals were monitored as a function of time and the DLA/TMC
ratios. The inset in Figure 16 shows the second order decay of these radiolytically produced free radical
— the predominant second order decay fits. It is very well accepted that in the absence of oxygen,
the radiolytically produced alkyl radicals undergo second order crosslinking reactions [55]. It should
also be mentioned that these observed second order decays may very well include pseudo-first order
component from the abstraction of H atoms along the backbone of the chain by the alkoxyl radicals
leading to the formation of alkyl radicals and hydroxide. This may explain the reason for some
deviations from the straight lines of these second order fits (Figure 16).

In the random copolymer a spectrum resembling that for PLA homopolymer was recorded
(Figure 13). Since the random copolymer forms crystalline phase (as explained earlier [44]) it can
contain trapped radicals at room temperature. Nevertheless, the number of radicals is relatively low
(despite that the DLA mass content is 42%), lower than for block copolymer with only 19% DLA.
Obviously the most stable radicals remain, and they decay slower than those in the block copolymer
(Figure 16). Second order kinetics is predominant, but there may be still a fraction of faster decaying
radicals since there is some initial deviation from the perfect second order fit. Those stable radicals may
be diverse. H abstraction from methine groups located in the PLA units of the polymer chain creates
tertiary alkyl radicals •C(CH3)– (stable quartet) that, as in PLA homopolymer, decay slowly under
vacuum because the carbonyl function assists in stabilization of the fragment [57]. Some relatively well
stabilized allyl radicals may also be formed in the TMC units (see above) and contribute to the quartet
signal. Alkoxyl and acetyl radicals, as the result of ester linkages scission, same as in block copolymers,
are present as well. This corresponds well with the thermal characteristics of the irradiated samples,
i.e., melting temperature of lactide crystallites was considerably decreasing with irradiation (Figure 9)
that evidenced degradation of the DLA component.
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Figure 16. Free radical concentration and decay fitted to second order kinetics (inset) of diblock and
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room temperature. Irradiation and measurement without under protective gas.

4. Conclusions

The results of this study demonstrate that the radiation chemistry of the trimethylene-lactide
copolymers strongly depends on the presence of ester linkages, and therefore on the TMC/DLA ratio
of this copolymer. It is concluded from the results of all techniques used in this study that as the ester
group content increases, the probability of copolymers degradation increases. Only in copolymers
with lowest ester linkage number, i.e., at the highest TMC content, the yield of crosslinking surpasses
the yield of scission, likewise in the carbonate homopolymers.

EPR studies on irradiated poly(TMC-b-DLA) block and random copolymers indicate that the
presence of amorphous polycarbonate units leads to the decrease of the radiolytic yield of radicals.
The complex EPR spectra show the production of alkoxyl and acetyl radicals because of ester linkages
scission. Because ester linkages scission occurs in mostly crystalline region, since DLA forms ordered
structure, as demonstrated by DSC experiments, one would expect the remarkable stability of both
alkoxyl and the acetyl radicals. In addition, the conjugated system in the acetyl radical enhances the
stability of this radical. Moreover, the production of alkyl radicals at TMC segments were expected,
which becomes the dominant reaction at high TMC content. However, the EPR spectra did not
show a sextet of the alkyl radical as expected. Instead, the EPR spectra show weak quadruplet
suggesting the formation of the allyl radicals in the TMC segments and tertiary alkyl radicals in the
PLA units. Therefore, one can conclude that the initially formed secondary alkyl radicals in TMC
fragments undergo relatively fast decay, e.g., recombination or crosslinking reactions and unimolecular
transformation to allyl radicals.

Radiation causes essentially no significant changes in the functional groups of the copolymers,
especially at a relatively low dose as typically applied for sterilization. Even though the chemical
composition is not altered, irradiation induces pronounced changes in the properties of the
poly(TMC-co-DLA) copolymers due to the increase or decrease of molecular weight, depending
on the monomer ratio. Practical implications may be that, through copolymerizing the lactide with
TMC segments, it is possible not only to modify the properties of rigid PLA, but also to introduce
certain resistance of this radiation-degradable polymer against destructive action of ionizing radiation.
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