Enzymatic degradation of poly(butylene succinate) copolyesters synthesized with the use of *Candida antarctica* lipase B

Aleksandra Wcisłek¹, Agueda Sonseca Olalla^{1,2}, Andrew McClain³, Agnieszka Piegat¹, Peter Sobolewski¹, Judit Puskas³, Miroslawa El Fray^{1,*}

- ¹ West Pomeranian University of Technology, Szczecin, Faculty of Chemical Technology and Engineering, Functional Materials and Biomaterials, Al. Piastow 45, 71-311 Szczecin, Poland
- ² Instituto de Ciencia y Tecnología de Polímeros, ICTP-CSIC, Calle Juan de la Cierva 3, 28006, Madrid,

Spain

³ Department of Chemical and Biomolecular Engineering, The University of Akron, Akron, OH, 44325, USA

Supplementary Materials

Table of contents:

- SI.1 ¹H NMR analysis
- SI.2 ¹³C NMR analysis

SI.1 ¹H NMR analysis

	Monomer	Proton	ppm	Number of H [n]	Integral [I]
PBS:DLS 70:30	DS	С	2.6	4	120
	BD	b	1.7	4	110
	DLA-OH	f+h	1.25	52	148
PBS:DLS 50:50	DS	С	2.6	4	269
	BD	b	1.7	4	217
	DLA-OH	f+h	1.25	52	648

Table SI.1. Characteristic ¹H NMR signals used for PBS-DLS 70:30 and 50:50 copolymers calculations

• From Table SI.1 experimental molar % of DS, BD and DLA-OH can be calculated from equations (SI 1-3):

$$(SI 1) [Molar \% DS] = \frac{\frac{l_{2.6}}{n_{2.6}}}{\frac{l_{2.6}}{n_{2.6}} + \frac{l_{1.25}}{n_{1.25}} + \frac{l_{1.7}}{n_{1.7}}}; (SI 2) [Molar \% BD] = \frac{\frac{l_{1.7}}{n_{1.7}}}{\frac{l_{2.6} + n_{1.25} + \frac{l_{1.7}}{n_{1.7}}}{n_{2.6} + n_{1.25} + \frac{l_{1.7}}{n_{1.7}}}; (SI 3) [Molar \% DLA - OH] = \frac{\frac{l_{1.25}}{n_{1.25} + \frac{l_{1.7}}{n_{1.25}}}}{\frac{l_{2.6} + l_{1.25} + l_{1.7}}{n_{2.6} + n_{1.25} + \frac{l_{1.7}}{n_{1.7}}}; (SI 3) [Molar \% DLA - OH] = \frac{\frac{l_{1.25}}{n_{1.25} + l_{1.7}}}{\frac{l_{2.6} + l_{1.25} + l_{1.7}}{n_{1.25} + \frac{l_{1.7}}{n_{1.7}}}; (SI 3) [Molar \% DLA - OH] = \frac{\frac{l_{1.25}}{n_{1.25} + l_{1.7}}}{\frac{l_{1.25} + l_{1.7}}{n_{1.25} + \frac{l_{1.7}}{n_{1.7}}}; (SI 3) [Molar \% DLA - OH] = \frac{\frac{l_{1.25}}{n_{1.25} + l_{1.7}}}{\frac{l_{1.25} + l_{1.7}}{n_{1.5} + \frac{l_{1.7}}{n_{1.5}}}; (SI 3) [Molar \% DLA - OH] = \frac{\frac{l_{1.25}}{n_{1.25} + l_{1.7}}}{\frac{l_{1.25} + l_{1.7}}{n_{1.25} + l_{1.7}}}; (SI 3) [Molar \% DLA - OH] = \frac{\frac{l_{1.25}}{n_{1.25} + l_{1.7}}}$$

were Molar % DS, Molar% BD and Molar % DLA-OH are related to the experimental molar content of the succinate, butanediol and dilinoleic units on a PBS:DLS copolymer.

• In addition, Mn can be approximately calculated with equation (SI 4):

(SI 4)
$$[DP_{n+m}] = \frac{\frac{l_{2.6} + l_{1.7} + l_{1.25}}{n_{2.6} + n_{1.7} + n_{1.25}}}{\frac{l_{3.68}}{n_{3.68}}}$$

were I_{3.68} and n_{3.68} are the integral and the number of protons of the CH₂ close to the OH end group, respectively.

•The DP of DS, BD and DLA-OH can be calculated taking into account the molar amount previously obtained with equation (SI 5):

(SI 5)
$$[DP_n] = \frac{DP_{n+m} \cdot (Molar \ \% \ DS + Molar \ \% \ BD)}{100}; \ [DP_m] = DP_{n+m} - DP_m$$

• M_n is obtained taking into account the *DP*, *Molar* % and the *Molar mass* of a hard segment composed by all the BD-DS units and a soft segment containing only DLA-OH as shown in equation (SI 6):

(SI 6)
$$[M_n] = (DP_n \cdot Molar mass_{BD-DS}) + (DP_{n+m} \cdot Molar mass_{DLA-OH})$$

were *Molar mass_{BD-DS}* is 172 g/mol and *Molar mass_{DLA-OH}* is 538 g/mol.

•Finally, the experimental molar and weight % of hard and soft segments can be calculated as follows with equations (SI 7-10):

(SI 7)
$$[Molar \% HS] = \frac{\frac{l_{1.7}}{n_{1.7}}}{\frac{l_{1.25}}{n_{1.25}} n_{1.7}} x100;$$
 (SI 8) $[Molar \% SS] = 100 - Molar \% HS$

$$(SI 9) [Weight \% HS] = \frac{Molar \% HS \cdot Molar mass_{HS}}{Molar \% HS \cdot Molar mass_{HS} + (100 - Molar \% HS) \cdot Molar mass_{SS}} x100$$

	^a Molar % BD:DS:DLA-OH	^b Molar % BD:DS:DLA-OH	Molar % HS:SS	^d Molar % HS:SS	eWeight % HS:SS	fWeight % HS:SS	⁵Mn (g/mol)
PBS:DLS 70:30	45:50:5	45:50:5	90:10	91:9	70:30	73:27	11590
PBS:DLS 50:50	50:39:11	50:41:9	79:21	82:18	50:50	55:45	27440

Table SI.2. Theoretical Molar % and Weight % comparison with experimental values for PBS:DLS 70:30 and 50:50

^aInitial and ^bexperimental (determined by ¹H NMR) feed molar ratio of monomers. ^cInitial and ^dexperimental (determined by ¹H NMR) feed molar ratio between hard (HS) to soft segments (SS). ^eInitial and ^fexperimental (determined by ¹H NMR) feed weight ratio between hard (HS) to soft segments (SS). ^gDetermined by ¹H NMR.

SI.2 ¹³C-NMR analysis

Figure S1. ¹³C NMR of poly(butylene succinate-co-dilinoleic succinate) 70:30 copolyester.

Enzyme-catalyzed poly(butylene succinate-co-dilinoleic succinate) (PBS:DLS) 70:30 and 50:50 copolymers (¹³C-NMR, CDCl₃, δ): 172.2 ppm (l; -CO-CH₂-CH₂-CO-, from DS), 64.3 ppm (a; -O-CH₂-CH

Figure S2. ¹³C NMR regions showing DLA-OH peaks and BD and DS end-groups. Left, poly(butylene succinate-co-dilinoleic succinate) 70:30. Right, poly(butylene succinate-co-dilinoleic succinate) 50:50.

Low intensity resonances ascribed to BD end-groups at 65 ppm (a2; HO-CH2-CH2-CH2-CH2-CH2-O-) and 62.3 ppm (a1; HO-CH2-CH2-CH2-CH2-O-); low intensity resonances ascribed to ester end-groups from DS at 14.2 ppm (k; CH3-CH2-O-CO-), 29.16 (c1; CH3-CH2-O-CO-CH2-) and 172.3 (l1; CH3-CH2-O-CO-). No end groups related to DLA-OH (CH2-CH2-OH) at 32.8 ppm and 63.0 ppm respectively were visible. In addition, a new resonance at 28.7 ppm (d; -O-CH2-CH2-CH2-) confirms the reaction of DLA-OH with DS

corroborating the structure proposed on the ¹H NMR analysis. In addition, the split of the carbonyl carbon peak at 172.3 ppm is related to the different environments due to a DS unit linked either to BD or DLA-OH on both sides, or BD on one side and DLA-OH on the other side.