Supplementary Materials for

Structural manipulation of the conjugated phenyl moiety in 3phenylbenzofulvene monomers: effects on spontaneous polymerization

Marco Paolino, ${ }^{*, a}$ Giorgio Grisci, ${ }^{\text {a }}$ Annalisa Reale, ${ }^{a}$ Vincenzo Razzano, ${ }^{a}$ Germano Giuliani, ${ }^{\text {a }}$ Alessandro Donati, ${ }^{\text {a }}$ Raniero Mendichi, ${ }^{\text {b }}$ Daniele Piovani, ${ }^{\text {b }}$ Antonella C. Boccia, ${ }^{\text {b }}$ Alessandro Grillo, ${ }^{a}$ Gianluca Giorgi, ${ }^{\text {a }}$ Andrea Cappelli. ${ }^{*, a}$

${ }^{\text {a }}$ Dipartimento di Biotecnologie, Chimica e Farmacia (Dipartimento di Eccellenza 2018-2022), Università degli Studi di Siena, Via Aldo Moro 2, 53100 Siena, Italy
${ }^{\text {b }}$ Istituto per lo Studio delle Macromolecole (CNR), Via E. Bassini 15, 20133 Milano, Italy

Synthesis.

The synthesis of compounds $\mathbf{2 g}, \mathbf{5 g}$, and $\mathbf{6 g}$ are reported in ref 1 . Melting points were determined in open capillaries in a Gallenkamp apparatus and are uncorrected. NMR spectra were recorded with a Bruker AC200, a Varian Mercury-300, a Bruker DRX-400 AVANCE, or a Bruker DRX-600 AVANCE spectrometer in the indicated solvents (TMS as internal standard): the values of the chemical shifts are expressed in ppm and the coupling constants (J) in Hz. An Agilent $1100 \mathrm{LC} /$ MSD operating with an electrospray source was used in mass spectrometry experiments.

General procedure for the synthesis of compounds 3a-g.

To a solution of the appropriate indenone derivative ($\mathbf{2 a - g}$, 1 equivalent) in dichloromethane (20 mL) was added a 2 M solution of $\mathrm{Al}\left(\mathrm{CH}_{3}\right)_{3}$ in toluene (1 equivalent). The reaction mixture was stirred under a nitrogen atmosphere at room temperature for 30 min , and then diluted with ethyl acetate $(20 \mathrm{~mL})$. The $\mathrm{Al}\left(\mathrm{CH}_{3}\right)_{3}$ excess was cautiously destroyed with a 1 M NaOH solution $(2.0 \mathrm{~mL})$ and the resulting mixture was partitioned between water and ethyl acetate. The organic layer was dried over sodium sulfate and concentrated under reduced pressure. Purification of the residue by flash chromatography with the indicated eluent afforded the expected indenol derivatives (2a-g).

Ethyl 1-hydroxy-6-methoxy-3-(2-methoxyphenyl)-1-methyl-1H-indene-2-carboxylate (3a).

The title compound was obtained starting from indenone derivative 2a $(0.59 \mathrm{~g}, 1.74 \mathrm{mmol})$ as an orange oil (0.56 g , yield 91%) using petroleum ether-ethyl acetate ($8: 2 \mathrm{v} / \mathrm{v}$) as the eluting mixture. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 0.99(\mathrm{t}, J=6.9,3 \mathrm{H}), 1.77(\mathrm{~s}, 3 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 4.08(\mathrm{~m}$, $2 \mathrm{H}), 6.80(\mathrm{dd}, J=8.3,2.3,1 \mathrm{H}), 6.95-7.02(\mathrm{~m}, 3 \mathrm{H}), 7.10(\mathrm{~d}, J=2.2,1 \mathrm{H}), 7.20(\mathrm{~d}, J=6.8,1 \mathrm{H}), 7.36$ $(\mathrm{t}, J=7.1,1 \mathrm{H}) . \mathrm{MS}(\mathrm{ESI}): \mathrm{m} / \mathrm{z} 377\left(\mathrm{M}+\mathrm{Na}^{+}\right)$.

The title compound was obtained starting from indenone derivative $\mathbf{2 b}(0.16 \mathrm{~g}, 0.47 \mathrm{mmol})$ as an orange solid $\left(0.15 \mathrm{~g}\right.$, yield 90%, mp 71-72 $\left.{ }^{\circ} \mathrm{C}\right)$ using petroleum ether-ethyl acetate $(9: 1 \mathrm{v} / \mathrm{v})$ as the eluting mixture. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 1.06(\mathrm{t}, J=7.1,3 \mathrm{H}), 1.76(\mathrm{~s}, 3 \mathrm{H}), 3.70(\mathrm{~s}, 1 \mathrm{H}), 3.82$ $(\mathrm{s}, 3 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 4.12(\mathrm{~m}, 2 \mathrm{H}), 6.80(\mathrm{dd}, J=8.4,2.2,1 \mathrm{H}), 6.91-6.97(\mathrm{~m}, 3 \mathrm{H}), 7.07(\mathrm{~d}, J=8.4$, $1 \mathrm{H}), 7.14(\mathrm{~d}, J=2.2,1 \mathrm{H}), 7.34(\mathrm{t}, J=7.9,1 \mathrm{H}) . \mathrm{MS}(\mathrm{ESI}): \mathrm{m} / \mathrm{z} 377\left(\mathrm{M}+\mathrm{Na}^{+}\right)$.

Ethyl 1-hydroxy-6-methoxy-3-(4-methoxyphenyl)-1-methyl-1H-indene-2-carboxylate (3c).

 The title compound was obtained starting from indenone derivative $2 \mathbf{c}(0.89 \mathrm{~g}, 2.63 \mathrm{mmol})$ as an orange solid $\left(0.62 \mathrm{~g}\right.$, yield $\left.67 \%, \mathrm{mp} 101-102{ }^{\circ} \mathrm{C}\right)$ using petroleum ether-ethyl acetate $(9: 1 \mathrm{v} / \mathrm{v})$ as the eluting mixture. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 1.09(\mathrm{t}, J=7.1,3 \mathrm{H}), 1.73(\mathrm{~s}, 3 \mathrm{H}), 3.82(\mathrm{~s}, 6 \mathrm{H})$, $4.10(\mathrm{~m}, 2 \mathrm{H}), 6.78(\mathrm{dd}, J=8.3,2.4,1 \mathrm{H}), 6.93(\mathrm{~d}, J=8.7,2 \mathrm{H}), 7.08(\mathrm{~m}, 2 \mathrm{H}), 7.33(\mathrm{~d}, J=8.7,2 \mathrm{H})$. MS(ESI): m/z 377 ($\mathrm{M}+\mathrm{Na}^{+}$).
Ethyl 3-(3,4-dimethoxyphenyl)-1-hydroxy-6-methoxy-1-methyl-1H-indene-2-carboxylate (3d).

 The title compound was obtained starting from indenone derivative $\mathbf{2 d}(0.48 \mathrm{~g}, 1.30 \mathrm{mmol})$ as a yellow solid $\left(0.40 \mathrm{~g}\right.$, yield $\left.80 \%, \mathrm{mp} 105-106^{\circ} \mathrm{C}\right)$ using petroleum ether-ethyl acetate ($8: 2 \mathrm{v} / \mathrm{v}$) as the eluting mixture. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 1.11(\mathrm{t}, J=7.1,3 \mathrm{H}), 1.75(\mathrm{~s}, 3 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H})$ $3.87(\mathrm{~s}, 3 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H}) 4.16(\mathrm{~m}, 2 \mathrm{H}), 6.81(\mathrm{dd}, J=8.4,2.0,1 \mathrm{H}), 6.93-6.98(\mathrm{~m}, 3 \mathrm{H}), 7.12(\mathrm{~m}, 2 \mathrm{H})$. MS(ESI): m/z $407\left(\mathrm{M}+\mathrm{Na}^{+}\right)$.
Ethyl 1-hydroxy-6-methoxy-1-methyl-3-(3,4,5-trimethoxyphenyl)-1H-indene-2-carboxylate

 (3e).The title compound was obtained starting from indenone derivative $\mathbf{2 e}(0.13 \mathrm{~g}, 0.326 \mathrm{mmol})$ as a yellow solid $\left(0.12 \mathrm{~g}\right.$, yield $\left.89 \%, \mathrm{mp} 138-140{ }^{\circ} \mathrm{C}\right)$ using petroleum ether-ethyl acetate ($8: 2 \mathrm{v} / \mathrm{v}$) as the eluting mixture. An analytical sample was obtained by recrystallization from ethyl acetate by slow evaporation. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 1.10(\mathrm{t}, J=7.1,3 \mathrm{H}), 1.76(\mathrm{~s}, 3 \mathrm{H}), 3.85(\mathrm{~s}, 6 \mathrm{H}), 3.87$
(s, 3H), $3.90(\mathrm{~s}, 3 \mathrm{H}), 4.15(\mathrm{~m}, 2 \mathrm{H}) 6.59(\mathrm{~s}, 2 \mathrm{H}), 6.82(\mathrm{dd}, J=8.4,2.2,1 \mathrm{H}), 7.13(\mathrm{~m}, 2 \mathrm{H}) . \mathrm{MS}(\mathrm{ESI}):$ $\mathrm{m} / \mathrm{z} 437\left(\mathrm{M}+\mathrm{Na}^{+}\right)$.

Figure S1. X-ray crystal structure of 3e. Ellipsoids enclose 50\% probability.

Ethyl 1-hydroxy-6-methoxy-1-methyl-3-(4-nitrophenyl)-1H-indene-2-carboxylate (3f).

The title compound was obtained starting from indenone derivative $2 \mathbf{f}(0.29 \mathrm{~g}, 0.82 \mathrm{mmol})$ as a yellow solid (0.23 g , yield $76 \%, \mathrm{mp} 159-160{ }^{\circ} \mathrm{C}$) using petroleum ether-ethyl acetate ($8: 2 \mathrm{v} / \mathrm{v}$) as the eluting mixture. An analytical sample was obtained by crystallization from ethyl acetate by slow evaporation. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 1.05(\mathrm{t}, J=7.1,3 \mathrm{H}), 1.78(\mathrm{~s}, 3 \mathrm{H}), 3.61(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.87$ (s, 3H), $4.12(\mathrm{~m}, 2 \mathrm{H}), 6.82(\mathrm{dd}, J=8.4,2.4,1 \mathrm{H}), 6.94(\mathrm{~d}, J=8.4,1 \mathrm{H}), 7.16(\mathrm{~d}, J=2.3,1 \mathrm{H}), 7.55$ (d, $J=8.8,2 \mathrm{H}), 8.31(\mathrm{~d}, J=8.8,2 \mathrm{H}) . \mathrm{MS}(\mathrm{ESI}): \mathrm{m} / \mathrm{z} 392\left(\mathrm{M}+\mathrm{Na}^{+}\right)$.

Figure S2. X-ray crystal structure of 3f. Site occupation factor of C12a is 0.61(2). Ellipsoids enclose 50% probability.

Ethyl 3-(4-bromophenyl)-1-hydroxy-6-methoxy-1-methyl-1H-indene-2-carboxylate (3g).

The title compound was obtained starting from indenone derivative $\mathbf{2 g}(0.30 \mathrm{~g}, 0.775 \mathrm{mmol})$ as a yellow solid $\left(0.22 \mathrm{~g}\right.$, yield $\left.70 \%, \mathrm{mp} 121-122{ }^{\circ} \mathrm{C}\right)$ using petroleum ether-ethyl acetate ($8: 2 \mathrm{v} / \mathrm{v}$) as the eluting mixture. An analytical sample was obtained by recrystallization from ethyl acetate by slow evaporation. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 1.09(\mathrm{t}, J=7.1,3 \mathrm{H}), 1.75(\mathrm{~s}, 3 \mathrm{H}), 3.65(\mathrm{~s}, 1 \mathrm{H})$, $3.85(\mathrm{~s}, 3 \mathrm{H}), 4.13(\mathrm{~m}, 2 \mathrm{H}) 6.80(\mathrm{dd}, J=8.4,2.4,1 \mathrm{H}), 7.00(\mathrm{~d}, J=8.4,1 \mathrm{H}), 7.13(\mathrm{~d}, J=2.3,1 \mathrm{H})$, $7.26(\mathrm{~d}, J=8.4,2 \mathrm{H}), 7.57(\mathrm{~d}, J=8.4,2 \mathrm{H}) . \mathrm{MS}(\mathrm{ESI}): \mathrm{m} / \mathrm{z} 425,427\left(\mathrm{M}+\mathrm{Na}^{+}\right)$.

Figure S3. X-ray crystal structure of 3g. Ellipsoids enclose 50\% probability.

Ethyl 3-(furan-3-yl)-1-hydroxy-6-methoxy-1-methyl-1H-indene-2-carboxylate (3h).

To a solution of indenone derivative $\mathbf{2 h}(0.045 \mathrm{~g}, 0.15 \mathrm{mmol})$ in dichloromethane (20 mL) was added a 3 M solution of $\mathrm{CH}_{3} \mathrm{MgBr}$ in diethyl ether ($0.30 \mathrm{~mL}, 0.90 \mathrm{mmol}$). The reaction mixture was stirred under a nitrogen atmosphere at room temperature for 15 min . $\mathrm{The}^{\mathrm{CH}_{3} \mathrm{MgBr}}$ excess was cautiously decomposed with a saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}$ and the resulting mixture was dried over sodium sulfate and concentrated under reduced pressure. Purification of the residue by flash chromatography with petroleum ether-ethyl acetate ($9: 1 \mathrm{v} / \mathrm{v}$) as the eluent afforded indenol derivatives $\mathbf{3 h}$ as a yellow oil (0.020 g , yield 42%). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 1.29(\mathrm{t}, J=7.1$, $3 \mathrm{H}), 1.72(\mathrm{~s}, 3 \mathrm{H}), 3.71(\mathrm{~s}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 4.27(\mathrm{~m}, 2 \mathrm{H}), 6.67(\mathrm{~s}, 1 \mathrm{H}), 6.85(\mathrm{dd}, J=8.4,2.4,1 \mathrm{H})$, $7.12(\mathrm{~d}, J=2.3,1 \mathrm{H}), 7.32(\mathrm{~d}, J=8.4,1 \mathrm{H}), 7.51(\mathrm{~s}, 1 \mathrm{H}), 7.78(\mathrm{~s}, 1 \mathrm{H}) . \mathrm{MS}(\mathrm{ESI}): \mathrm{m} / \mathrm{z} 337\left(\mathrm{M}+\mathrm{Na}^{+}\right)$.

General procedure for the preparation of solutions of monomers $\mathbf{1 a - h}$ in Chloroform or CDCl_{3}.

A mixture of the appropriate indenol derivative (3a-h) in chloroform or $\mathrm{CDCl}_{3}(20 \mathrm{~mL} / 1 \mathrm{mmol}$ of indenol) with a catalytic amount of p-toluenesulfonic acid monohydrate (PTSA) (0.2 equivalents) was heated under reflux for 1-2 h and cooled to room temperature monitoring the reaction by TLC. The reaction mixture was then washed with a saturated solution of NaHCO_{3} and dried over sodium sulfate to afford a stock (about 0.05 M) solution of the corresponding monomer ($\mathbf{1 a - h}$).

Ethyl 6-methoxy-3-(2-methoxyphenyl)-1-methylene-1H-indene-2-carboxylate (1a).

This monomer was prepared from indenol 3a ($0.23 \mathrm{~g}, 0.65 \mathrm{mmol}$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $1.01(\mathrm{t}, J=7.1,3 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 4.07(\mathrm{q}, J=7.1,2 \mathrm{H}), 6.30(\mathrm{~s}, 1 \mathrm{H}), 6.59(\mathrm{~s}, 1 \mathrm{H}), 6.80$ (dd, $J=8.3,2.1,1 \mathrm{H}), 6.96-7.04(\mathrm{~m}, 3 \mathrm{H}), 7.25(\mathrm{~m}, 2 \mathrm{H}), 7.36(\mathrm{t}, J=7.7,1 \mathrm{H}) . \mathrm{MS}(\mathrm{ESI}): \mathrm{m} / \mathrm{z} 359$ $\left(\mathrm{M}+\mathrm{Na}^{+}\right)$.

Ethyl 6-methoxy-3-(3-methoxyphenyl)-1-methylene-1H-indene-2-carboxylate (1b).
This monomer was prepared from indenol 3b ($0.23 \mathrm{~g}, 0.65 \mathrm{mmol}$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $1.06(\mathrm{t}, J=7.1,3 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 4.11(\mathrm{q}, J=7.1,2 \mathrm{H}), 6.33(\mathrm{~s}, 1 \mathrm{H}), 6.59(\mathrm{~s}, 1 \mathrm{H}), 6.82$ $(\mathrm{dd}, J=8.4,2.4,1 \mathrm{H}), 6.93-6.99(\mathrm{~m}, 3 \mathrm{H}), 7.13(\mathrm{~d}, J=8.4,1 \mathrm{H}), 7.25(\mathrm{~s}, 1 \mathrm{H}), 7.34(\mathrm{t}, J=8.2,1 \mathrm{H})$. MS(ESI): m/z 359 ($\mathrm{M}+\mathrm{Na}^{+}$).

Ethyl 6-methoxy-3-(4-methoxyphenyl)-1-methylene-1 H-indene-2-carboxylate (1c).
This monomer was prepared from indenol $3 \mathrm{c}(0.62 \mathrm{~g}, 1.76 \mathrm{mmol}) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $1.12(\mathrm{t}, J=7.1,3 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 4.15(\mathrm{q}, J=7.1,2 \mathrm{H}), 6.30(\mathrm{~s}, 1 \mathrm{H}), 6.55(\mathrm{~s}, 1 \mathrm{H}), 6.83$ (dd, $J=8.4,2.3,1 \mathrm{H}), 6.97$ (d, $J=8.8,2 \mathrm{H}), 7.16(\mathrm{~d}, J=8.4,1 \mathrm{H}), 7.25(\mathrm{~d}, J=2.4,1 \mathrm{H}), 7.37$ (d, $J=$ 8.8, 2H). MS(ESI): m/z $359\left(\mathrm{M}+\mathrm{Na}^{+}\right)$.

Ethyl 3-(3,4-dimethoxyphenyl)-6-methoxy-1-methylene-1H-indene-2-carboxylate (1d).

This monomer was prepared from indenol 3d ($0.32 \mathrm{~g}, 0.83 \mathrm{mmol}) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $1.12(\mathrm{t}, J=7.1,3 \mathrm{H}), 3.88(\mathrm{~s}, 6 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H}), 4.15(\mathrm{q}, J=7.1,2 \mathrm{H}), 6.31(\mathrm{~s}, 1 \mathrm{H}), 6.55(\mathrm{~s}, 1 \mathrm{H}), 6.84$ (dd, $J=8.4,2.3,1 \mathrm{H}), 6.94-7.02(\mathrm{~m}, 3 \mathrm{H}), 7.17(\mathrm{~d}, J=8.4,1 \mathrm{H}), 7.24(\mathrm{~s}, 1 \mathrm{H}) . \mathrm{MS}(\mathrm{ESI}): \mathrm{m} / \mathrm{z} 389$ $\left(\mathrm{M}+\mathrm{Na}^{+}\right)$.

Ethyl 6-methoxy-1-methylene-3-(3,4,5-trimethoxyphenyl)-1H-indene-2-carboxylate (1e).

This monomer was prepared from indenol $\mathbf{3 e}(0.43 \mathrm{~g}, 1.04 \mathrm{mmol}) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $1.11(\mathrm{t}, J=7.6,3 \mathrm{H}), 3.85(\mathrm{~s}, 6 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 4.15(\mathrm{q}, J=7.1,2 \mathrm{H}), 6.33(\mathrm{~s}, 1 \mathrm{H}), 6.57$ $(\mathrm{s}, 1 \mathrm{H}), 6.63(\mathrm{~s}, 2 \mathrm{H}), 6.85(\mathrm{dd}, J=8.4,2.0,1 \mathrm{H}), 7.19(\mathrm{~d}, J=8.4,2 \mathrm{H}), 7.24(\mathrm{~s}, 1 \mathrm{H}) . \mathrm{MS}(\mathrm{ESI}): \mathrm{m} / \mathrm{z}$ $419\left(\mathrm{M}+\mathrm{Na}^{+}\right)$.

Ethyl 6-methoxy-1-methylene-3-(4-nitrophenyl)-1H-indene-2-carboxylate (1f).

This monomer was prepared from indenol $3 \mathrm{f}(0.30 \mathrm{~g}, 0.81 \mathrm{mmol}) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $1.07(\mathrm{t}, J=7.1,3 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 4.12(\mathrm{q}, J=7.1,2 \mathrm{H}), 6.42(\mathrm{~s}, 1 \mathrm{H}), 6.72(\mathrm{~s}, 1 \mathrm{H}), 6.84(\mathrm{dd}, J=8.4$, $2.2,1 \mathrm{H}), 6.98(\mathrm{~d}, J=8.4,1 \mathrm{H}), 7.28(\mathrm{~d}, J=2.2,1 \mathrm{H}), 7.56(\mathrm{~d}, J=8.8,2 \mathrm{H}), 8.31(\mathrm{~d}, J=8.8,2 \mathrm{H})$. MS(ESI, negative ions): m/z $701\left(2 \mathrm{M}-\mathrm{H}^{+}\right)$.

Ethyl 3-(4-bromophenyl)-6-methoxy-1-methylene-1 H -indene-2-carboxylate (1g).

This monomer was prepared from indenol $\mathbf{3 g}(0.22 \mathrm{~g}, 0.54 \mathrm{mmol}) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $1.09(\mathrm{t}, J=7.1,3 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 4.13(\mathrm{q}, J=7.1,2 \mathrm{H}), 6.35(\mathrm{~s}, 1 \mathrm{H}), 6.63(\mathrm{~s}, 1 \mathrm{H}), 6.83(\mathrm{dd}, J=8.4$, $2.3,1 \mathrm{H}), 7.06(\mathrm{~d}, J=8.4,1 \mathrm{H}), 7.25(\mathrm{~d}, J=2.4,1 \mathrm{H}), 7.27(\mathrm{~d}, J=8.4,2 \mathrm{H}), 7.57(\mathrm{~d}, J=8.4,2 \mathrm{H})$. MS(ESI): m/z 407, $409\left(\mathrm{M}+\mathrm{Na}^{+}\right)$.

Ethyl 3-(furan-3-yl)-6-methoxy-1-methylene-1 H -indene-2-carboxylate (1h).

This monomer was prepared from indenol $\mathbf{3 h}(0.25 \mathrm{~g}, 0.80 \mathrm{mmol})$ and 1 equivalent of PTSA. ${ }^{1} \mathrm{H}-$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $1.30(\mathrm{t}, J=7.2,3 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 4.28(\mathrm{q}, J=7.1,2 \mathrm{H}), 6.29(\mathrm{~s}, 1 \mathrm{H}), 6.49$ (s, 1H), $6.68(\mathrm{~s}, 1 \mathrm{H}), 6.87(\mathrm{dd}, J=8.4,2.3,1 \mathrm{H}), 7.24(\mathrm{~d}, J=2.2,1 \mathrm{H}), 7.36(\mathrm{~d}, J=8.4,1 \mathrm{H}), 7.52(\mathrm{~s}$, 1H) $7.84(\mathrm{~s}, 1 \mathrm{H})$. MS (ESI): m/z $319\left(\mathrm{M}+\mathrm{Na}^{+}\right)$.

General procedure for the preparation of polybenzofulvene derivatives poly-1b-e,g,h by spontaneous polymerization.

A stock solution of suitable monomer ($\mathbf{1 b - e , g , h}$) in chloroform (about 0.05 M) was concentrated under reduced pressure to give a viscous oil, which was dissolved into chloroform ($20 \mathrm{~mL} / \mathrm{mmol}$ of monomer) and newly evaporated. The dissolution/evaporation procedure was repeated from three to nine times monitoring by TLC the progressive disappearance of the monomer in solution. The final residue was washed with the indicated solvent or dissolved into a small amount of CHCl_{3} and precipitated in the reported bad solvent to give the expected polymer.

Poly-[Ethyl 6-methoxy-3-(3-methoxyphenyl)-1-methylene-1H-indene-2-carboxylate] (Poly-1b).

This polymer was obtained from a stock solution of benzofulvene monomer 1b in chloroform. The dissolution/evaporation procedure was repeated three times and the final residue was dissolved into a small amount of CHCl_{3} and precipitated with ethanol to give poly- $\mathbf{1 b}$ as a white solid $(0.12 \mathrm{~g}$, yield from 3b 55%). ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$: see Figure $\mathrm{S} 4 .{ }^{13} \mathrm{C}$-NMR spectrum $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right)$: see Figure S27.

Figure S4. ${ }^{1} \mathrm{H}$-NMR spectrum $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$ of poly- $\mathbf{1 b}$.

Poly-[Ethyl 6-methoxy-3-(4-methoxyphenyl)-1-methylene-1H-indene-2-carboxylate] (Poly-1c).

 This polymer was obtained from a stock solution of benzofulvene monomer $\mathbf{1 c}$ in chloroform. The dissolution/evaporation procedure was repeated three times and the final residue was dissolved into a small amount of CHCl_{3} and precipitated with methanol to give poly- $1 \mathbf{c}$ as a white powder $(0.41 \mathrm{~g}$, yield from 3c 69%). ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$: see Figure $\mathrm{S} 5 .{ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right)$: see Figure S28.

Figure S5. ${ }^{1} \mathrm{H}$-NMR spectrum $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of poly-1c.

Poly-[Ethyl 3-(3,4-dimethoxyphenyl)-6-methoxy-1-methylene-1H-indene-2-carboxylate] (Poly1d).

This polymer was obtained from a stock solution of benzofulvene monomer 1d in chloroform. The dissolution/evaporation procedure was repeated five times and the final residue was dissolved into a small amount of CHCl_{3} and precipitated with ethanol to give poly-1d as a pale yellow cottony solid $(0.21 \mathrm{~g}$, yield from 3d $69 \%)$. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$: see Figure $\mathrm{S} 6 .{ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right)$: see Figure S29.

Figure S6. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$ of poly-1d.

Poly-[Ethyl 6-methoxy-1-methylene-3-(3,4,5-trimethoxyphenyl)-1H-indene-2-carboxylate]

 (Poly-1e).This polymer was obtained from a stock solution of benzofulvene monomer $\mathbf{1 e}$ in chloroform. The dissolution/evaporation procedure was repeated five times and the final residue was dissolved into a small amount of CHCl_{3} and precipitated with n-hexane to give poly-1e as a white cottony solid (0.30 g , yield from 3e 72%). ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right.$): see Figure $\mathrm{S} 7 .{ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right)$: see Figure S 30 .

Figure S7. ${ }^{1} \mathrm{H}$-NMR spectrum $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$ of poly-1e.

Poly-[Ethyl 3-(4-bromophenyl)-6-methoxy-1-methylene-1H-indene-2-carboxylate] (Poly-1g).

This polymer was obtained from a stock solution of benzofulvene monomer $\mathbf{1 g}$ in chloroform. The dissolution/evaporation procedure was repeated three times and the final residue was purified by washing with n -hexane to give poly- $\mathbf{1 g}$ as a white solid (0.13 g , yield from $\mathbf{3 g} 63 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$: see Figure $\mathrm{S} 8 .{ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right)$: see Figure S 32 .

Figure S8. ${ }^{1} \mathrm{H}$-NMR spectrum $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$ of poly- $\mathbf{1 g}$.

Poly-[Ethyl 3-(furan-3-yl)-6-methoxy-1-methylene-1 \boldsymbol{H}-indene-2-carboxylate] (Poly-1h).

This polymer was obtained from a stock solution of benzofulvene monomer $\mathbf{1 h}$ in chloroform. The dissolution/evaporation procedure was repeated nine times and the final residue was dissolved into a small amount of CHCl_{3} and precipitated with n -hexane to give poly- $\mathbf{1 h}$ as a beige powder $(0.13 \mathrm{~g}$, yield from 3h 55%). ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$: see Figure $\mathrm{S} 9 .{ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum ($\mathrm{CDCl}_{3}, 75 \mathrm{MHz}$): see Figure S33

Figure S9. ${ }^{1} \mathrm{H}$-NMR spectrum $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of poly- $\mathbf{1 h}$.

Poly-[Ethyl 6-methoxy-3-(2-methoxyphenyl)-1-methylene-1H-indene-2-carboxylate] (Poly-1a).

 The stock solution of benzofulvene monomer 1a in chloroform (about 0.05 M) was concentrated under reduced pressure to give a viscous oil, which was dissolved into chloroform ($20 \mathrm{~mL} / \mathrm{mmol}$ of monomer) and newly evaporated. The dissolution/evaporation procedure was repeated several times without the complete disappearance of the monomer (the progress of the polymerization process was monitored by TLC). The final residue was dissolved into a small amount of CHCl_{3} and precipitated with ethanol to give poly-1a as a white solid (0.070 g , yield from $\mathbf{3 a} 32 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$: see Figure $\mathrm{S} 10 .{ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right)$: see Figure S26.

Figure S10. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$ of poly-1a.

Poly-[Ethyl 6-methoxy-1-methylene-3-(4-nitrophenyl)-1H-indene-2-carboxylate] (Poly-1f).

The stock solution of benzofulvene monomer $\mathbf{1 f}$ in chloroform (about 0.05 M) was concentrated under reduced pressure to give a viscous brown oil. The oil was suspended into chloroform (10.0 $\mathrm{mL} / \mathrm{mmol}$ of monomer) to obtain a yellow precipitate. The precipitate was collected by filtration, dissolved in a small amount of dichloromethane and newly precipitated in ethanol to obtain poly-1e
as a yellow powder (0.22 g , yield from $\mathbf{3 f} 77 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$: see Figure S11. ${ }^{13} \mathrm{C}$-NMR spectrum $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 75 \mathrm{MHz}\right)$: see Figure S 31 .

Figure S11. ${ }^{1} \mathrm{H}$-NMR spectrum $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 300 \mathrm{MHz}\right)$ of poly-1f.

General procedure for the synthesis of compounds 5a-e,h.

A mixture of the appropriate β-ketoester (4a-e,h) (1 equivalent) in DMF (15 mL) with $\mathrm{K}_{2} \mathrm{CO}_{3}$ (3 equivalents), NaI (1.5 equivalents), and 3-methoxybenzylchloride (1 equivalent) was stirred at room temperature for 4-16 h. The reaction mixture was then diluted with a saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution and extracted with ethyl acetate. The organic layer was dried over sodium sulfate and evaporated under reduced pressure. Purification of the residue by flash chromatography with petroleum ether-ethyl acetate (9:1) as the eluent gave the expected compound (5a-e,h).

Ethyl 2-(3-methoxybenzyl)-3-(2-methoxyphenyl)-3-oxopropanoate (5a).

Compound 5a (0.83 g , yield 79%) was obtained as a colorless oil starting from ethyl (2methoxybenzoyl)acetate ($\mathbf{4 a}, 0.70 \mathrm{~g}, 3.15 \mathrm{mmol}$) and using NaHCO_{3} as base instead of $\mathrm{K}_{2} \mathrm{CO}_{3}$. Furthermore, the reaction mixture was stirred at about $100^{\circ} \mathrm{C}$ for $16 \mathrm{~h} .{ }^{1} \mathrm{H}-\mathrm{NMR}(200 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): 1.11(\mathrm{t}, J=7.1,3 \mathrm{H}), 3.11-3.34(\mathrm{~m}, 2 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 4.08(\mathrm{q}, J=7.1,2 \mathrm{H})$,
$4.63(\mathrm{t}, J=7.3,1 \mathrm{H}), 6.68-6.81(\mathrm{~m}, 3 \mathrm{H}) 6.89-7.00(\mathrm{~m}, 2 \mathrm{H}), 7.14(\mathrm{t}, J=7.7,1 \mathrm{H}), 7.45(\mathrm{t}, J=7.7,1 \mathrm{H})$, $7.66(\mathrm{~d}, J=7.2,1 \mathrm{H}) . \mathrm{MS}(\mathrm{ESI}): \mathrm{m} / \mathrm{z} 365\left(\mathrm{M}+\mathrm{Na}^{+}\right)$.

Ethyl 2-(3-methoxybenzyl)-3-(3-methoxyphenyl)-3-oxopropanoate (5b).

Compound 5b (0.26 g , yield 86%) was obtained as a colorless oil starting from ethyl (3methoxybenzoyl)acetate ($\mathbf{4 b}, 0.17 \mathrm{~mL}, 0.88 \mathrm{mmol}$) after 4 h at room temperature. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): 1.12(\mathrm{t}, J=7.1,3 \mathrm{H}), 3.29(\mathrm{~d}, J=6.8,2 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 4.11(\mathrm{~m}, 2 \mathrm{H})$, $4.58(\mathrm{t}, J=7.3,1 \mathrm{H}), 6.72(\mathrm{dd}, J=8.2,2.4,1 \mathrm{H}) 6.76(\mathrm{~s}, 1 \mathrm{H}), 6.80(\mathrm{~d}, J=7.6,1 \mathrm{H}), 7.08(\mathrm{dd}, J=8.2$, $2.6,1 \mathrm{H}), 7.16(\mathrm{t}, J=7.8,1 \mathrm{H}) 7.33(\mathrm{t}, J=7.9,1 \mathrm{H}), 7.46(\mathrm{~s}, 1 \mathrm{H}), 7.53(\mathrm{~d}, J=7.7,1 \mathrm{H}) . \mathrm{MS}(\mathrm{ESI}): \mathrm{m} / \mathrm{z}$ $365\left(\mathrm{M}+\mathrm{Na}^{+}\right)$.

Ethyl 2-(3-methoxybenzyl)-3-(4-methoxyphenyl)-3-oxopropanoate (5c).

Compound 5 c (5.0 g , yield 89%) was obtained as a colorless oil starting from ethyl (4methoxybenzoyl)acetate $(\mathbf{4} \mathbf{c}, 3.45 \mathrm{~mL}, 16.4 \mathrm{mmol})$ after 4 h at room temperature and was purified using petroleum ether-ethyl acetate (8:2) as the eluent. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 1.12$ ($\mathrm{t}, J=$ $7.1,3 \mathrm{H}), 3.23-3.33(\mathrm{~m}, 2 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 4.06-4.15(\mathrm{~m}, 2 \mathrm{H}), 4.55(\mathrm{t}, J=7.3,1 \mathrm{H})$, 6.70-6.81 (m, 3H), $6.90(\mathrm{~d}, J=8.9,2 \mathrm{H}), 7.15(\mathrm{t}, J=7.8,1 \mathrm{H}), 7.94(\mathrm{~d}, J=8.9,2 \mathrm{H}) . \mathrm{MS}(\mathrm{ESI}): \mathrm{m} / \mathrm{z}$ $365\left(\mathrm{M}+\mathrm{Na}^{+}\right)$.

Ethyl 3-(3,4-dimethoxyphenyl)-2-(3-methoxybenzyl)-3-oxopropanoate (5d).

Compound $5 \mathbf{d}$ (0.68 g , yield 92%) was obtained as a colorless oil starting from ethyl (3,4methoxybenzoyl)acetate ($\mathbf{4 d}, 0.50 \mathrm{~g}, 1.98 \mathrm{mmol}$) after 15 h at room temperature. ${ }^{1} \mathrm{H}$-NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): 1.12(\mathrm{t}, J=7.1,3 \mathrm{H}), 3.28(\mathrm{~m}, 2 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 4.09(\mathrm{~m}$, $2 \mathrm{H}), 4.56(\mathrm{t}, J=7.3,1 \mathrm{H}), 6.71(\mathrm{~d}, J=8.2,1 \mathrm{H}), 6.75(\mathrm{~s}, 1 \mathrm{H}), 6.79(\mathrm{~d}, J=7.6,1 \mathrm{H}), 6.85(\mathrm{~d}, J=8.4$, $1 \mathrm{H}), 7.15(\mathrm{t}, J=7.9,1 \mathrm{H}), 7.50(\mathrm{~s}, 1 \mathrm{H}), 7.60(\mathrm{dd}, J=8.4,1.5,1 \mathrm{H}) . \mathrm{MS}(\mathrm{ESI}): \mathrm{m} / \mathrm{z} 395\left(\mathrm{M}+\mathrm{Na}^{+}\right)$.

Ethyl 2-(3-methoxybenzyl)-3-oxo-3-(3,4,5-trimethoxyphenyl)propanoate (5e).

Compound 5 e $(0.90 \mathrm{~g}$, yield 90%) was obtained as a colorless oil starting from ethyl (3,4,5methoxybenzoyl)acetate ($4 \mathrm{e}, 0.70 \mathrm{~g}, 2.48 \mathrm{mmol}$) after 15 h at room temperature. ${ }^{1} \mathrm{H}$-NMR (200 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): 1.13(\mathrm{t}, J=7.2,3 \mathrm{H}), 3.27(\mathrm{~m}, 2 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.85(\mathrm{~s}, 6 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 4.11(\mathrm{q}, J$ $=7.1,2 \mathrm{H}), 4.52(\mathrm{t}, J=7.3,1 \mathrm{H}), 6.70-6.80(\mathrm{~m}, 3 \mathrm{H}), 7.11-7.24(\mathrm{~m}, 3 \mathrm{H}) . \mathrm{MS}(\mathrm{ESI}): \mathrm{m} / \mathrm{z} 425$ $\left(\mathrm{M}+\mathrm{Na}^{+}\right)$.

Ethyl 3-(furan-3-yl)-2-(3-methoxybenzyl)-3-oxopropanoate (5h) [2].

Compound $\mathbf{5 h}(0.76 \mathrm{~g}$, yield 92%) was obtained as a colorless oil starting from ethyl 3-(furan-3-yl)-3-oxopropanoate ($\mathbf{4 h}, 0.50 \mathrm{~g}, 2.74 \mathrm{mmol}$) after 16 h at room temperature. ${ }^{1} \mathrm{H}-\mathrm{NMR}(200 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): 1.13(\mathrm{t}, J=7.0,3 \mathrm{H}), 3.24(\mathrm{~d}, J=7.4,2 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 4.04-4.20(\mathrm{~m}, 3 \mathrm{H}) 6.67-6.74(\mathrm{~m}$, 4H), $7.13(\mathrm{~m}, 1 \mathrm{H}), 7.39(\mathrm{~s}, 1 \mathrm{H}), 8.04(\mathrm{~s}, 1 \mathrm{H}) . \mathrm{MS}(\mathrm{ESI}): \mathrm{m} / \mathrm{z} 325\left(\mathrm{M}+\mathrm{Na}^{+}\right)$.

General procedure for the preparation of compounds 6a-e,h.

The appropriate ketone derivative (5a-e,h) was mixed with polyphosphoric acid (10 parts with respect to the ketone derivative) by mechanical stirring at room temperature for 1 h . The reaction mixture was then diluted with water and extracted with ethyl acetate. The organic layer was dried over sodium sulfate and concentrated under reduced pressure. Purification of the residue by flash chromatography with the indicated eluent gave the expected indene derivative ($\mathbf{6 a - e}, \mathbf{h}$).

Ethyl 6-methoxy-3-(2-methoxyphenyl)-1H-indene-2-carboxylate (6a).

Compound $\mathbf{6 a}(0.58 \mathrm{~g}$, yield 75%) was obtained starting from compound $\mathbf{5 a}(0.82 \mathrm{~g}, 2.39 \mathrm{mmol})$ as a pale yellow oil using petroleum ether-ethyl acetate $(9: 1 \mathrm{v} / \mathrm{v})$ as the eluent. ${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): 1.08(\mathrm{t}, J=7.1,3 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.83(\mathrm{~s}, 5 \mathrm{H}), 4.09(\mathrm{q}, J=7.1,2 \mathrm{H}), 6.83(\mathrm{dd}, J=8.4,1.9$, $1 \mathrm{H})$, 6.98-7.09 (m, 4H), $7.23(\mathrm{~d}, J=7.4,1 \mathrm{H}), 7.37(\mathrm{t}, J=8.1,1 \mathrm{H}) . \mathrm{MS}(\mathrm{ESI}): \mathrm{m} / \mathrm{z} 347\left(\mathrm{M}+\mathrm{Na}^{+}\right)$.

9-Methoxyindeno[2,1-c]chromen-6(7H)-one (7).

Compound 7 (0.050 g , yield 8%) was obtained as a secondary product from the reaction described above for the synthesis of compound $\mathbf{6 a}$. An analytical sample was obtained by recrystallization from ethyl acetate by slow evaporation (mp 185-186 ${ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 3.91$ (s, $5 \mathrm{H}), 7.06(\mathrm{dd}, J=8.6,2.1,1 \mathrm{H}), 7.21(\mathrm{~s}, 1 \mathrm{H}), 7.39(\mathrm{t}, J=7.0,1 \mathrm{H}), 7.47(\mathrm{~d}, J=7.8,1 \mathrm{H}), 7.57(\mathrm{t}, J=$ $7.7,1 \mathrm{H}), 8.14(\mathrm{~d}, J=8.6,1 \mathrm{H}), 8.29(\mathrm{~d}, J=7.8,1 \mathrm{H}) . \mathrm{MS}(\mathrm{ESI}): 287\left(\mathrm{M}+\mathrm{Na}^{+}\right)$.

Figure S12. X-ray crystal structure of 7. Ellipsoids enclose 50% probability.

Ethyl 6-methoxy-3-(3-methoxyphenyl)-1H-indene-2-carboxylate (6b).

Compound $\mathbf{6 b}(0.13 \mathrm{~g}$, yield 27%) was obtained starting from compound $\mathbf{5 b}(0.50 \mathrm{~g}, 1.46 \mathrm{mmol})$ as a pale yellow oil using petroleum ether-ethyl acetate $(9: 1 \mathrm{v} / \mathrm{v})$ as the eluent. ${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): 1.14(\mathrm{t}, J=7.1,3 \mathrm{H}), 3.81(\mathrm{~s}, 2 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 4.13(\mathrm{q}, J=7.1,2 \mathrm{H}), 6.85(\mathrm{~d}$, $J=8.3,1 \mathrm{H}), 6.94-7.00(\mathrm{~m}, 3 \mathrm{H}), 7.10(\mathrm{~s}, 1 \mathrm{H}), 7.20(\mathrm{~d}, J=8.5,1 \mathrm{H}), 7.36(\mathrm{t}, J=8.2,1 \mathrm{H}) . \mathrm{MS}(\mathrm{ESI}):$ $\mathrm{m} / \mathrm{z} 347\left(\mathrm{M}+\mathrm{Na}^{+}\right)$.

Ethyl 6-methoxy-3-(4-methoxyphenyl)-1H-indene-2-carboxylate (6c).

Compound $\mathbf{6 c}(0.14 \mathrm{~g}$, yield $51 \%)$ was obtained starting from compound $\mathbf{5 c}(0.29 \mathrm{~g}, 0.85 \mathrm{mmol})$ as white solid using petroleum ether-ethyl acetate $(9: 1 \mathrm{v} / \mathrm{v})$ as the eluent. An analytical sample was
obtained by recrystallization from n-hexane ($\mathrm{mp} 72-73{ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 1.18(\mathrm{t}, J$ $=7.0,3 \mathrm{H}), 3.80(\mathrm{~s}, 2 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 4.14(\mathrm{q}, J=7.0,2 \mathrm{H}), 6.85(\mathrm{dd}, J=8.4,2.1,1 \mathrm{H})$, $6.98(\mathrm{~d}, J=8.6,2 \mathrm{H}), 7.09(\mathrm{~d}, J=2.0,1 \mathrm{H}), 7.21(\mathrm{~d}, J=8.5,1 \mathrm{H}), 7.38(\mathrm{~d}, J=8.6,2 \mathrm{H}) . \mathrm{MS}(\mathrm{ESI}):$ $\mathrm{m} / \mathrm{z} 347\left(\mathrm{M}+\mathrm{Na}^{+}\right)$.

Figure S13. X-ray crystal structure of $\mathbf{6 c}$. Site occupation factor of $\mathrm{C}^{\prime}, \mathrm{C} 3^{\prime}, \mathrm{C} 5^{\prime}$ and ${ }^{\prime} 6^{\prime}$ is 0.51 (1). Ellipsoids enclose 50% probability.

Ethyl 3-(3,4-dimethoxyphenyl)-6-methoxy-1H-indene-2-carboxylate (6d).

The title compound $\mathbf{6 d}(0.15 \mathrm{~g}$, yield $52 \%)$ was obtained starting from compound $\mathbf{5 d}(0.30 \mathrm{~g}, 0.81$ $\mathrm{mmol})$ as a white solid using petroleum ether-ethyl acetate ($9: 1 \mathrm{v} / \mathrm{v}$) as the eluent. An analytical sample was obtained by recrystallization from diethyl ether by slow evaporation ($\mathrm{mp} 106-107^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 1.17(\mathrm{t}, J=7.1,3 \mathrm{H}), 3.80(\mathrm{~s}, 2 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.92(\mathrm{~s}$, $3 \mathrm{H}), 4.14(\mathrm{q}, J=7.1,2 \mathrm{H}), 6.86(\mathrm{dd}, J=8.5,2.3,1 \mathrm{H}), 6.95(\mathrm{~d}, J=8.2,1 \mathrm{H}), 6.97(\mathrm{~d}, J=1.7,1 \mathrm{H})$, 7.01 (dd, $J=8.1,1.7,1 \mathrm{H}), 7.09$ (d, $J=1.8,1 \mathrm{H}), 7.23(\mathrm{~d}, J=8.5,1 \mathrm{H}) . \mathrm{MS}(\mathrm{ESI}): \mathrm{m} / \mathrm{z} 377\left(\mathrm{M}+\mathrm{Na}^{+}\right)$.

Figure S14. X-ray crystal structure of $\mathbf{6 d}$. Ellipsoids enclose 50% probability.

Ethyl 6-methoxy-3-(3,4,5-trimethoxyphenyl)-1H-indene-2-carboxylate (6e).

Compound $\mathbf{6 e}(0.11 \mathrm{~g}$, yield $23 \%)$ was obtained starting from compound $\mathbf{5 e}(0.50 \mathrm{~g}, 1.24 \mathrm{mmol})$ as a white solid using petroleum ether-ethyl acetate ($95: 5 \mathrm{v} / \mathrm{v}$) as the eluent. An analytical sample was obtained by recrystallization from ethyl acetate by slow evaporation (mp. 136-137 ${ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}-\mathrm{NMR}$ ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $1.16(\mathrm{t}, J=7.1,3 \mathrm{H}), 3.81(\mathrm{~s}, 2 \mathrm{H}), 3.85(\mathrm{~s}, 9 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 4.13(\mathrm{q}, J=7.1$, 2H), 6.63 (s, 2H), 6.87 (dd, $J=8.5,2.2,1 \mathrm{H}), 7.11$ (d, $J=2.1,1 \mathrm{H}), 7.23$ (d, $J=8.5,1 \mathrm{H}) . \mathrm{MS}$ (ESI): $\mathrm{m} / \mathrm{z} 407\left(\mathrm{M}+\mathrm{Na}^{+}\right)$.

Figure S15. X-ray crystal structure of $\mathbf{6 e}$. Site occupation factor of C11A and C12A is 0.78 (1). Ellipsoids enclose 50\% probability.

Ethyl 3-(furan-3-yl)-6-methoxy-1H-indene-2-carboxylate (6h).

Compound $\mathbf{6 h}(0.27 \mathrm{~g}$, yield $92 \%)$ was obtained starting from compound $\mathbf{5 h}(0.31 \mathrm{~g}, 1.03 \mathrm{mmol})$ as a white solid using petroleum ether-ethyl acetate ($9: 1 \mathrm{v} / \mathrm{v}$) as the eluent. An analytical sample was obtained by recrystallization from ethyl acetate by slow evaporation (mp 106-108 ${ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}-\mathrm{NMR}$ ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $1.29(\mathrm{t}, J=7.1,3 \mathrm{H}), 3.79(\mathrm{~s}, 2 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 4.23(\mathrm{q}, J=7.1,2 \mathrm{H}), 6.75(\mathrm{~s}$, $1 \mathrm{H}), 6.89(\mathrm{dd}, J=8.5,2.3,1 \mathrm{H}), 7.08(\mathrm{~d}, J=1.6,1 \mathrm{H}), 7.44(\mathrm{~d}, J=8.5,1 \mathrm{H}), 7.52(\mathrm{~s}, 1 \mathrm{H}), 7.84(\mathrm{~s}$, 1H). MS (ESI): m/z $307\left(\mathrm{M}+\mathrm{Na}^{+}\right)$.

Figure S16. X-ray crystal structure of $\mathbf{6 h}$. Ellipsoids enclose 50% probability.

Ethyl 5-methoxy-1-(4-nitrophenyl)-2,3-dihydro-1H-indene-2-carboxylate (6f).

A mixture of ethyl (4-nitrobenzoyl)acetate ($4 \mathrm{f}, 0.50 \mathrm{~g}, 2.11 \mathrm{mmol}$) in DMF (15 mL) with $\mathrm{K}_{2} \mathrm{CO}_{3}$ $(0.88 \mathrm{~g}, 6.37 \mathrm{mmol}), \mathrm{NaI}(0.48 \mathrm{~g}, 3.20 \mathrm{mmol})$, and 3-methoxybenzylchloride ($0.33 \mathrm{~g}, 2.11 \mathrm{mmol}$) was stirred at room temperature for 2 h . The reaction mixture was then diluted with a saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution and extracted with ethyl acetate. The organic layer was dried over sodium sulfate and evaporated under reduced pressure. The residue was purified by flash chromatography with petroleum ether-ethyl acetate ($9: 1 \mathrm{v} / \mathrm{v}$) as the eluent to obtain 0.50 g of a mixture (8:2) of $\mathbf{5 f}$ and $\mathbf{8}$ as a pale yellow oil. The mixture was mixed with polyphosphoric acid (5.0 g) by mechanical stirring at room temperature for 30 min , then diluted with water and extracted with ethyl acetate. The organic layer was dried over sodium sulfate and concentrated under reduced pressure. Purification of the residue by flash chromatography with petroleum ether-ethyl acetate ($8: 2 \mathrm{v} / \mathrm{v}$) as the eluent gave the expected indene derivative $\mathbf{6 f}$ as pale yellow solid (0.32 g , yield 44%). An analytical sample was obtained by recrystallization from ethyl acetate by slow evaporation (mp $144-145{ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 1.14(\mathrm{t}, J=7.1,3 \mathrm{H}), 3.85(\mathrm{~m}, 2 \mathrm{H}), 3.86(\mathrm{~m}, 3 \mathrm{H}), 4.13$ (q, $J=7.1,2 \mathrm{H}), 6.86(\mathrm{dd}, J=8.5,2.3,1 \mathrm{H}), 7.05(\mathrm{~d}, J=8.5,1 \mathrm{H}), 7.12(\mathrm{~s}, 1 \mathrm{H}), 7.57(\mathrm{~d}, J=8.7,2 \mathrm{H})$, 8.31 (d, $J=8.7,2 \mathrm{H})$. MS(ESI): m/z 362 (M+Na ${ }^{+}$).

Figure S17. X-ray crystal structure of $\mathbf{6 f}$. Ellipsoids enclose 50% probability.

Ethyl 2,7-dimethoxy-4b-(4-nitrophenyl)-4b,9,9a,10-tetrahydroindeno[1,2-a]indene-9acarboxylate (9).

Compound $9(0.030 \mathrm{~g}$, yield $6 \%)$ was obtained as a secondary product of the synthesis of compound 6f. An analytical sample was obtained by recrystallization from dichloromethane by slow evaporation (mp 170-171 ${ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 0.85(\mathrm{t}, J=7.1,3 \mathrm{H}), 2.93(\mathrm{~d}, J=16.4$, $2 \mathrm{H}), 3.58(\mathrm{q}, J=7.1,2 \mathrm{H}), 3.79(\mathrm{~m}, 8 \mathrm{H}), 6.78(\mathrm{~m}, 4 \mathrm{H}), 6.97(\mathrm{~d}, J=8.3,2 \mathrm{H}), 7.08(\mathrm{~d}, J=8.6,2 \mathrm{H})$, $8.03(\mathrm{~d}, J=8.5,2 \mathrm{H}) . \mathrm{MS}(\mathrm{ESI}): 482\left(\mathrm{M}+\mathrm{Na}^{+}\right)$.

Figure S18. X-ray crystal structure of 9 . Site occupation factor of O2A, C11A and C12A is 0.70 (1). Ellipsoids enclose 50\% probability.

General procedure for the preparation of indanone derivatives 2a-f,h.

A mixture of appropriate indene derivative ($\mathbf{6 a - f} \mathbf{f} \mathbf{h}, 1$ equivalent) and SeO_{2} (10 equivalents) in 1,4dioxane (about $4 \mathrm{~mL} / \mathrm{mmol}$) was heated at reflux for 18 h . After cooling to room temperature, a saturated solution of NaHCO_{3} was added dropwise and the resulting mixture was extracted with diethyl ether. The organic layer was dried over sodium sulfate and evaporated under reduced pressure. The residue was purified by flash chromatography with the indicated solvents as eluent to obtain the expected indenone derivative (2a-f,h).

Ethyl 6-methoxy-3-(2-methoxyphenyl)-1-oxo-1H-indene-2-carboxylate (2a).

Compound $\mathbf{2 a}(1.1 \mathrm{~g}$, yield $66 \%)$ was obtained starting from compound $\mathbf{6 a}(1.6 \mathrm{~g}, 4.93 \mathrm{mmol})$ as a red solid using petroleum ether-ethyl acetate ($8: 2 \mathrm{v} / \mathrm{v}$) as the eluent. An analytical sample was obtained by recrystallization from dichloromethane by slow evaporation (mp 135-137 ${ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}-$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $1.10(\mathrm{t}, J=7.1,3 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 4.13(\mathrm{q}, J=7.1,2 \mathrm{H}), 6.79$ $(\mathrm{dd}, J=8.1,2.4,1 \mathrm{H}), 6.95-7.00(\mathrm{~m}, 2 \mathrm{H}), 7.06(\mathrm{t}, J=7.5,1 \mathrm{H}), 7.16(\mathrm{~d}, J=2.4,1 \mathrm{H}) 7.35(\mathrm{dd}, J=$ $7.6,1.5,1 \mathrm{H}) 7.44(\mathrm{t}, J=7.1,1 \mathrm{H}) . \operatorname{MS}(\mathrm{ESI}): \mathrm{m} / \mathrm{z} 361\left(\mathrm{M}+\mathrm{Na}^{+}\right)$.

Figure S19. X-ray crystal structure of 2a. Ellipsoids enclose 50% probability.

Ethyl 6-methoxy-3-(3-methoxyphenyl)-1-oxo-1 H -indene-2-carboxylate (2b).

Compound $2 \mathbf{2 b}(0.16 \mathrm{~g}$, yield $61 \%)$ was obtained starting from compound $\mathbf{6 b}(0.25 \mathrm{~g}, 0.77 \mathrm{mmol})$ as a red solid using petroleum ether-ethyl acetate $(8: 2 \mathrm{v} / \mathrm{v})$ as the eluent. An analytical sample was obtained by recrystallization from dichloromethane by slow evaporation (mp 93-94 ${ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (200 MHz, CDCl_{3}): $1.15(\mathrm{t}, J=7.0,3 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 4.17(\mathrm{q}, J=7.2,2 \mathrm{H}), 6.80(\mathrm{dd}, J$ $=1.8,8.6,1 \mathrm{H}), 7.01-7.16(\mathrm{~m}, 5 \mathrm{H}), 7.40(\mathrm{t}, J=8.3,1 \mathrm{H}) . \mathrm{MS}(\mathrm{ESI}): \mathrm{m} / \mathrm{z} 361\left(\mathrm{M}+\mathrm{Na}^{+}\right)$.

Figure S20. X-ray crystal structure of 2b. Site occupation factor of C12a is 0.69 (1). Ellipsoids enclose 50% probability.

Ethyl 6-methoxy-3-(4-methoxyphenyl)-1-oxo-1H-indene-2-carboxylate (2c).

Compound $2 \mathbf{c}(0.89 \mathrm{~g}$, yield 60%) was obtained starting from compound $\mathbf{6 c}(1.42 \mathrm{~g}, 4.38 \mathrm{mmol})$ as a red solid using petroleum ether-ethyl acetate ($8: 2 \mathrm{v} / \mathrm{v}$) as the eluent. An analytical sample was obtained by crystallization from diethyl ether by slow evaporation (mp 104-111 ${ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$-NMR (200 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): 1.19(\mathrm{t}, J=7.3,3 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 4.19(\mathrm{q}, J=7.1,2 \mathrm{H}), 6.78(\mathrm{dd}, J=$ $8.6,1.8,1 \mathrm{H}), 6.98(\mathrm{~d}, J=8.5,2 \mathrm{H}), 7.12(\mathrm{~m}, 2 \mathrm{H}), 7.51(\mathrm{~d}, J=8.7,2 \mathrm{H}) . \mathrm{MS}(\mathrm{ESI}): \mathrm{m} / \mathrm{z} 361\left(\mathrm{M}+\mathrm{Na}^{+}\right)$.

Figure S21. X-ray crystal structure of 2c. Right: polymorph A, site occupation factor of C2', C3', C5' and C6' is $0.88(1)$ in both molecules of the asymmetric unit. Left: polymorph B, site occupation factor of C12a is 0.77 (1). Ellipsoids enclose 50% probability.

Ethyl 3-(3,4-dimethoxyphenyl)-6-methoxy-1-oxo-1H-indene-2-carboxylate (2d).

Compound $2 \mathbf{2 d}(0.23 \mathrm{~g}$, yield $82 \%)$ was obtained starting from compound $\mathbf{6 d}(0.27 \mathrm{~g}, 0.76 \mathrm{mmol})$ as a red solid using petroleum ether-ethyl acetate $(9: 1 \mathrm{v} / \mathrm{v})$ as the eluent. An analytical sample was obtained by recrystallization from ethyl acetate by slow evaporation (mp 107-108 ${ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (200 MHz, $\left.\mathrm{CDCl}_{3}\right): 1.21(\mathrm{t}, J=7.1,3 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 3.95(\mathrm{~s}, 3 \mathrm{H}), 4.21(\mathrm{q}, J=7.1$, $2 \mathrm{H}), 6.83(\mathrm{dd}, J=8.1,2.3,1 \mathrm{H}), 6.99(\mathrm{~d}, J=8.1,1 \mathrm{H}), 7.09(\mathrm{~d}, J=2.0,1 \mathrm{H}), 7.19(\mathrm{~m}, 3 \mathrm{H}) . \mathrm{MS}(\mathrm{ESI}):$ $\mathrm{m} / \mathrm{z} 391\left(\mathrm{M}+\mathrm{Na}^{+}\right)$.

Figure S22. X-ray crystal structure of 2d. Site occupation factor of C12a is 0.54(1). Ellipsoids enclose 50% probability.

Ethyl 6-methoxy-1-oxo-3-(3,4,5-trimethoxyphenyl)-1H-indene-2-carboxylate (2e).

Compound $\mathbf{2 e}(0.32 \mathrm{~g}$, yield $88 \%)$ was obtained starting from compound $\mathbf{6 e}(0.35 \mathrm{~g}, 0.91 \mathrm{mmol})$ as a dark-red solid using petroleum ether-ethyl acetate ($9: 1 \mathrm{v} / \mathrm{v}$) as the eluent. An analytical sample was obtained by recrystallization from dichloromethane by slow evaporation (mp 143-145 ${ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}-$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $1.20(\mathrm{t}, J=7.1,3 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.87(\mathrm{~s}, 6 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}), 4.21(\mathrm{q}, J=$ 7.1, 2H), $6.77(\mathrm{~s}, 2 \mathrm{H}) 6.84(\mathrm{dd}, J=8.1,2.4,1 \mathrm{H}), 7.17(\mathrm{~m}, 2 \mathrm{H}) . \mathrm{MS}(\mathrm{ESI}): \mathrm{m} / \mathrm{z} 421\left(\mathrm{M}+\mathrm{Na}^{+}\right)$.

Figure S23. X-ray crystal structure of 2e. Ellipsoids enclose 50\% probability.

Ethyl 6-methoxy-3-(4-nitrophenyl)-1-oxo-1H-indene-2-carboxylate (2f).

Compound $2 \mathbf{f}(0.39 \mathrm{~g}$, yield $47 \%)$ was obtained starting from compound $\mathbf{6 f}(0.79 \mathrm{~g}, 2.33 \mathrm{mmol})$ as a red solid using petroleum ether-ethyl acetate ($8: 2 \mathrm{v} / \mathrm{v}$) as the eluent. An analytical sample was obtained by recrystallization from methanol by slow evaporation (mp 175-176 ${ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$-NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): 1.17(\mathrm{t}, J=7.1,3 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 4.18(\mathrm{q}, J=7.1,2 \mathrm{H}), 6.84(\mathrm{dd}, J=8.2,2.3,1 \mathrm{H})$, $6.93(\mathrm{~d}, J=8.2,1 \mathrm{H}), 7.19(\mathrm{~d}, J=2.3,1 \mathrm{H}), 7.67(\mathrm{~d}, J=8.6,2 \mathrm{H}), 8.36(\mathrm{~d}, J=8.7,2 \mathrm{H}) . \mathrm{MS}(\mathrm{ESI})$: $\mathrm{m} / \mathrm{z} 376\left(\mathrm{M}+\mathrm{Na}^{+}\right)$.

Figure S24. X-ray crystal structure of 2f. Site occupation factor of C13a is $0.65(1)$. Ellipsoids enclose 50% probability.

Ethyl 3-(furan-3-yl)-6-methoxy-1-oxo-1H-indene-2-carboxylate (2h).

Compound $\mathbf{2 h}(0.074 \mathrm{~g}$, yield 89%) was obtained starting from compound $\mathbf{6 h}(0.080 \mathrm{~g}, 0.28 \mathrm{mmol})$ as a red solid using petroleum ether-ethyl acetate $(9: 1 \mathrm{v} / \mathrm{v})$ as the eluent. An analytical sample was obtained by recrystallization from diethyl ether by slow evaporation (mp 138-139 ${ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), 1.33(\mathrm{t}, J=7.1,3 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 4.31(\mathrm{q}, J=7.1,2 \mathrm{H}), 6.82(\mathrm{~s}, 1 \mathrm{H}), 6.87(\mathrm{dd}, J$ $=8.2,2.4,1 \mathrm{H}), 7.16(\mathrm{~d}, J=2.3,1 \mathrm{H}), 7.32(\mathrm{~d}, J=8.2,1 \mathrm{H}), 7.58(\mathrm{~s}, 1 \mathrm{H}), 8.18(\mathrm{~s}, 1 \mathrm{H}) . \mathrm{MS}(\mathrm{ESI}): \mathrm{m} / \mathrm{z}$ $321\left(\mathrm{M}+\mathrm{Na}^{+}\right)$.

Figure S25. X-ray crystal structure of 2h. Ellipsoids enclose 50\% probability.

Figure S26. ${ }^{13} \mathrm{C}$-NMR spectra in CDCl_{3} of poly-1a and model compound $\mathbf{6 a}$.

Figure S27. ${ }^{13} \mathrm{C}$-NMR spectra in CDCl_{3} of poly- $\mathbf{1 b}$ and model compound $\mathbf{6 b}$.

Figure S28. ${ }^{13} \mathrm{C}$-NMR spectra in CDCl_{3} of poly- $\mathbf{1 c}$ and model compound $\mathbf{6 c}$.

Figure S29. ${ }^{13} \mathrm{C}$-NMR spectra in CDCl_{3} of poly- $\mathbf{1 d}$ and model compound $\mathbf{6 d}$.

Figure S30. ${ }^{13} \mathrm{C}$-NMR spectra in CDCl_{3} of poly-1e and model compound $\mathbf{6 e}$.

Figure S31. ${ }^{13} \mathrm{C}$-NMR spectra of poly-1f $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$ and model compound $\mathbf{6 f}\left(\mathrm{CDCl}_{3}\right)$.

Figure $\mathbf{S 3 2} .{ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra in CDCl_{3} of poly- $\mathbf{1 g}$ and model compound $\mathbf{6 g}$.

Figure S33. ${ }^{13} \mathrm{C}$-NMR spectra in CDCl_{3} of poly- $\mathbf{1 h}$ and model compound $\mathbf{6 h}$.

References

1. Cappelli, A.; Villafiorita-Monteleone, F.; Grisci, G.; Paolino, M.; Razzano, V.; Fabio, G.; Giuliani, G.; Donati, A.; Mendichi, R.; Boccia, A. C.; Pasini, M.; Botta, C. Highly emissive supramolecular assemblies based on π-stacked polybenzofulvene hosts and a benzothiadiazole guest. J. Mater. Chem. C 2014, 2, 7897-7905.
2. Ahn, J. H.; Shin, M. S.; Jung, S. H.; Kang, S. K.; Kim, K. R.; Rhee, S. D.; Jung, W. H.; Yang, S. D.; Kim, S. J.; Woo, J. R.; Lee, J. H.; Cheon, H. G.; Kim, S. S. Indenone derivatives: a novel template for peroxisome proliferator-activated receptor γ (PPAR γ) agonists. J. Med. Chem. 2006, 49 (15), 4781-4784.
