
polymers

Review

Chain Trajectory, Chain Packing, and Molecular
Dynamics of Semicrystalline Polymers as Studied by
Solid-State NMR

Shijun Wang 1, You-Lee Hong 1,2, Shichen Yuan 1, Wei Chen 1,3 ID , Wenxuan Zhou 1, Zhen Li 1,
Kun Wang 1, Xu Min 4, Takashi Konishi 1,5 and Toshikazu Miyoshi 1,*

1 Department of Polymer Science, The University of Akron, Akron, OH 44325-3909, USA;
sw105@zips.uakron.edu (S.W.); yh35@zips.uakron.edu (Y.-L.H.); sy33@zips.uakron.edu (S.Y.);
weichendave@163.com (W.C.); wz35@zips.uakron.edu (W.Z.); zl16@zips.uakron.edu (Z.L.);
kw104@zips.uakron.edu (K.W.); konishi.takashi.8c@kyoto-u.ac.jp (T.K.)

2 RIKEN CLST-JEOL Collaboration Center, RIKEN, Yokohama, Kanagawa 230-0045, Japan
3 State Key Lab of Pollution Control and Resource Reuse Study, College of Environmental Science and

Engineering, Tongji University, Shanghai 200092, China
4 School of Physics and Materials Science & Shanghai Key Laboratory of Magnetic Resonance,

East China Normal University, Shanghai 200062, China; mxu1@uakron.edu
5 Graduate School of Human and Environmental Studies, Kyoto University, Kyoto 606-8501, Japan
* Correspondence: miyoshi@uakron.edu; Tel.: +1-330-972-6269

Received: 3 June 2018; Accepted: 13 July 2018; Published: 15 July 2018
����������
�������

Abstract: Chain-level structure of semicrystalline polymers in melt- and solution-grown crystals has been
debated over the past half century. Recently, 13C–13C double quantum (DQ) Nuclear Magnetic Resonance
(NMR) spectroscopy has been successfully applied to investigate chain-folding (CF) structure and packing
structure of 13C enriched polymers after solution and melt crystallization. We review recent NMR studies
for (i) packing structure, (ii) chain trajectory, (iii) conformation of the folded chains, (iv) nucleation
mechanisms, (v) deformation mechanism, and (vi) molecular dynamics of semicrystalline polymers.

Keywords: chain trajectory; chain packing; molecular dynamics; semicrystalline polymer; polymer
crystallization; solid-state NMR

1. Introduction

Crystallization of long polymer chains leads to drastic structural change from random coils in the
melt and solution states into folded chains in thin crystalline lamellae [1–5]. Much attention has been
paid to understand the chain-folding structure of semicrystalline polymers over the last half century,
because chain-level structures include specific information regarding when, where, and how long
polymer chains change their own structures during crystallization [5–26]. Thus, characterization of
folded chain structure is a particularly important subject to understand the crystallization process, as
well as the mechanism at the molecular level.

Three or four decades ago, neutron scattering (NS) on 2H/1H polymers indicated that the radius
of gyration (Rg) of polyethylene (PE) crystallized from the melt is close to that in the melt state, and the
Rg in the solution-grown crystals is much smaller than that in the solution state [7]. Furthermore, local
folding structures of PE and other polymers have been investigated by NS [8–12], infrared (IR) [13–15],
morphological observation by transmission electron microscopy (TEM) via surface decoration by
oligomers [16], direct visualization of chains [23–25], and force detections of single chain by atomic force
microscopy (AFM) [26]. However, there are inconsistent views on the chain-folding patterns because of
insufficient experimental resolutions. Moreover, most analytical techniques need either mono disperse
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molecular weight [12], specific morphology [16,23,26], or large supercooling [7–11,13–15]. Thereby, it
is still difficult to systematically reveal the chain trajectory of semicrystalline polymers crystallized
from the melt and solution states in a wide crystallization temperature (Tc) range. The crystallization
process of polymers is governed by kinetics. Thereby, lacking in kinetics effects on chain-level structure
is critical in understanding polymer crystallization.

Solid-state (ss) NMR spectroscopy is a sophisticated and powerful means to investigate the structure
and dynamics of organic and inorganic systems [27]. Magnetic anisotropic information of chemical
shift anisotropy (CSA) and 2H quadruple coupling has significantly contributed to understanding
molecular dynamics of polymers in both amorphous and crystalline regions. High-resolution NMR is
sensitive to intermolecular interactions, packing structure, and conformations of polymers. Dipolar-based
ssNMR techniques have successfully revealed the three dimensional structure of peptides, as well as
biomacromolecules, in the past decade [28–30]. In polymers, molecular motions including time scale
and amplitude of re-orientations in the glassy [27], crystalline [31–47], and melt [48,49] states, and local
packing [50] and conformation [51] in the glassy state have been elucidated by various NMR techniques.

Recently, 13C–13C double quantum (DQ) NMR spectroscopy has been applied to elucidate
chain trajectory and packing structures for 13C selectively isotopic enriched isotactic-Poly(1-butene)
(iPB1), isotactic-poly(propylene) (iPP), and poly(L-lactic acid) (PLLA) in the melt- and solution-grown
crystals [52–63]. 13C–13C dipolar interaction is governed by internuclear distance, spin topology,
and spin number. In the crystalline regions, atomic coordinates of all carbon atoms have been
successfully determined by wide angle X-ray diffraction (WAXD) and electron diffraction (ED).
Thus, the experimental DQ results were compared with the simulated ones based on 13C atomic
positions determined by the folding patterns of 13C labeled chains in the crystalline regions [52,55,62].
As results, average values of chain-folding number <n>, chain-folding fraction <F>, and shape and size
of folded chains clusters were extracted. Here, we review recent progress for the chain-level structure
and molecular dynamics of various semicrystalline polymers by ssNMR.

2. Definition of <n> and <F>

The chain-folding pattern of the jth chain in one lamella is schematically depicted in Scheme 1, where
the chain locally forms adjacent re-entry structures. For example, the first and second clusters have five
and three adjacent folds, respectively. The number of adjacent re-entry folds of the ith cluster of the jth
chain is defined as nij. The term <n> can be expressed by an equation of <n> = ∑m

j=1(∑
lj
i=1 nij)/ ∑m

j=1 lj,
where lj is the number of chain-folding (CF) clusters in the jth chain of total m chains. Fj is the fraction
of the crystallized chain stems participating in the adjacent re-entry clusters in the jth chain. Thus, Fj is

expressed as ∑
lj
i=1(nij + 1)/Nj, where Nj is the total number of crystallized chain stems in the jth chain.

For example, there are si stems in the CF cluster of i = 1 and four stems in cluster i = 2. <F> is an ensemble
average of Fj, which is expressed as <F> = ∑m

j=1(∑
lj
i=1(nij + 1))/ ∑m

j=1 Nj.
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Scheme I. Schematic illustration of chain-folding patterns of jth chain in one lamella. nij means 82 
number of adjacent re-entry folds of the ith cluster of the jth chain. (Reprinted with permission from 83 
Macromolecules 2015, 48, 5752–5760. Copyright (2015) American Chemical Society). 84 
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Scheme 1. Schematic illustration of chain-folding patterns of jth chain in one lamella. nij means
number of adjacent re-entry folds of the ith cluster of the jth chain. (Reprinted with permission from
Macromolecules 2015, 48, 5752–5760. Copyright (2015) American Chemical Society).

3. Packing Analysis

Figure 1a shows the 13C single quantum (SQ) and DQ cross-polarization magic angle spinning
(CPMAS) NMR spectra of 13C CH3 35 wt% enriched iPB1 form I melt-grown crystals at 95 ◦C [55], acquired
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using BRUKER AVANCE 300 equipped with a 4 mm double resonance probe at room temperature.
The MAS frequency was set to 5102 Hz. The recycle delay and cross-polarization (CP) time was set
as 2 s and 1 ms, respectively. A PostC7 sequence pulse [64] with field strength of 35.7 kHz was used
for exciting and reconverting 13C−13C DQ signals into single quantum (SQ) signals. Two-pulse phase
modulation (TPPM) [65] and continuous wave decoupling with a field strength of 104 kHz were carried
on 1H channel during the 13C acquisition and recoupling periods, respectively. DQ efficiency (ξ) is
obtained as the intensity ratio of the DQ and SQ signals. Figure 1e,f depict DQ buildup curves of the
13C-labeled iPB1 form I melt- and solution-grown crystals, respectively. The initial increase of the DQ
curve represents measurement of the apparent dipolar coupling strengths for a given 13C site, which
represents root mean square (RMS) of many 13C–13C pair couplings and the latter decay is attributed
to T2 relaxation process. The DQ buildup curve of the melt-grown crystals is identical with that in the
solution-grown crystals. Hong et al. quantitatively treated with nuclear magnetic interactions of 13C CH3

spin systems in the crystalline regions. Eleven-spin system as shown in Figure 1b–d was used to determine
the chain-packing and folding structure. The system consists of a reference methyl carbon colored in
red as well as the 10 surrounding carbons (eight carbons among interstems and two in an intrastem) at
distances of less than 6.4 Å (Figure 1b). The projection of the 11 carbon systems on the (001) and (120)
planes is shown in Figure 1c,d. The reference is fixed to detect the DQ signals in the numerical simulations
performed using SPINEVOLUTION [55,66]. The atomic coordinates determined by Natta et al. are used
for the spin-dynamics simulation [67]. The calculated curve is slightly slower than the experimental curve
(Figure 1e,f). Thus, the internuclear distances are slightly shortened by modifying atomic coordinates.
The simulated DQ curve based on the shortest 13C–13C interstem distance of 4.0 Å and relaxation value of
T2 = 8.3 ms can reproduce the experimental data (red curves in Figure 1e,f). Similar packing analysis was
conducted on iPP [53,54] and PLLA crystals [58,63]. In all systems, the internuclear distances determined
by NMR are consistent with those by WAXD and electron diffraction (ED) within 5% errors.

Polymers 2018, 10, x  3 of 20 

 

3. Packing Analysis 86 

Figure 1a shows the 13C single quantum (SQ) and DQ cross-polarization magic angle spinning 87 
(CPMAS) NMR spectra of 13C CH3 35 wt% enriched iPB1 form I melt-grown crystals at 95 °C [55] , 88 
acquired using BRUKER AVANCE 300 equipped with a 4 mm double resonance probe at room 89 
temperature. The MAS frequency was set to 5102 Hz. The recycle delay and cross-polarization (CP) 90 
time was set as 2 s and 1 ms, respectively. A PostC7 sequence pulse [64] with field strength of 35.7 91 
kHz was used for exciting and reconverting 13C− 13C DQ signals into single quantum (SQ) signals. 92 
Two-pulse phase modulation (TPPM) [65] and continuous wave decoupling with a field strength of 93 
104 kHz were carried on 1H channel during the 13C acquisition and recoupling periods, respectively. 94 
DQ efficiency (ξ) is obtained as the intensity ratio of the DQ and SQ signals. Figure 1e,f depict DQ 95 
buildup curves of the 13C-labeled iPB1 form I melt- and solution-grown crystals, respectively. The 96 
initial increase of the DQ curve represents measurement of the apparent dipolar coupling strengths 97 
for a given 13C site, which represents root mean square (RMS) of many 13C–13C pair couplings and the 98 
latter decay is attributed to T2 relaxation process. The DQ buildup curve of the melt-grown crystals 99 
is identical with that in the solution-grown crystals. Hong et al. quantitatively treated with nuclear 100 
magnetic interactions of 13C CH3 spin systems in the crystalline regions. Eleven-spin system as shown 101 
in Figure 1b,c,d was used to determine the chain-packing and folding structure. The system consists 102 
of a reference methyl carbon colored in red as well as the 10 surrounding carbons (eight carbons 103 
among interstems and two in an intrastem) at distances of less than 6.4 Å  (Figure 1b). The projection 104 
of the 11 carbon systems on the (001) and (12̅0) planes is shown in Figure 1c and d. The reference is 105 
fixed to detect the DQ signals in the numerical simulations performed using SPINEVOLUTION 106 
[55,66]. The atomic coordinates determined by Natta et al. are used for the spin-dynamics simulation 107 
[67]. The calculated curve is slightly slower than the experimental curve (Figure 1e and f). Thus, the 108 
internuclear distances are slightly shortened by modifying atomic coordinates. The simulated DQ 109 
curve based on the shortest 13C–13C interstem distance of 4.0 Å  and relaxation value of T2 = 8.3 ms can 110 
reproduce the experimental data (red curves in Figure 1e and f). Similar packing analysis was 111 
conducted on iPP [53,54] and PLLA crystals [58,63]. In all systems, the internuclear distances 112 
determined by NMR are consistent with those by WAXD and electron diffraction (ED) within 5% 113 
errors.  114 

 115 

Figure 1. (a) 13C relaxation-filtered single quantum (SQ) (black) and double quantum (DQ) (red)
cross-polarization magic angle spinning (CPMAS) NMR spectra of 35 wt% 13CH3-enriched iPB1 form
I-rich sample grown at Tc = 95 ◦C. (b) Trigonal crystal structure of iPB1 form I determined by wide angle
X-ray diffraction (WAXD) and corresponding 11-spin system of 13C CH3 groups on the (001) plane [67].
The projection of the 11-spin systems on the (c) (001) and (d) (120) planes. The DQ buildup curves of
iPB1 form I (e) melt grown-crystals crystallized at 95 ◦C (black open circles) and at ~0 ◦C (green ones) and
(f) solution-grown crystals at 60 ◦C (black ones) and at ~0 ◦C (green ones). In (e) and (f), the simulated
red and blue DQ curves based on the closest interstem 13C–13C internuclear distance; <r> of 4.0 Å; and an
exponential T2 of 8.3 ms and <r> = 4.2 Å and T2 = 10.5 ms, respectively. (Reprinted with permission from
Macromolecules 2015, 48, 3282–3293. Copyright (2015) American Chemical Society).
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Very recently, Zhou et al. studied the packing structure of PLLA/poly(D-Lactic-Acid) (PDLA)
stereocomplex (SC) by DQ NMR [63]. Ikada et al. reported that PLLA/PDLA blends precipitated by
excess poor solvent showed a crystalline structure with a higher melting point (Tm = 220 ◦C) than
PLLA (or PDLA) homo α crystals (180 ◦C) [68]. Later on, Lotz et al. proposed the crystal packing
structure of SC to be R3c or R3c, where PLLA 31 helices alternatively pack with PDLA 31 helices by
paring PLLA and PDLA in a trigonal crystal lattice with a = b = 1.498 nm, c = 0.87 nm, α = β = 90◦,
and γ = 120◦ [69]. Recently, Tashiro et al. carefully investigated fiber WAXD data for SC crystals
crystallized from the melt state with different blending ratios of PLLA/PDLA= 7/3–3/7 and proposed
the P3 model [70], where either PDLA or PLLA occupies one site with the probability determined by
the blending ratio and the neighboring site can be occupied by either PDLA or PLLA, depending on
the blending ratio. However, the calculated WAXD pattern for P3 model is very similar to that for R3c.
Thereby, Zhou et al. applied DQ NMR to distinguish two structures by atomic resolutions [63].

Polymers 2018, 10, x  4 of 20 

 

Figure 1. (a) 13C relaxation-filtered single quantum (SQ) (black) and double quantum (DQ) (red) cross-116 
polarization magic angle spinning (CPMAS) NMR spectra of 35 wt% 13CH3-enriched iPB1 form I-rich 117 
sample grown at Tc = 95 °C. (b) Trigonal crystal structure of iPB1 form I determined by wide angle X-118 
ray diffraction (WAXD) and corresponding 11-spin system of 13C CH3 groups on the (001) plane [67]. 119 
The projection of the 11-spin systems on the (c) (001) and (d) (12̅0) planes. The DQ buildup curves of 120 
iPB1 form I (e) melt grown-crystals crystallized at 95 °C (black open circles) and at ~0 °C (green ones) 121 
and (f) solution-grown crystals at 60 °C (black ones) and at ~0 °C (green ones). In (e) and (f), the 122 
simulated red and blue DQ curves based on the closest interstem 13C–13C internuclear distance; <r> of 123 
4.0 Å ; and an exponential T2 of 8.3 ms and <r> = 4.2 Å  and T2 = 10.5 ms, respectively. (Reprinted with 124 
permission from Macromolecules 2015, 48, 3282–3293. Copyright (2015) American Chemical Society). 125 

Very recently, Zhou et al. studied the packing structure of PLLA/poly(D-Lactic-Acid) (PDLA) 126 
stereocomplex (SC) by DQ NMR [63]. Ikada et al. reported that PLLA/PDLA blends precipitated by 127 
excess poor solvent showed a crystalline structure with a higher melting point (Tm = 220 C) than 128 
PLLA (or PDLA) homo α crystals (180 C) [68]. Later on, Lotz et al. proposed the crystal packing 129 
structure of SC to be R3c or 𝑅3̅𝑐, where PLLA 31 helices alternatively pack with PDLA 31 helices by 130 
paring PLLA and PDLA in a trigonal crystal lattice with a = b = 1.498 nm, c = 0.87 nm, α = β = 90, and 131 
γ = 120 [69]. Recently, Tashiro et al. carefully investigated fiber WAXD data for SC crystals 132 
crystallized from the melt state with different blending ratios of PLLA/PDLA= 7/3–3/7 and proposed 133 
the P3 model [70], where either PDLA or PLLA occupies one site with the probability determined by 134 
the blending ratio and the neighboring site can be occupied by either PDLA or PLLA, depending on 135 
the blending ratio. However, the calculated WAXD pattern for P3 model is very similar to that for R3c. 136 
Thereby, Zhou et al. applied DQ NMR to distinguish two structures by atomic resolutions [63].  137 

 138 

Figure 2. (a) R3c packing structure and 13C five spin systems of 13C CH3 labeled poly(L-lactic acid) 139 
(PLLA) in stereocomplex (SC), including reference (red) two intrastem (green) and two interstem 140 
spins (blue) at distance less than 7 Å  used in calculations for the DQ curve. (b) Schematic drawing for 141 
six submodels in the P3 model. (c) Calculated 13C–13C DQ buildup curves based on R3C (red solid) and 142 
P3 models (blue) at blending ratios of PLLA/PDLA=7/3 (solid), 1/1 (dashed), and 3/7(dotted) with T2 143 
value of 9.5 ms. (d) 13C CPMAS SQ (black) and DQ (red) NMR spectra for the 33% PLLA/PDLA blends 144 
at a blending ratio of PLLA/PDLA= 1/1, with an excitation time of 6.27 ms and DQ buildup curves for 145 
PLLA/PDLA SC at PLLA/PDLA blending ratios of 7/3 (pink filled circle), 6/4 (light blue), 5/5 (sky 146 
blue), 4/6(light green), and 3/7 (red) with the calculated curve for the R3c model. (Reprinted with 147 
permission from ACS Macro Lett. 2018, 7, 667–671. Copyright (2018) American Chemical Society). 148 

Figure 2. (a) R3c packing structure and 13C five spin systems of 13C CH3 labeled poly(L-lactic acid)
(PLLA) in stereocomplex (SC), including reference (red) two intrastem (green) and two interstem spins
(blue) at distance less than 7 Å used in calculations for the DQ curve. (b) Schematic drawing for six
submodels in the P3 model. (c) Calculated 13C–13C DQ buildup curves based on R3C (red solid) and
P3 models (blue) at blending ratios of PLLA/PDLA=7/3 (solid), 1/1 (dashed), and 3/7(dotted) with
T2 value of 9.5 ms. (d) 13C CPMAS SQ (black) and DQ (red) NMR spectra for the 33% PLLA/PDLA
blends at a blending ratio of PLLA/PDLA= 1/1, with an excitation time of 6.27 ms and DQ buildup
curves for PLLA/PDLA SC at PLLA/PDLA blending ratios of 7/3 (pink filled circle), 6/4 (light blue),
5/5 (sky blue), 4/6(light green), and 3/7 (red) with the calculated curve for the R3c model. (Reprinted
with permission from ACS Macro Lett. 2018, 7, 667–671. Copyright (2018) American Chemical Society).

In the case of the R3c (R3c) model, the PLLA stems are located at three sites in the hexagons
depicted in Figure 2a. A maximum five spin system is statistically treated in simulations of the DQ
buildup curve in the R3c model [69]. The atomic coordinates determined by ED [69] are slightly different
and the shortest inter-stem methyl–methyl carbons distance is shortened to 3.9 Å. The calculated result
is depicted as a red curve in Figure 2c. In the P3 model, PLLA stems are statistically located at
each site of the six sites in the hexagon depending on the blending ratio of 7/3–3/7, as shown in
Figure 2b. Six kinds of submodels including different PLLA stem numbers were constructed. Thus, the
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weight-averaged DQ curves for all submodels generate different curves depending on the blending
ratio, as depicted in Figure 2b. All three simulated curves for different blending ratios show much
faster increases at the initial stage and much larger ξmax than the calculated one for the R3c model.

Figure 2d depicts experimental DQ curves of 13C-labeled PLLA chains in SC at blending ratios
of PLLA/PDLA = 7/3–3/7. The individual curves are very consistent with each other. Mixing-ratio
independence of the DQ curves can reject the P3 model. The results convincingly indicate that PLLA
and PDLA stems regularly and alternatively pack with each other. Thereby, DQ NMR with atomic-scale
resolution allows one to conclude that PLLA/PDLA SC form R3c (R3c) structure proposed by ED study [69].

Another example is the metastable form of iPP. When iPP melt is slowly cooled, the stable α crystal
can be formed. On the other hand, quenching with cooling rates above ~90 K/s results in the mesomorphic
form [71]. WAXD data generates two broad maxima at 2θ = 15.1◦ and 21.7◦. As a result of insufficient
resolutions of WAXD pattern, the crystalline structure of iPP mesomorphoic form has not been well
understood compared with other polymorphs of α and β forms. To solve this issue, Yuan et al. studied
packing structure of iPP mesomorphic by DQ NMR approach. By comparisons of the simulated and
experimental DQ curves for the α, β, and mesomorphic form of iPP, it is concluded that the packing
structure of the mesomorphic form is extremely close to or the same as that for the β form [59].

4. Evaluations of Re-entrance sites of Folded Chains by DQ NMR

Figure 3A–D illustrates various chain-folding patterns of iPB1 in form I crystals. Depending on
re-entrance sites of the folded chains, interaction spin number, and spin topology, inter-nuclear
distances are varied. Figure 3E depicts calculated 13C–13C DQ curves for CF0-III of 35% 13C CH3

enriched iPB1 in the form I crystals under the assumption of a blending ratio of labeled and nonlabeled
chains with 1:9 [52,55,56]. Infinite chain-folding models are used in the simulations. CFI is an isolated
stem without adjacent re-entry structure, where intra-stem 13C–13C dipolar interactions result in the
lowest buildup curve (pink curve in Figure 3E) among the four models. In CFI-III, additional inter-stem
13C–13C dipolar interactions depending on the re-entrance sites result in faster and higher DQ curves
than that in CF0 [52]. For example, the CFII model with a zigzag pattern showed the highest spin
density and, as a result, led to the fastest and highest DQ curve (red curve in Figure 3E) among the
four models [52]. The simulation perspective emphasizes that the DQ approach potentially identifies
different chain trajectories. In real folding analysis, <n> and <F> in addition to the chain-folding
pattern affect experimentally obtained DQ curves.
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Figure 3. Four chain-folding (CF) patterns of (A) CF0, (B) CFI, (C) CFII, and (D) CFIII, and (E) the
corresponding calculated DQ buildup curves for 35% 13C CH3 enriched iPB1 form I crystal blends with
non-labeled iPB1 at a blending ratio of 1:9 under the assumption of infinite folding structures [52,55,56].
(Reprinted with permission from ACS Macro Lett. 2016, 5, 355–358. Copyright (2016) American
Chemical Society).
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5. Co-Crystallization of 13C Selectively Labeled and Non-Labeled Chains at Molecular Scales

When the isotope labeling technique is applied to structural study in crystalline polymers,
special attention must be given to avoid segregations of the labeled and non-labeled chains during
crystallization. In fact, slow crystallization of 2H and 1H PE blends induces physical separations of two
components [10]. Thereby, most NS and IR studies using 2H/1H isotope labeling were conducted on
rapidly quenched samples [7–9,11,13,14]. This is the reason the kinetics effect on chain-level structure
of PE cannot be explored by NS and IR techniques.

In the literature [55], Hong et al. carefully investigates co-crystallization (segregation) of 13C
labeled and non-labeled iPB1 form I crystals crystallized from dilute solution and melt. The 13C–13C
DQ buildup curves of the iPB1 crystal blends with different mixing ratios (10/0, 5/5, 1/9) of
13C-labeled/non-labeled iPB1 crystallized at 95 ◦C and solution-grown crystals at 60 ◦C are measured,
respectively. If segregations occur during crystallization, blending-ratio independence of DQ curves is
expected. Actually, the mixing-ratio dependences of the DQ buildup curves were clearly observed in
both solution- and melt-grown crystals. These results evidently indicate that individual 13C-labeled
chains are surrounded by the non-labeled chains. The investigated Tc in both solution- and melt-grown
crystallization were the highest. This fact indicates that the 13C selective isotopic labeling approach is
applicable to chain-folding analysis in both melt- and solution-grown crystals over a wide Tc range.
The same conclusions were obtained in iPP [53] and PLLA systems [58].

6. Solution-Grown Crystals

Hong and Miyoshi investigated the morphology and chain-folding structure of iPB1 in
solution-grown crystals as a function of supercooling [55,56]. Figure 4A,B depicts TEM image of
iPB1 solution grown crystals, crystallized at 60 and ~0 ◦C, respectively [55,56]. In the former, the
crystals represent hexagonal morphology with a flat face with side-plane length of 2–3 µm and
thickness of ca. 6.5 nm (AFM). In the latter, rapid quenching leads to kinetically circulated crystals
consisting of multiple layers [56]. The observed morphological change is attributed to kinetics effect.Polymers 2018, 10, x  7 of 20 
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Figure 4. Transmission electron microscopy (TEM) images of iPB1(A) hexagonal and (B) circulated
crystals prepared at 60 ◦C and ~0 ◦C, respectively, in dilution solution. (Reprinted with permission
from ACS Macro Lett. 2014, 3, 556–559.Copyright (2014) American Chemical Society).

According to Lauritzen–Hoffman (LH) theory [3,4], it is expected that chain-folding direction
is parallel to the growth front at sufficiently high Tc. Thus, CFI and CFII structures are constructed
as shown in Figure 5a. On the basis of the crystal thickness of 6.5 nm and the molecular weight, the
maximum folding number <nmax> is calculated to be 21. By comparisons of the experimental DQ curve
with the simulated curves, it is demonstrated that only the CFII model can reproduce the experimental
data at Tc = 60 ◦C (black open circle in Figure 5b). After adjusting either <n> or <F> values, simulated
curves based on <n> = 21 at <F> = 90% and <n> = 8 at <F> = 100% well reproduce the experimental
data (black open circle) as shown in Figure 5c,d [55,56].
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Figure 5. Schematic illustration of (a) hexagonal single crystal crystallized in dilute solution at 60 ◦C and
two possible chain-folding patterns of CFI or CFII. (b–d) Black open circles are the experimental DQ buildup
curve for 13C-labeled iPB1 stems in the blend single crystals with non-labeled chains (1/9) crystallized
at 60 ◦C. (b) The simulated DQ buildup curve for CFI and CFII based on <n> = 21 and <F> = 100%.
(c) <n> and (d) <F> effects on the simulated DQ buildup curves based on <FCFII> = 100% and <n> = 21,
respectively. (Reprinted with permission from Macromolecules 2015, 48, 3282–3293. Copyright (2015)
American Chemical Society).Polymers 2018, 10, x  8 of 20 
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Figure 6. Schematic illustrations of (a) the circular crystal crystallized in dilute solution at ~0 ◦C and
three possible chain-folding structures of CF0, CFIII, and CFIV. (b–d) The black and green open circles
represent the experimental DQ buildup curves for 13C-labeled iPB1 chains in the crystal blends with
non-labeled chains (1/9) crystallized at ~0 and 60 ◦C, respectively. (b) The simulated DQ curves for
CFIII (orange) and CFIV (blue) with <n> = 10 and <F> = 80% (solid line) and <n> = 5 and <F> = 50%
(dots) and for CF0 (pink solid curve). (c) Blue solid curve is simulated on the basis of CFIV <n> = 21
and <FCFIV> = 95%, and the curve composed of sky blue crosses is simulated on the basis of <n> = 8
and <FCFIV> = 100%. (d) Red crosses and black solid curve are the simulated curves for CFII with
<n> = 21 and <FCFII> = 90%, and <n> = 8 and <FCFII> = 100%, respectively. (Reprinted with permission
from Macromolecules 2015, 48, 3282–3293. Copyright (2015) American Chemical Society).
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Surprisingly, the experimentally obtained DQ curve at Tc = ~0 ◦C (open circle in Figure 6b)
is well consistent with the DQ curve at 60 ◦C. This result indicates that at low concentrations
(0.03 wt%), the majority of the individual chains adopt nearly perfect adjacent re-entry structures and
create clusters of single molecules at ~0 ◦C, and the cluster size is independence of Tc used in the
experiment [55,56]. This result means that chain-folding event is a local process and is not affected by
available kinetics, while kinetics significantly affects morphology. In other words, kinetics differently
influences formations of polymer crystals at different length scales. This explanation contradicts the
LH theory [3,4], which hypothesizes that microscopic chain-level structure, dominated by kinetics,
determines the macroscopic morphology. This is the first experimental data to support nanocluster
formation in solution grown crystals.

It is believed that secondary nucleation generates two dimensional (2D) clusters (linear) of the
folded chains under sufficiently low supercooling, while primary nucleation results in 3D clusters
to minimize surface free energy [1]. The Tc independence of cluster size may give one new question
about the chain-folding process: When do polymer chains fold during the crystallization process? The key
issue to answer this question is determination of the cluster shape (2D vs. 3D). Hong and Miyoshi
simulated DQ buildup curves for multiple layers nanoclusters for 13C-labeled iPB1 form I crystal
blends with non-labeled chains. Unfortunately, the DQ curve at a single resonance of iPB1 form I
cannot distinguish between the 2D and 3D clusters [55,56].

To elucidate the cluster dimensions of the folded chains, as well as the folding mechanism, Hong
et al chose form III of iPB1 among the various semicrystalline polymers [57]. Form III adopts an
orthorhombic packing structure leading to magnetically inequivalent doublet 13C peaks for each
carbon (Figure 7B). Thus, dipolar interactions at two sites within the same chains are used to recognize
either 2D or 3D clusters. By assuming various 2D conformations, simulated data cannot simultaneously
reproduce the experimental DQ buildup curves at two sites. On the other hand, 3D clusters in multiple
layers, for example, 14 stems in two layers and 12 stems in four layers, can reproduce the experimental
data by adjusting the <F> value (Figure 7C) [57]. The observed Tc independence of the 3D cluster
structure supports; (i) poor solvent–polymer interactions leads to 3D clusters by self-folding in the
initial stage and (ii) the formed clusters are deposited on the growth front as the second step (Figure 7E).
The proposed mechanism provides a falsification of the well-known LH theory [3,4], but is consistent
with the bundle [6,17,18] and aggregation models [19].

Very recently, Wang et al. investigated morphology, chain-packing structure, and chain-folding
patterns of 13C 30% CH3 labeled PLLA in solution-grown crystals at Tc = 90, 50, and ~0 ◦C [58].
At the highest Tc, lozenge shape single crystals with well-defined growth faces are obtained while the
lowest Tc induces dendrite morphology. Again, it is demonstrated that kinetics significantly affects
morphology at µm. Interestingly, PLLA chains adopt thermodynamically stable α crystals in solution
grown crystals at all Tc s of 90–0 ◦C.

By comparisons of experimental DQ curves with simulated ones, only multiple layers model with
<n> = 7 in two or higher layers can reproduce the experimental data (Figure 8a). Each PLLA chain
participates in small nano-clusters in three dimensions. This result also supports three dimensional
nanoblock formations of a part of polymer chains prior to crystallization as illustrated in Figure 8b.
Nano-block size is much larger than the unit cell of α crystals. Tc independence of nano-cluster size
could reasonably explain why PLLA chains adopt thermodynamically α packing structure even in
different morphologies as a function of Tc.
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for 35% 13C CH3 enriched iPB1 form III single crystal blends with nonl-abeled chains at a blending ratio of
1:9, crystallized in dilute solution at 50 ◦C. (C) The DQ buildup curves for the 13C labeled CH3 signals at A
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four layers at <F> = 65% [57]. Two possible chain-folding mechanisms: (D) primary nucleation in solution
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Figure 8. (a) 13C–13C DQ buildup curve for 13C CH3-enriched PLLA single crystal blends with
non-labeled chains crystallized (a) in 0.05 wt% amino acetate solution at 90 ◦C (green open triangles)
and ~0 ◦C (blue open circles). The solid curves with <n> = 7 and <F> = 100% in two layers represents
best-fit curves with experimental data. (b) Schematic illustration of nano building blocks of eight stem
clusters in solution grown crystals at Tc = 90 and ~0 ◦C. (Reprinted with permission from Macromolecules
2017, 50, 6404–6414.Copyright (2017) American Chemical Society).
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7. Melt-Grown Crystals

Polymer chains are highly entangled in the highly condensed melt. Thereby, topological
constraints might significantly affect chain-folding events during crystallization as a function of
kinetics. In the literature [52], chain trajectory of iPB1 form I crystallized at a wide range of Tc of
95–~0 ◦C was investigated by ssNMR. Melting temperature of iPB1 is ca. 126 ◦C. Crystallization at Tc

of 95 ◦C was really slow and took two days. Small-angle X-ray scattering (SAXS) indicated that crystal
lamellae thickness varies between 10 nm at Tc = 0 ◦C and 21 nm at Tc = 95 ◦C.

Figure 9a depicts the DQ buildup curve (black open circles) of 35 wt% 13C–CH3 enriched iPB1 form
I crystal blends with non-labeled chains crystallized at 95 ◦C. The ξmax value of 15% is considerably
higher than the simulated curves of CF0, CFI, and CFIII, and is lower than that of CFII under the
assumptions of <n> = 5 and <F> = 100%. Thus, only CFII is a plausible structure at Tc = 95 ◦C.
Using the crystal thickness and molecular weight, the best-fit curves were obtained in two limit
structures of <n> = 2 and <FCFII> = 100% (blue solid curve) and <n> = 5 and <FCFII> = 80% (red crosses)
(Figure 9a). The possible two chain trajectories in the melt-grown crystals are represented at the bottom
of Figure 9a. One structure includes five successive folds in one lamella and another limit structure is
a small nano-cluster including three stems connected by two folds. Note that the DQ results cannot
distinguish between two limit structures. The ξmaxs of the DQ buildup curves at Tc = 50 (blue open
circles) and ~0 ◦C (green) are ca. 14% as illustrated in Figure 9b. They are slightly lower than the ξmax

at Tc = 95 ◦C (15%). The best-fit DQ buildup curves to the experimental data at Tc = 50 and ~0 ◦C are
drawn using CFII with <n> = 1.7 and <F> = 100% (black solid curve in Figure 9b). This means that
the CF structure is almost independent of Tc, even though lamellae thickness drastically changes as a
function of Tc.Polymers 2018, 10, x  11 of 20 
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Figure 9. 13C–13C DQ buildup curves for 35% 13C–CH3 enriched iPB1 crystal blends with a non-labeled
one with a mixing ratio of 1/9, formed at (a) 95 ◦C (black open circles), (b) 50 ◦C (blue open circles),
and ~0 ◦C (green open circles). (a) The calculated DQ buildup curves based on CF0 (pink), CFI (green),
CFII (red), and CFIII (orange) under the assumption of <n> = 5 and <F> = 100%. The calculated DQ
curves for CFII with <n> = 2 and <FCFII> = 100% (blue solid curve), and <n> = 5 and <FCFII> = 80%
(red crosses). (b) The calculated DQ buildup curves for CFII with <n> = 1.7 with FCFII> = 100%
(black solid) at Tc = 50 ◦C and ~0 ◦C. Schematic illustrations of plausible chain-folding patterns in the
lamellae: <n> = 5 (red chain) and <n> = 2 (blue) on the bottom of (a) and <n> = 10 (green) and <n> = 1.7
(black) on the bottom of (b). (Reprinted with permission from Macromolecules 2015, 48, 3282–3293.
Copyright (2015) American Chemical Society).
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Another interesting sample is iPP α crystal. When iPP melt is cooled down at temperatures
from melt state, iPP crystallizes as α form. The α form is further divided into α1 and α2 crystals
as shown in Figure 10a,b [41,72]. The α1 crystals are kinetically favored, while the α2 crystals are
thermodynamically favored. XRD has been used to distinguish α1 from α2 structure. However, very
minor differences led to difficulty of quantification of α2 fraction at high Tc.
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Figure 10. Unit-cell structures of (a) α2 and (b) α1 forms of iPP. (c) The 13C CPMAS NMR spectra for
the pure α form of iPP at different supercoolings. (Reprinted with permission from J. Phys. Chem. B
2010, 114, 92–100. Copyright (2010) American Chemical Society).

Figure 10c depicts 13C CPMAS NMR spectra for iPP melt-grown crystals formed as a function
of supercooling [41]. The annealed and low Tc samples represent structure-less broad 13C signals,
corresponding to α1. The observed broad signals originate from inhomogeneous line broadening due
to variations of up- and downward chain orientations. At ∆T = 64 ◦C, narrowed doublet signals appear
on the broad line shapes, and the doublet signals grow with decreasing ∆T. The observed doublet
line shape corresponds to local ordering of the packing structures, namely, α2. The fraction of α2 can
be determined in terms of subtraction of the structure less line shape from the observed spectra at
various ∆Ts. As results, the maximum α2 fraction was determined to be 62% at Tc = 150 ◦C, where
crystallization takes more than 30 days.

Furthermore, the kinetic effect on chain-folding structure was investigated for 13C 30 wt% CH3

enriched iPP (<Mw> = 172 K g/ mol) α1 and α2-rich crystals, which were crystallized at 100 and
150 ◦C [41]. It was expected that α1 and α2 crystals have largely different <n> and <F>. However, DQ
experiments clearly demonstrate that the iPP chains adopt <n> = ~5 under the assumption of
<F> = 100% in both α1- and α2-rich crystals.

Both iPP and iPB in the melt-grown crystals indicate that <n> and <F> do not vary as a function
of Tc. These newly obtained results contradict expectations from the LH theory [3,4] and indicate that
chain-folding events are not related to overall crystal growth rate. It is worthwhile to note that recent
MD simulation of coarse grained Poly(vinyl alcohol) (PVA) model predicted <n> to be ~2.4 in the
melt-grown and <n> is independent of Tc [73,74]. These simulation results are very consistent with
recent ssNMR observations [52–56].

Understanding the formation of nucleation in the early stages of crystallization is a challenging
issue in polymer crystallization. Simultaneous measurements of SAXS, WAXD, and IR enabled us to
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observe structural evolution of semicrystalline polymer prior to crystallization. Kaji et al. [20] and
Olmsted et al. [21] proposed spinodal decomposition (SD) prior to nucleation and growth. It is difficult
for DQ NMR to conduct in-situ observations. However, a rapidly quenched system can retain the
structure dominated by primary nucleation. One good sample is the iPP mesomorphic form obtained
by rapid quenching into icy water from the melt. Yuan et al. investigated the chain-folding structure
of the mesomorphic form of iPP. [54] The mesomorphic domain includes only ~60 stems and its size
is comparable to critical nuclei in the initial stage of crystallization predicted by MD simulation. [54]
Figure 11A depicts the DQ buildup curve for 15% 13C CH3 enriched iPP mesomorphic blends with
non-labeled iPP and simulated curves on the basis of isolated model, as depicted in Figure 11B, and
nanoclusters (Figure 11C). The comparison indicates that the iPP chains fold 3–4 times during rapid
quenching into icy water. [54] From the NMR observations, it is concluded that the iPP chains initiate
nucleation via self-folding in the early stage of crystallization.
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Figure 11. (A) 13C–13C DQ buildup curve for 15 wt% 13C CH3 enriched iPP mesomorphic blends with
nonlabeled one with a blending ratio of 1:9. The simulated DQ curves were obtained on the basis of
(B) isolated model (green) and (C) nanocluster model via folding with <n> = 4 and <F > = 100% [54,62].
(Reprinted with permission from ACS Macro Lett. 2016, 5, 355–358. Copyright (2016) American
Chemical Society).

8. Molecular Dynamics in Semicrystalline Polymers

Molecular dynamics of polymer chains in the crystalline regions plays a significant role in
polymer crystallization, phase transition, surface melting, mechanical property, and deformations.
Among various characterization tools and ssNMR especially, exchange NMR has successfully
contributed to understanding detailed dynamics mode and dynamics frequency (or correlation
time, <τc>) of various semicrystalline polymers, including polyethylene [31–35,75], iPP [41,59,72,76],
poly(acrylonitrile) [36,77], poly(ethylene oxide) [46], poly(oxymethylene) [78], poly(ethylene
terephthalate) [79], isotactic-poly(4-methyl-1-penetene) (iP4M1P) [38–40], PLLA [42,43], Nylon
66 [80,81], Poly(ε-caprolactone) [44,45], poly(tetrafuloroethylene) [82], poly(vinylidene fluoride) [83],
and so on. Through NMR dynamics works, one dimensional exchange NMR using center-bands
only of detection of exchange (CODEX) NMR [37] has significantly contributed to progress of our
understanding molecular dynamics of chemically complex semicrystalline polymers in the last
decade [38–43]. The CODEX experiments utilize the recoupling of the chemical shift anisotropy
(CSA) interaction by 180o pulse trains in the two evolution periods sandwiching a mixing period, tmix.
The dephasing of magnetization brought about by changes in orientation dependent CSA because
of a re-orientational dynamic process during tmix leads to signal decays in the spectrum (so called
exchange spectrum, S). Additionally, reference spectrum without dynamics effect (S0) can be obtained
by interchanging tmix with a z-filter time after second evolution time in the CODEX exchange pulse
program [37].



Polymers 2018, 10, 775 13 of 20

iP4M1P is a unique polymer because crystalline density (0.823 g/cm3) is lower than that of
the amorphous density (0.840 g/cm3) at room temperautre. Dynamics mechanical analysis showed
segmental motions in the amorphous regions at around 20–50 ◦C [38–40].

Figure 12a depicts chemical structure and chemical shift anisotropy (CSA) of iP4M1P. In small
chemical shift range, CSA patterns for all the functional groups overlap each other. Thereby, 2D
exchange NMR based on CSA patterns cannot provide detailed dynamics information. Figure 12b
represents CODEX S and S0 of iP4M1P at evolution time of 2.2 ms and mixing time of 107 ms at 87 ◦C,
where T1ρC relaxation filter was used to suppress the amorphous signals. CODEX data indicate that
all functional groups of the crystalline chains participate in molecular dynamics at 87 ◦C. Figure 12c
represents CODEX evolution time dependence of (S/S0) ratio for the backbone CH2 carbon (C1) at
60 ◦C. Comparisons of simulation and experimental data provide that iP4M1P 72 helical chains perform
helical jump motions at 60 ◦C. Mixing-time dependence of all the functional groups can be analyzed
in terms of one master curve with <τc> = 13.9 ms and β = 0.71, where β is a distribution paramter
(0 < β ≤ 1). Both CODEX data in Figure 12c and d indicate that all the functional groups participate in
helical jump dynamics in the crystalline regions. Temperature dependence of <τc> for the helical jump
motions is bent at around Tg. Such unique dynamics is interpreted in terms of coupling of molecular
dynamics of the amorphous and crystalline chains at the interface. Such uniqueness in molecular
dynamics arises from unique densities at temperatures below 50 ◦C.Polymers 2018, 10, x  14 of 20 
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Figure 12. (a) iP4M1P 72 helical structure and corresponding chemical shift anisotropy (CSA) patterns.
(b) Center-bands only of detection of exchange (CODEX) and reference spectra of iP4M1P with
evolution time of 2.2 ms and mixing time of 107 ms at 87 ◦C. (c) CODEX evolution time-dependence
of (S/S0) of CH2 (C1) signals of iP4M1P with mixing time of 107 ms at 60 ◦C. (d) CODEX mixing
time-dependence of (S/S0)* intensities for C1 ( ), C2 (#), C3, (�), and C6 (×) of iP4M1P with evolution
time of 2.2 ms at 87 ◦C. (Reprinted with permission from Macromolecules 2004, 37, 6460–6471 Copyright
(2004) American Chemical Society).
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Figure 13. (a) CODEX mixing-time dependence of (S/S0)* signal intensities for iPP α1 ( ), and the
iPP α2-rich samples (#) at 95 ◦C. (b) Arrhenius plots of <τc> of α1 ( ), and the α2-rich samples (#).
(Reprinted with permission from J. Phys. Chem. B 2010, 114, 92–100. Copyright (2004) American
Chemical Society).

iPP experiences order–disorder transitions in packing structure depending on Tc as illustrated
in Figure 10. It is interesting to investigate how order–disorder in packing structure affect molecular
dynamics of the crystalline chain dynamics. In the literature [41], slow molecular dynamics of iPP α1-
and α2-rich melt-grown crystals prepared at Tc = 100 and 150 ◦C, respectively, were investigated by
CODEX NMR. <τc> in the ordered packing structures for iPP α2 rich sample is 35 folds longer than that
in disordered packing ones at the same temperature (Figure 13a). Figure 13b shows Arrhenius plots of
<τc> for the α1 ( ) and the α2-rich samples (#). Using Arrhenius curves, the α2-rich sample show the
larger activation energy of 102 ± 5 than that for the α1 samples (72 ± 4 kJ/mol). Tight packing of α2

significantly slows down mobility of iPP chains compared with the disordered α1 packing structure.
It is worthwhile to note that the α2-rich sample shows much thicker lamellae (28 nm) than those for
the α1 sample (11 nm). Thereby, not only packing structure but also crystal thickness contributes to
slowing down the chain dynamics. The observed chain dynamics in the crystalline regions play a
significant role for large deformation of semicrystalline polymers (see Section 9).

9. Deformation of Semicrystalline Polymers

The effects of deformation on the crystalline structure [84] and chain-level structure, for example,
Rg [85,86] for semicrystalline polymers, have been successfully investigated in the past decades.
However, the evolution of the locally folded chains under deformation has never been reported.

Kang et al. investigated chain-level structures of iPP α1 crystals under tensile drawing at 100 ◦C,
where helical jump motions are thermally activated as shown in Figure 13b. They applied 13C–13C
DQ NMR to trace <n> and <F> of iPP folded chains under hot drawing [60]. It is found that the
folded chains are gradually unfolded with increasing engineering strain (e), and that the folded
chain conformations are locally extended (<n> = 0) at e ≥ 10 at 100 ◦C (Figure 14). It is concluded
that directional chain transportation occurs inside the crystallites under stretching and plays an
important role for large deformability of semicrystalline polymers. Additional DQ NMR experiments
on deformations at different temperatures and different stretching rates will provide complete pictures
for deformation mechanisms of semicrystalline polymers at the molecular level.



Polymers 2018, 10, 775 15 of 20

Polymers 2018, 10, x  15 of 20 

 

show the larger activation energy of 102 ± 5 than that for the α1 samples (72 ± 4 kJ/mol). Tight packing 451 
of α2 significantly slows down mobility of iPP chains compared with the disordered α1 packing 452 
structure. It is worthwhile to note that the α2-rich sample shows much thicker lamellae (28 nm) than 453 
those for the α1 sample (11 nm). Thereby, not only packing structure but also crystal thickness 454 
contributes to slowing down the chain dynamics. The observed chain dynamics in the crystalline 455 
regions play a significant role for large deformation of semicrystalline polymers (see section 9). 456 

9. Deformation of Semicrystalline Polymers 457 

The effects of deformation on the crystalline structure [84] and chain-level structure, for 458 
example, Rg [85,86] for semicrystalline polymers, have been successfully investigated in the past 459 
decades. However, the evolution of the locally folded chains under deformation has never been 460 
reported.  461 

Kang et al. investigated chain-level structures of iPP α1 crystals under tensile drawing at 100 C, 462 
where helical jump motions are thermally activated as shown in Figure 13b. They applied 13C–13C DQ 463 
NMR to trace <n> and <F> of iPP folded chains under hot drawing [60]. It is found that the folded 464 
chains are gradually unfolded with increasing engineering strain (e), and that the folded chain 465 
conformations are locally extended (<n> = 0) at e ≥ 10 at 100 ºC (Figure 14). It is concluded that 466 
directional chain transportation occurs inside the crystallites under stretching and plays an important 467 
role for large deformability of semicrystalline polymers. Additional DQ NMR experiments on 468 
deformations at different temperatures and different stretching rates will provide complete pictures 469 
for deformation mechanisms of semicrystalline polymers at the molecular level.  470 

 471 

Figure 14. 13C–13C DQ buildup curves of 13C 50 wt% labeled iPP α1 crystal blends with non-labeled 472 
one at a mixing ratio of 1:9 at different e values and calculated DQ curves with different <n> values. 473 
Schematic illustrations of chain-folding numbers as a function of e. (Reprinted with permission from 474 
ACS Macro Lett. 2016, 5, 65–68. Copyright (2016) American Chemical Society). 475 

10. Future Subjects in ssNMR of Semicrystalline Polymers  476 

We reported the recent progress on understanding the chain-trajectory and molecular dynamics 477 
of various semicrystalline polymers using ssNMR. Dipolar-based NMR on 13C labeled sites has 478 
successfully traced chain-folding pattern and packing structure of various semicrystalline polymers. 479 
As results, it was concluded that i) entanglement and polymer concentration significantly affect 480 
adjacent re-entry number, while available kinetics does not affect adjacent re-entry number; and ii) 481 
polymer chains self-fold in the early stage of melt crystallization, as well as in dilute solution. The 482 
important findings falsify the well-established LH theory [3,4], and point out importance of primary 483 
nucleation in polymer crystallization [6,17]. The folded chain structures accessible by ssNMR 484 
[52,53,55–58,62] are consistent with recent views on primary nucleation in amino acids [87], metal 485 

Figure 14. 13C–13C DQ buildup curves of 13C 50 wt% labeled iPP α1 crystal blends with non-labeled
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ACS Macro Lett. 2016, 5, 65–68. Copyright (2016) American Chemical Society).

10. Future Subjects in ssNMR of Semicrystalline Polymers

We reported the recent progress on understanding the chain-trajectory and molecular dynamics
of various semicrystalline polymers using ssNMR. Dipolar-based NMR on 13C labeled sites has
successfully traced chain-folding pattern and packing structure of various semicrystalline polymers.
As results, it was concluded that (i) entanglement and polymer concentration significantly affect
adjacent re-entry number, while available kinetics does not affect adjacent re-entry number; and
(ii) polymer chains self-fold in the early stage of melt crystallization, as well as in dilute solution.
The important findings falsify the well-established LH theory [3,4], and point out importance of
primary nucleation in polymer crystallization [6,17]. The folded chain structures accessible by
ssNMR [52,53,55–58,62] are consistent with recent views on primary nucleation in amino acids [87],
metal ions [88,89], and proteins [90], among others. Combining atomic scale information by ssNMR
with direct observations of morphology, as well as visualization of chains by computations, will
significantly contribute to understanding in the research field of crystallization. Moreover, the
novel NMR approach will be possibly applied to analysis of chain-level structure in (i) confined
crystallization [91]; (ii) self-assembly at liquid/liquid interface [92,93]; (iii) other processing such as
shear flow, tensile drawing, and electrospinning [94]; and (iv) glassy state.
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