Novel PSMA-Coated on-off-on Fluorescent Chemosensor based on AIE Dots for Detection of Copper (II) 、 Iron (III) and Cysteine.

Rui Jiang, Na Liu, Fan Li, Wensheng Fu, Yun Zhou* and Yan Zhang*

Chongqing Key Laboratory of Green Synthesis and Applications, and Chongqing Key Laboratory of Inorganic Functional Materials, College of Chemistry, Chongqing Normal University, Chongqing 401331, China; jiangrui19950213@163.com (R.J); NaLiunihao@163.com (N.L); lifan0814@sina.com (F.L); fuwensheng@cqnu.edu.cn (W.F.)

* Correspondence: yanzhang@cqnu.edu.cn; yunzhou@cqnu.edu.cn; Tel.: +86-23- 6536-2777

Scheme S1. Synthetic route of DSA

The characterization of DSA:¹H NMR (100 MHz, CDCl₃, TMS, ppm): 6.95 (d, 2H), 7.37 (t, 2H), 7.46-7.49 (m, 8H), 7.70 (d, 4H), 7.94 (d, 2H), 8.39-8.41 (m, 4H). ¹³C NMR (25 MHz, CDCl₃, TMS, ppm): 137.46, 137.28, 132.68, 129.56, 128.84, 128.03, 126.60, 126.46, 125.24, 125.16. LC-MS calcd for C₃₀H₂₂ 382.2, found 382.6.

Figure S1. DLS data of AIE dots prepared with different mass ratio (from A to B, PSMA: DSA = 4:1, 2:1, 1:1, 1:2).

Figure S2. Selective fluorescence responses of Fe³⁺ system in the presence of other metal ions. The black bars represent the emission in presence of 0.1 mM different ions. The red bars represent the emission in the presence of 20 μ M Fe³⁺ and 0.1 mM another metal ion.

Figure S3. Selective fluorescence responses of Cu²⁺ system in the presence of A) Fe²⁺ and B) Cu⁺ (20 μ M).

Figure S4. Effects of different anions (Cl^- , NO_3^- , SO_4^{2-}). The concentration of Cu^{2+} was 20 μ M.

Figure S5. Selective fluorescence responses of A) Cu^{2+} and B) Fe³⁺ system (20 μ M) in the presence of high concentration of Mg²⁺, K⁺, and Na⁺ (2nM, 6mM, 150 mM, respectively).

Figure S6. A) The DLS of AIE dots. B) The DLS of AIE dots with Cu^{2+} (20 μ M). C) The DLS of AIE dots with Fe³⁺ (20 μ M). D) The DLS of AIE dots with Cu^{2+} (5 μ M) and cysteine (2.5 μ M).

Figure S7 A) The TEM images of AIE dots with Fe³⁺. B) The TEM images of AIE dots/Cu²⁺ in the presence of cysteine.

Figure S8. A) Fluorescence changes of AIE dots in the presence of different concentration of Fe³⁺ excited by 406 nm. B) The plot of the fluorescence intensity ratio of AIE dots at 524 nm versus different concentration of Fe³⁺. The inset figure shows the signal change in the Fe³⁺ concentration range of 0-6 μ M.

Figure S9. A) Fluorescence intensity changes of AIE dots containing Cu^{2+} (5 μ M) in the presence of different concentrations of cysteine (0-4 μ M). B) The plot of the fluorescence intensity ratio of AIE dots/Cu²⁺ at 524 nm versus different concentration of cysteine (0-2.5 μ M).

Figure S10. A) Spike recovery of Cu²⁺, Fe³⁺ and cysteine. B) Fluorescence intensity changes of AIE dots in the presence of Fe³⁺, Fe³⁺ & F⁻, Fe³⁺ & F⁻ & Cu²⁺, Fe³⁺ & F⁻ & Cu²⁺, Fe³⁺ & Cu²⁺ & Cu²⁺, Fe³⁺ & Cu³⁺, Fe³⁺ & Cu²⁺, F