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Abstract: A simple and sustainable production of nanoplatelet graphite at low cost is presented
using carbon-based materials, including the recycled lead-graphite pencils. In this work, exfoliated
graphite nanoplatelets (EGNs), ball-milled exfoliated graphite nanoplatelets (BMEGNs) and recycled
lead-graphite pencils (recycled 2B), as well as thermally cured polydimethylsiloxane (PDMS), are used
to fabricate highly stretchable thermal-interface materials (TIMs) with good thermally conductive
and mechanically robust properties. Several characterization techniques including scanning electron
microscopy (SEM) and thermogravimetric analysis (TGA) showed that recycled nanoplatelet graphite
with lateral size of tens of micrometers can be reliably produced. Experimentally, the thermal
conductivity was measured for EGNs, BMEGNs and recycled 2B fillers with/without the effect of
ball milling. The in-plane thermal conductivities of 12.97 W/mK (EGN), 13.53 W/mK (recycled
2B) and 14.56 W/mK (BMEGN) and through-plane thermal conductivities of 0.76 W/mK (EGN),
0.84 W/mK (recycled 2B) and 0.95 W/mK (BMEGN) were experimentally measured. Anisotropies
were calculated as 15.31, 15.98 and 16.95 for EGN, recycled 2B and BMEGN, respectively. In addition,
the mechanical robustness of the developed TIMs is such that they are capable of repeatedly bending
at 180 degrees with outstanding flexibility, including the low-cost renewable material of recycled
lead-graphite pencils. For heat dissipating application in high-power electronics, the TIMs of recycled
2B are capable of effectively reducing temperatures to approximately 6.2 ◦C as favorably compared
with thermal grease alone.

Keywords: thermal-interface materials (TIMs); ball milling; recycled lead-graphite pencils;
thermal conductivity

1. Introduction

Significant thermal management difficulties occur in many high-density microelectronic devices
ubiquitous in many communication and energy storage applications [1,2], high-power devices
of insulated gate bipolar transistors (IGBTs) [1], gallium nitride (GaN) light-emitting diodes
and field-effect transistors (FETs) [3–6]. Among the strategies dedicated to thermal management,
thermal-interface materials (TIMs) [7] are widely applied as effective heat dissipation passages
such as those massively produced in solar cells [8,9] and electronics signal wires or electroplated
electrodes [3,10]. Considering the trade-off between production cost and material properties
(mechanical, chemical and thermal attributes), the primarily used matrix consists of epoxy-based
resins [4–6] with graphite nanoplatelet materials [11] to reduce the cost of embedded nanoscale
fillers [12,13]. In addition, enhancing the heat dissipating performance of TIMs by using thermally
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conductive nanomaterial fillers is one of the thrust areas, for example, carbon-based materials
(carbon nanotubes, carbon fibers, carbon nanosheets [14], exfoliated graphite nanoplatelets
(EGNs), graphene [15–18], NiO/graphene [19] and FeO(OH)/activated carbon [20]). Furthermore,
phase-change materials using exfoliated graphite with high shape stabilization [17] and other novel
nanostructured composites such as MnO2/graphene [21] and Co3O4/graphene [22] have been applied
in microelectronic electrode materials.

Concerning the TIMs’ manufacture, the additive-type patterning of screen-printing
technology [23–25] is widely used for EGN-based composites. Thermally cured and screen-printed
EGN/SNP-embedded polydimethylsiloxane (PDMS) TIMs and ball milling was investigated in [26,27].
Moreover, ball milling of nanofillers and mechanically mixing into a polymer matrix [28], which is an
environmentally and economically sustainable method [29–31], was investigated at low cost in the
mass-production process [32–34]. A novel ultrasonicated ozonolysis (USO) processing method has
been applied to make highly stable aqueous dispersions of exfoliated graphite (EG), which can be
processed for ink-jet printing [35].

In this research, a simple and convenient means to physically disintegrate recycled lead-graphite
pencils (2B graphite, Pentel Co., Ltd., Taoyuan, Taiwan) was experimentally examined by using a
ball-mill machine (Mixer Mills, Retsch MM400, Nürnberg, Germany). A previous study [36] indicated
that the increase of the specific surface area can effectively promote the interaction among particles,
and thus, improve the effective thermal conductivity. Screen-printing technology is used to make
the composite film ~0.2 mm thick. Experimental measurements were systematically investigated
to characterize the recycled nanoplatelet graphite-embedded polydimethylsiloxane (PDMS) TIMs
(recycled 2B). Finally, the thermal conductivity and the application to IGBT were investigated.
Experimental results indicate that TIMs with low loading of functionalized EGN and recycled
nanoplatelet graphite fillers, which can be compliantly oriented during the composite application to
the surfaces, have great potential in thermal management of advanced electronics.

2. Materials and Methods

2.1. Materials and Preparation of Recycled 2B TIMs

A schematic representation and the optical image of recycled nanoplatelet graphite by ball-milling
of recycled 2B is shown in Figure 1a,b; Figure 1c shows the optical photo and schematic of
disintegration of recycled nanoplatelet graphite via the solid-state ball-milling approach [26] such that
continuous mechanochemical fragmentation and associated crystallite sizes can be exfoliated to the
nanometer range.

Experimentally, recycled 2B was selected in this study for the filler material, together with
commercially available nanoplatelet graphite. Initially, the ball milling of recycled 2B to produce
recycled nanoplatelet graphite was carried out in a ball-mill machine (Retsch MM400, Haan, Germany).
2.0 g of recycled 2B was typically charged into a stainless steel capsule (25 mL) with zirconia beads of
3 mm in diameter. The container was vibrated at a frequency of 20 Hz for durations of approximately
4 h, then carefully collected and washed with the solution of water and ethanol. The final products
were dried in vacuum oven at 60 ◦C under a reduced pressure (~93 kPa) for 4 h to yield 1.08 g of
recycled 2B. The ball-milling process is performed at dry ambient environment.

The schematic of the screen-printing technique to functionally facilitate the spreading and bonding
process of TIMs onto an aluminum heat sink in high-power applications is presented in Figure 2.
Specifically, Figure 2a shows the images of recycled 2B powder which were obtained with a common
digital camera. Figure 2b shows the fillers (EGN, recycled 2B and BMEGN) with the ball-milled
powders. In order to fabricate the composite fabrication, the PDMS prepolymer (Sylgard 184A) and
recycled 2B were first spatula-dispersed and magnetically agitated for 1 h at 100 rpm. Next, PDMS
curing agent (Sylgard 184B) was thoroughly (respecting a 10:1 ratio between the prepolymer and
curing agent) incorporated into the mixture (Figure 2c), using a conventional sonication at power
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of 100 W for 3 h at room temperature (Figure 2d) and 30 min degassing (Figure 2e). To screen print
composite structures on a glass substrate, the well-mixed pastes (EGN, recycled 2B and BMEGN) were
initially forced into the glass substrate using a 45◦ angle tilt (Figure 2f). After the screen-printing
process, the samples were oven-heated at 60 ◦C for 8 h and mechanically stripped off (Figure 2g).
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Figure 1. A schematic representation of (a) recycled 2B; (b) optical photo showing the mechanical setup
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machine; (2) suspension of the recycled nanoplatelet graphite in the ethanol medium; (3) 25 mL ball-mill
jar; and (c) recycled nanoplatelet graphite.
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2.2. Analysis Methods

The morphologies of EGN, recycled 2B and BMEGN were analyzed by scanning electron
microscopy (FE–SEM, S-4800, HITACHI, Tokyo, Japan) at room temperature and atmospheric
conditions. Thermogravimetric analysis (TGA) was measured in the temperature range from 50 to
1000 ◦C with a 200 ◦C/min ramp rate and a 4 ◦C/min resolution using TG–DTA (10 ◦C/min, Perkin
Elmer TGA-7, Waltham, MA, USA). The through-plane thermal conductivity was measured by a
plane heat source (hot plate) method as described by ASTM D5470-06 [37] with the equipment in the
experimental setup consisting of an electrical heater, a heat sink and two thermocouples to measure the
temperature gradient [11]. The in-plane thermal conductivity was measured utilizing a comparative
technique [38]. The in-plane thermal conductivities of the EGN, recycled 2B and BMEGN composites
were measured in the temperature range 30–40 ◦C by utilizing a comparative technique, similar to the
measurement setup of the previous study [38].

3. Results and Discussions

3.1. Mechanical Properties

The recycled 2B composite (10 vol % recycled 2B loading) is black (Figure 3a) and mechanically
demonstrates the high degree of flexibility, compared favorably with the commercially available
thermal-interface material counterpart (Figure 3b, TG-6050). The sample was commercially available
from T-Global Technology Co., Ltd., Yilan, Taiwan. After bending 180 degrees, the commercial TIMs
showed severe cracks while the proposed counterpart of recycled 2B composite was mechanically
flexible and structurally robust after repeated cycling tests (~100 cycles). In summary, the preparation
and mechanical characteristics of proposed recycled 2B composite films were comparatively superior
to those of commercially available TIMs, and furthermore, the thermal conductivities will be compared
in the next section.
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Figure 3. Optical photos of (a) recycled 2B composite, compared with (b) a commercial TIM.
The recycled 2B composite is experimentally shown to be mechanically flexible and structurally
robust after bending 180 degrees by tweezer. (Samples’ dimensions: 20 mm × 20 mm × 1 mm)
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3.2. Scanning Electron Microscopy (SEM)

Figure 4B–D shows the scanning electron microscopy (SEM) images of three types of graphite
material such that the surface morphologies can be determined. Obviously, the mechanical
disintegration of ball milling can effectively reduce the average particle size (which decreased gradually
from 15.14 to 2.72 µm), suggesting that mechanically exposed edges were mechanically induced after
ball-milling process and could potentially enhance the thermal conductivity of TIMs. Grain size
was estimated by the open-source software ImageJ for the SEM images of all samples. The SEM
result also shows that the recycled 2B with the lateral size of tens of micrometers can be reliably
produced. Furthermore, a similar surface morphology was observed from both recycled 2B and
BMEGN samples, suggesting the carbon-based materials may have similar thermally conductive
characteristics. In summary, the effect of ball milling can produce materials with better dispersion as
well as a less dense morphology with a reduced length in the micrometer range.
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Figure 4. SEM images of EGN, recycled 2B and BMEGN. (A) Digital photos of (A-a) EGN, (A-b) recycled
2B, (A-c) BMEGN; (B–D) SEM images of (B) EGN, (C) ball-milled for 4 h recycled lead-graphite pencils
(recycled 2B), and (D) ball-milled for 4 h exfoliated graphite nanoplatelets (BMEGNs).

3.3. Raman Spectra

Figure 5 shows the Raman spectra of EGN, recycled 2B and BMEGN samples, clearly indicating the
distinguishable D-band, G-band and 2D-band (approximately at 1350 cm−1, 1580 cm−1 and 2700 cm−1,
respectively). The spectral feature of graphene can be identified as the G-band (1580 cm−1) [39].
From the Raman spectra, no major change of spectral shape is observed for EGN, recycled 2B and
BMEGN samples. In addition, the full widths at half maximum (FWHMs) of the G-band (1580 cm−1)
are calculated as 27.2, 30.3 and 28.2 cm−1, respectively, for EGN, recycled 2B and BMEGN samples,
indicating that the degree of graphitization is characteristically similar. Moreover, the previous work
demonstrated that G and 2D Raman peaks could be affected by the number of graphene layers due to
the evolution of the electronic structure and electron–phonon interactions [40].
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3.4. Thermogravimetric Analysis (TGA)

The thermal stability of the recycled 2B composite is shown in Figure 6, and the weight loss is less
than 5% at 400 ◦C. All three types of graphite sample are thermally stable when heated up to 800 ◦C
under inert atmosphere. Experimentally, the addition of BMEGN will certainly induce an increase of
the thermal stability. Furthermore, the BMEGN composite displays better thermal stability than the
EGN composite. For example, the corresponding temperatures T20% (temperature at 20 wt % loss) are
527.6 ◦C, 516.4 ◦C and 515.9 ◦C for BMEGN, recycled 2B and EGN, respectively. This suggests that the
BMEGN composite has the highest thermal stability of all tested samples. The recycled 2B composites
pose a relatively higher heat capacity as compared to their EGN counterpart.

3.5. Thermal Conductivity (K) of BMEGN/PDMS Composite

To quantitatively characterize the thermal conductivity of the fabricated TIMs, both through-plane
(K
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16.95; the fundamental reason may be primarily attributed to the hierarchical structure consisting of
PDMS matrix and aligned BMEGN [42]. Present measurements show comparatively small variation in
anisotropy, irrespective of the different materials of EGN, recycled 2B and BMEGN composite.
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3.6. Heat Dissipation Tests for High-Power IGBT

Figure 8a shows VGE voltage transmits across an IGBT inverter module at the pulse frequency
of 20 kHz. The current loading and the pulsing frequency are mimicking the operating conditions in
renewable energy sources such as wind power stations. The designed IGBT specification of electrical
output has a current loading of a maximum up to 100 A at 600 V. In the actual experiments of
standalone operation, Figure 8b shows the experimental output voltage (VAC) and current (IAC), that is,
the switching frequency/power at 60 Hz/2.0 kW, the output voltage is 270 V (Vp-p ~550 V) and output
current is 9.8 A (Ip-p ~19.7 A). The output voltage and current perform a well-regulated sinusoidal
waveform. As shown in Figure 8c, the developed BMEGN composites of TIMs (blue squares) are used
to effectively conduct heat flow in the direction normal to the contact interface. Thermocouples were
used for the measurements of transient temperature. Red rectangles show the three IGBTs where TIMs
were sandwiched between the heat-generating IGBT chips and the heat sink.
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IAC; (c) TIMs (red dotted square) in measurements on the IGBT heat sources. Red rectangles show the
3 IGBTs in the normal operation position.

Figure 9a presents a schematic of the heating test by sandwiching TIMs between the IGBT and
aluminum heat sink. TIM samples (10 wt %) should have high thermal conductivity while being
thick enough to be compliantly conformal to the unsmooth surface. In practice, the thin TIM layer
between the contacting surfaces should be pressure-induced to underfill the gap, and the thermal
conductivity-equivalent circuit model should include the combined effect of the thermal-interface
resistances, labeled RC1 and RC2, respectively (Figure 9b, inset). Figure 9c shows the measurement
results of temperature rise during the converter operation condition of 2.5 kW capacity. The experiment
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lasted 1200 s. Experimental results of temperature rise are specifically targeted for samples of BMEGN
TIMs, recycled 2B TIMs, EGN TIMs and without TIMs (only grease). At 1200 s, the measured
temperatures were recorded as 37.5 ◦C, 43.9 ◦C, 45.8 ◦C and 50.1 ◦C, respectively. The results
indicate that the recycled 2B composite effectively reduced temperatures by approximately 6.2 ◦C
as compared with the sample of grease alone. The recycled 2B composite is less effective than the
BMEGN counterpart; however, it compares favorably with the EGN composite, demonstrating the
feasibility of recycled processing of synthesis nanomaterials as an effective technique in reducing the
fabrication cost in an environmentally benign way.
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4. Conclusions

Graphite-based materials, such as lead-graphite pencils, have been widely used and discarded
easily due to their low cost. The present work shows the commercial potential of thermally conductive
recycled 2B composites that can be ball milled with homogenously dispersed fillers into the matrix
and directly applied to TIMs. The thermal conductivities of composites with recycled 2B filler were
characterized by SEM and TGA. The mechanical (bending test) and thermal performance of three
types of carbon filler (EGN, recycled 2B and BMEGN) dispersed in epoxy resin were experimentally
investigated. The recycled 2B is a renewable low-cost source, and ball milling can transform the initial
bulk morphology into a spherical form. Therefore, the thermal conductivity of recycled 2B can be
enhanced via uniformly dispersed particles (increasing the specific surface area). Fundamentally, ball
milling can be effective in enhancing the mechanical mixing processes between a polymer matrix and
embedded recycled 2B, such that filler agglomerates can be fragmented segments with a homogeneous
dispersion inside the matrix. The measured in-plane thermal conductivity (K//) increases from
12.97 W/mK (EGN) to 13.53 W/mK (recycled 2B, enhanced by 4%) after four hours of ball milling.
In summary, ball milling offers the potential of preparing TIM composites at low cost and with an
easily scalable method. For the IGBT tests, the results indicate that the composite of recycled 2B is
capable of effectively reducing temperatures by approximately 6.2 ◦C as favorably compared with
thermal grease. This work provides new insights into the relationship between sample preparation
methods and the formation of highly efficient conductive paths of polymer composites.
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